Skip to main content
Erschienen in: Nuclear Medicine and Molecular Imaging 3/2021

25.03.2021 | Original Article

Quantification of Hypoxia in Human Glioblastoma using PET with 18F-FMISO

verfasst von: Redha-alla Abdo, Frédéric Lamare, Philippe Fernandez, M’hamed Bentourkia

Erschienen in: Nuclear Medicine and Molecular Imaging | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This study aimed to investigate the results of compartmental modeling (CM) and spectral analysis (SA) generated with dynamic 18F-FMISO tumor images. Besides, the regular tissue-to-blood ratio (TBR) images were derived and compared with the dynamic models.

Methods

Nine subjects with glioblastoma underwent PET/CT imaging with the 18F-FMISO tracer. The protocol for PET imaging began with 15 min in dynamic mode and two 10-min duration static images at 120 min and 180 min post-injection. We used the two-tissue compartmental model for CM at the voxel basis, and we conducted SA to estimate the 18F-FMISO accumulation within each voxel. We also investigated the usual tumor-to-blood ratio (TBR) for comparison.

Results

The images of the tumor showed different patterns of hypoxia and necrosis as a function of PET scanning times, while CM and SA methods based on dynamic PET imaging equally located tumor hypoxia. The mean correlation of Ki images of all subjects between CM and SA was 0.63 ± 0.19 (0.24-0.86). CM produced less noisy Ki images than SA, and, in the contrary, SA produced accumulation component images more clear than with CM. CM-Ki and SA-Ki images were correlated with TBR images (r = 0.72 ± 0.20 and 0.56 ± 0.26, respectively). In the only subject having a continuously increasing tumor time-activity curve, the k3 image showed a high uptake in the necrosis region which was not apparent in TBR or Ki images.

Conclusion

Based on these results, the combination of CM and SA approaches was found more appropriate in generating voxel-based hypoxia images.
Literatur
1.
Zurück zum Zitat Gallezot J-D, Lu Y, Naganawa M, Carson RE. Parametric imaging with PET and SPECT. IEEE Trans Rad Plas Med Sci. 2020;4:1–23.CrossRef Gallezot J-D, Lu Y, Naganawa M, Carson RE. Parametric imaging with PET and SPECT. IEEE Trans Rad Plas Med Sci. 2020;4:1–23.CrossRef
2.
Zurück zum Zitat Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method. Ann Neurol. 1979;6:371–88.CrossRef Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2-deoxy-D-glucose: Validation of method. Ann Neurol. 1979;6:371–88.CrossRef
3.
Zurück zum Zitat Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.CrossRef Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. 1983;3:1–7.CrossRef
4.
Zurück zum Zitat Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7.CrossRef Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7.CrossRef
5.
Zurück zum Zitat Bentourkia M Modeling 13N-ammonia from projections in rat-PET studies. IEEE Nucl Sci Symp Med Imaging Conf. 2001. p. 1564–8. Bentourkia M Modeling 13N-ammonia from projections in rat-PET studies. IEEE Nucl Sci Symp Med Imaging Conf. 2001. p. 1564–8.
6.
Zurück zum Zitat Cunningham VJ, Jones T. Spectral Analysis of Dynamic PET Studies. J Cereb Blood Flow Metab. 1993;13:15–23.CrossRef Cunningham VJ, Jones T. Spectral Analysis of Dynamic PET Studies. J Cereb Blood Flow Metab. 1993;13:15–23.CrossRef
7.
Zurück zum Zitat Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. Nature Publishing Group. 2015;112:238–50. Fleming IN, Manavaki R, Blower PJ, West C, Williams KJ, Harris AL, et al. Imaging tumour hypoxia with positron emission tomography. Br J Cancer. Nature Publishing Group. 2015;112:238–50.
8.
Zurück zum Zitat Abdo R, Lamare F, Fernandez P, Bentourkia M. Analysis of hypoxia in human glioblastoma tumors with dynamic 18F-FMISO PET imaging. Australas Phys Eng Sci Med. 2019;42:981–93.CrossRef Abdo R, Lamare F, Fernandez P, Bentourkia M. Analysis of hypoxia in human glioblastoma tumors with dynamic 18F-FMISO PET imaging. Australas Phys Eng Sci Med. 2019;42:981–93.CrossRef
9.
Zurück zum Zitat Casciari JJ, Graham MM, Rasev JS. A modeling approach for quantifying tumor hypoxia with F-18Fluoromisonidazole PET time-activity data. Med Phys. 1995;22:1127–39.CrossRef Casciari JJ, Graham MM, Rasev JS. A modeling approach for quantifying tumor hypoxia with F-18Fluoromisonidazole PET time-activity data. Med Phys. 1995;22:1127–39.CrossRef
10.
Zurück zum Zitat Bruehlmeier M, Roelcke U. Schubiger P a, Ametamey SM. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med. 2004;45:1851–9.PubMed Bruehlmeier M, Roelcke U. Schubiger P a, Ametamey SM. Assessment of hypoxia and perfusion in human brain tumors using PET with 18F-fluoromisonidazole and 15O-H2O. J Nucl Med. 2004;45:1851–9.PubMed
11.
Zurück zum Zitat Thorwarth D, Eschmann SM, Paulsen F, Alber M. A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol. 2005;50:2209–24.CrossRef Thorwarth D, Eschmann SM, Paulsen F, Alber M. A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia. Phys Med Biol. 2005;50:2209–24.CrossRef
13.
Zurück zum Zitat Lim JL, Berridge MS. An efficient radiosynthesis of [18F]fluoromisonidazole. Appl Radiat Isot. 1993;44:1085–91.CrossRef Lim JL, Berridge MS. An efficient radiosynthesis of [18F]fluoromisonidazole. Appl Radiat Isot. 1993;44:1085–91.CrossRef
14.
Zurück zum Zitat Bentourkia M. PET kinetic modeling of 11C-acetate from projections. Comput Med Imaging Graph. 2003;27:373–9.CrossRef Bentourkia M. PET kinetic modeling of 11C-acetate from projections. Comput Med Imaging Graph. 2003;27:373–9.CrossRef
15.
Zurück zum Zitat Veronese M, Rizzo G, Bertoldo A, Turkheimer FE. Spectral analysis of dynamic PET studies : a review of 20 years of method developments and applications. Comput Math Methods Med. 2016;2016:1–15.CrossRef Veronese M, Rizzo G, Bertoldo A, Turkheimer FE. Spectral analysis of dynamic PET studies : a review of 20 years of method developments and applications. Comput Math Methods Med. 2016;2016:1–15.CrossRef
16.
Zurück zum Zitat Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21:635–52.CrossRef Gunn RN, Gunn SR, Cunningham VJ. Positron emission tomography compartmental models. J Cereb Blood Flow Metab. 2001;21:635–52.CrossRef
17.
Zurück zum Zitat Grkovski M, Schöder H, Lee NY, Carlin SD, Beattie BJ, Riaz N, et al. Multiparametric imaging of tumor hypoxia and perfusion with 18 F-fluoromisonidazole dynamic PET in head and neck cancer. J Nucl Med. 2017;58:1072–80.CrossRef Grkovski M, Schöder H, Lee NY, Carlin SD, Beattie BJ, Riaz N, et al. Multiparametric imaging of tumor hypoxia and perfusion with 18 F-fluoromisonidazole dynamic PET in head and neck cancer. J Nucl Med. 2017;58:1072–80.CrossRef
18.
Zurück zum Zitat Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83–92.CrossRef Muz B, de la Puente P, Azab F, Azab AK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia. 2015;3:83–92.CrossRef
19.
Zurück zum Zitat Rita Monteiro A, Hill R, Pilkington GJ, Madureira PA. The role of hypoxia in glioblastoma invasion. Cells. 2017;6:45–24.CrossRef Rita Monteiro A, Hill R, Pilkington GJ, Madureira PA. The role of hypoxia in glioblastoma invasion. Cells. 2017;6:45–24.CrossRef
20.
Zurück zum Zitat Warren DR, Partridge M. The role of necrosis, acute hypoxia and chronic hypoxia in F18-FMISO PET image contrast: a computational modelling study. Phys Med Biol. 2016;61:8596–624.CrossRef Warren DR, Partridge M. The role of necrosis, acute hypoxia and chronic hypoxia in F18-FMISO PET image contrast: a computational modelling study. Phys Med Biol. 2016;61:8596–624.CrossRef
21.
Zurück zum Zitat Wang W, Georgi J-C, Nehmeh SA, Narayanan M, Paulus T, Bal M, et al. Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging. Phys Med Biol. 2009;54:3083–99.CrossRef Wang W, Georgi J-C, Nehmeh SA, Narayanan M, Paulus T, Bal M, et al. Evaluation of a compartmental model for estimating tumor hypoxia via FMISO dynamic PET imaging. Phys Med Biol. 2009;54:3083–99.CrossRef
Metadaten
Titel
Quantification of Hypoxia in Human Glioblastoma using PET with 18F-FMISO
verfasst von
Redha-alla Abdo
Frédéric Lamare
Philippe Fernandez
M’hamed Bentourkia
Publikationsdatum
25.03.2021
Verlag
Springer Singapore
Erschienen in
Nuclear Medicine and Molecular Imaging / Ausgabe 3/2021
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-021-00693-8

Weitere Artikel der Ausgabe 3/2021

Nuclear Medicine and Molecular Imaging 3/2021 Zur Ausgabe