Skip to main content
Erschienen in: Nuclear Medicine and Molecular Imaging 2/2020

22.02.2020 | Original Article

Radioactivity Reduction of 2-Deoxy-2-[18F] Fluoro-D-Glucose by Milk and Ursodeoxycholic Acid in Preclinical Study

verfasst von: Hwan-Jeong Jeong, Tarique Rajasaheb Bagalkot, Hyeon Soo Kim, Yeon-Hee Han, Minjoo Kim, Seok Tae Lim, Myung-Hee Sohn

Erschienen in: Nuclear Medicine and Molecular Imaging | Ausgabe 2/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

2-Deoxy-2-[18F] fluoro-d-glucose positron emission tomography (18F-FDG-PET) is a less-invasive and widely used diagnostic tool for detection of malignant tumors. However, prolonged retention of 18F-FDG in the body increases radiation exposure. This study evaluated the effect of oral administration of milk and ursodeoxycholic acid (UDCA) in terms of reducing radiation exposure by 18F-FDG.

Methods

18F-FDG radioactivity was measured using a digital γ counter in the whole body and in various organs of rats after oral administration of milk and milk plus UDCA (milk + UDCA). Western blotting was performed to measure the expression levels of G6Pase, HK 2, CREB, FoxO1, and PGC-1α in the brain, liver, small intestine, and large intestine to assess the mechanism underlying the reduction in radiation exposure from 18F-FDG by oral administration of milk and UDCA.

Results

We found a significant reduction in 18F-FDG radioactivity in the whole body and in the brain, liver, and small and large intestines. Expression of G6Pase was significantly increased in the above-mentioned organs in the milk and milk + UDCA groups. Expression of HK 2 was significantly decreased in the brain and small intestine in the milk and milk + UDCA groups. CREB, FoxO1, and PGC-1α expression levels in the brain, liver, and small intestine were increased in the milk and milk + UDCA groups. However, expression of PGC-1α in the large intestine in the milk and milk + UDCA groups was significantly decreased compared with that in the control group.

Conclusion

The present study demonstrated that administration of milk and UDCA increased G6Pase expression levels and 18F-FDG release from the tissue. These results suggest milk and UDCA could be used to reduce radiation exposure from 18F-FDG after image acquisition. The mechanisms underpinning this phenomenon should be explored in a human study.
Literatur
1.
Zurück zum Zitat Kostakoglu L, Agress H Jr, Goldsmith SJ. Clinical role of FDG PET in evaluation of cancer patients. Radiographics. 2003;23:315–40 quiz 533.CrossRef Kostakoglu L, Agress H Jr, Goldsmith SJ. Clinical role of FDG PET in evaluation of cancer patients. Radiographics. 2003;23:315–40 quiz 533.CrossRef
2.
Zurück zum Zitat Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res. 2000;6:3837–44.PubMed Vesselle H, Schmidt RA, Pugsley JM, Li M, Kohlmyer SG, Vallires E, et al. Lung cancer proliferation correlates with [F-18]fluorodeoxyglucose uptake by positron emission tomography. Clin Cancer Res. 2000;6:3837–44.PubMed
3.
Zurück zum Zitat Zincirkeser S, Sahin E, Halac M, Sager S. Standardized uptake values of normal organs on 18F-fluorodeoxyglucose positron emission tomography and computed tomography imaging. J Int Med Res. 2007;35:231–6.CrossRef Zincirkeser S, Sahin E, Halac M, Sager S. Standardized uptake values of normal organs on 18F-fluorodeoxyglucose positron emission tomography and computed tomography imaging. J Int Med Res. 2007;35:231–6.CrossRef
4.
Zurück zum Zitat Conti PS, Lilien DL, Hawley K, Keppler J, Grafton ST, Bading JR. PET and [18F]-FDG in oncology: a clinical update. Nucl Med Biol. 1996;23:717–35.CrossRef Conti PS, Lilien DL, Hawley K, Keppler J, Grafton ST, Bading JR. PET and [18F]-FDG in oncology: a clinical update. Nucl Med Biol. 1996;23:717–35.CrossRef
5.
Zurück zum Zitat Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.CrossRef Huang B, Law MW, Khong PL. Whole-body PET/CT scanning: estimation of radiation dose and cancer risk. Radiology. 2009;251:166–74.CrossRef
6.
Zurück zum Zitat Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.CrossRef Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes. 1997;46:3–10.CrossRef
7.
Zurück zum Zitat Chen X, Iqbal N, Boden G. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J Clin Invest. 1999;103:365–72.CrossRef Chen X, Iqbal N, Boden G. The effects of free fatty acids on gluconeogenesis and glycogenolysis in normal subjects. J Clin Invest. 1999;103:365–72.CrossRef
8.
Zurück zum Zitat Massillon D, Barzilai N, Hawkins M, Prus-Wertheimer D, Rossetti L. Induction of hepatic glucose-6-phosphatase gene expression by lipid infusion. Diabetes. 1997;46:153–7.CrossRef Massillon D, Barzilai N, Hawkins M, Prus-Wertheimer D, Rossetti L. Induction of hepatic glucose-6-phosphatase gene expression by lipid infusion. Diabetes. 1997;46:153–7.CrossRef
9.
Zurück zum Zitat Wahli W, Braissant O, Desvergne B. Peroxisome proliferator activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more. Chem Biol. 1995;2:261–6.CrossRef Wahli W, Braissant O, Desvergne B. Peroxisome proliferator activated receptors: transcriptional regulators of adipogenesis, lipid metabolism and more. Chem Biol. 1995;2:261–6.CrossRef
10.
Zurück zum Zitat Jeong HJ, Kim CG. Pretreatment with ursodeoxycholic acid (UDCA) as a novel pharmacological intervention in hepatobiliary scintigraphy. Yonsei Med J. 2005;46:394–8.CrossRef Jeong HJ, Kim CG. Pretreatment with ursodeoxycholic acid (UDCA) as a novel pharmacological intervention in hepatobiliary scintigraphy. Yonsei Med J. 2005;46:394–8.CrossRef
11.
Zurück zum Zitat Alam MS, Teshima S, Ishikawa M, Koshio S, Ohtao H. The role of ursodeoxycholic acid on growth performance and digestive enzyme activities of tilapia Oreochromis niloticus and kuruma prawn Marsupenaeus japonicus. Asian Fisheries Science Journal. 2001;14:441–51. Alam MS, Teshima S, Ishikawa M, Koshio S, Ohtao H. The role of ursodeoxycholic acid on growth performance and digestive enzyme activities of tilapia Oreochromis niloticus and kuruma prawn Marsupenaeus japonicus. Asian Fisheries Science Journal. 2001;14:441–51.
12.
Zurück zum Zitat Bagalkot TR, Jin HM, Prabhu VV, Muna S.S, Cui Y, Yadav BK et al. Chronic social defeat stress increases dopamine D2 receptor dimerization in the prefrontal cortex of adult mice. Neuroscience. 2015;311:444–452. Bagalkot TR, Jin HM, Prabhu VV, Muna S.S, Cui Y, Yadav BK et al. Chronic social defeat stress increases dopamine D2 receptor dimerization in the prefrontal cortex of adult mice. Neuroscience. 2015;311:444–452.
13.
Zurück zum Zitat MacGibbon AHK, Taylor MW. Composition and structure of bovine milk lipids. In: Fox PF, McSweeney PLH, editors. Advanced dairy chemistry. New York: Springer; 2006. p. 1–42. MacGibbon AHK, Taylor MW. Composition and structure of bovine milk lipids. In: Fox PF, McSweeney PLH, editors. Advanced dairy chemistry. New York: Springer; 2006. p. 1–42.
14.
Zurück zum Zitat Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med. 1978;19:1154–61.PubMed Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of radiopharmaceutical design: some factors responsible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med. 1978;19:1154–61.PubMed
15.
Zurück zum Zitat Scrutton M, Utter M. The regulation of glycolysis and gluconeogenesis in animal tissues. A Rev Biochem. 1968;37:249–302. Scrutton M, Utter M. The regulation of glycolysis and gluconeogenesis in animal tissues. A Rev Biochem. 1968;37:249–302.
16.
Zurück zum Zitat Anchors JM, Karnovsky ML. Purification of cerebral glucose-6-phosphatase. An enzyme involved in sleep. J Biol Chem. 1975;250:6408–16.PubMed Anchors JM, Karnovsky ML. Purification of cerebral glucose-6-phosphatase. An enzyme involved in sleep. J Biol Chem. 1975;250:6408–16.PubMed
17.
Zurück zum Zitat Colilla W, Jorgenson RA, Nordlie RC. Mammalian carbamyl phosphate : glucose phosphotransferase and glucose-6-phosphate phosphohydrolase: extended tissue distribution. Biochim Biophys Acta. 1975;377:117–25.CrossRef Colilla W, Jorgenson RA, Nordlie RC. Mammalian carbamyl phosphate : glucose phosphotransferase and glucose-6-phosphate phosphohydrolase: extended tissue distribution. Biochim Biophys Acta. 1975;377:117–25.CrossRef
18.
Zurück zum Zitat Karnovsky ML. Possible involvement of cerebral glucose-6-phosphatase in 2-deoxy-D-glucose phosphorylation. Relationship of 2-deoxy-D-glucose phosphorylation to local cerebral energy utilization. Neurosci Res Program Bull. 1976;14:505–8.PubMed Karnovsky ML. Possible involvement of cerebral glucose-6-phosphatase in 2-deoxy-D-glucose phosphorylation. Relationship of 2-deoxy-D-glucose phosphorylation to local cerebral energy utilization. Neurosci Res Program Bull. 1976;14:505–8.PubMed
19.
Zurück zum Zitat Stephens HR, Sandborn EB. Cytochemical localization of glucose-6-phosphatase activity in the central nervous system of the rat. Brain Res. 1976;113:127–46.CrossRef Stephens HR, Sandborn EB. Cytochemical localization of glucose-6-phosphatase activity in the central nervous system of the rat. Brain Res. 1976;113:127–46.CrossRef
20.
Zurück zum Zitat Hahn P, Wei-Ning H. Gluconeogenesis from lactate in the small intestinal mucosa of suckling rats. Pediatr Res. 1986;20:1321–3.CrossRef Hahn P, Wei-Ning H. Gluconeogenesis from lactate in the small intestinal mucosa of suckling rats. Pediatr Res. 1986;20:1321–3.CrossRef
21.
Zurück zum Zitat Ockerman PA. Glucose-6-phosphatase in human jejunal mucosa properties demonstrating the specific character of the enzyme activity. Biochim Biophys Acta. 1965;105:22–33.CrossRef Ockerman PA. Glucose-6-phosphatase in human jejunal mucosa properties demonstrating the specific character of the enzyme activity. Biochim Biophys Acta. 1965;105:22–33.CrossRef
22.
Zurück zum Zitat Mithieux G. New knowledge regarding glucose-6 phosphatase gene and protein and their roles in the regulation of glucose metabolism. Eur J Endocrinol. 1997;136:137–45.CrossRef Mithieux G. New knowledge regarding glucose-6 phosphatase gene and protein and their roles in the regulation of glucose metabolism. Eur J Endocrinol. 1997;136:137–45.CrossRef
23.
Zurück zum Zitat Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413:179–83.CrossRef Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413:179–83.CrossRef
24.
Zurück zum Zitat Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413:131–8.CrossRef Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature. 2001;413:131–8.CrossRef
25.
Zurück zum Zitat Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004;119:121–35.CrossRef Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, et al. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell. 2004;119:121–35.CrossRef
26.
Zurück zum Zitat Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, Kulkarni R, et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med. 2004;10:530–4.CrossRef Koo SH, Satoh H, Herzig S, Lee CH, Hedrick S, Kulkarni R, et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med. 2004;10:530–4.CrossRef
Metadaten
Titel
Radioactivity Reduction of 2-Deoxy-2-[18F] Fluoro-D-Glucose by Milk and Ursodeoxycholic Acid in Preclinical Study
verfasst von
Hwan-Jeong Jeong
Tarique Rajasaheb Bagalkot
Hyeon Soo Kim
Yeon-Hee Han
Minjoo Kim
Seok Tae Lim
Myung-Hee Sohn
Publikationsdatum
22.02.2020
Verlag
Springer Singapore
Erschienen in
Nuclear Medicine and Molecular Imaging / Ausgabe 2/2020
Print ISSN: 1869-3474
Elektronische ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-020-00634-x

Weitere Artikel der Ausgabe 2/2020

Nuclear Medicine and Molecular Imaging 2/2020 Zur Ausgabe