Skip to main content
Erschienen in: Current Hypertension Reports 8/2016

01.08.2016 | Hypertension and the Kidney (RM Carey, Section Editor)

Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension

verfasst von: Xiao C. Li, Jia L. Zhuo

Erschienen in: Current Hypertension Reports | Ausgabe 8/2016

Einloggen, um Zugang zu erhalten

Abstract

It is well recognized that the renin-angiotensin system (RAS) exists not only as circulating, paracrine (cell to cell), but also intracrine (intracellular) system. In the kidney, however, it is difficult to dissect the respective contributions of circulating RAS versus intrarenal RAS to the physiological regulation of proximal tubular Na+ reabsorption and hypertension. Here, we review recent studies to provide an update in this research field with a focus on the proximal tubular RAS in angiotensin II (ANG II)-induced hypertension. Careful analysis of available evidence supports the hypothesis that both local synthesis or formation and AT1 (AT1a) receptor- and/or megalin-mediated uptake of angiotensinogen (AGT), ANG I and ANG II contribute to high levels of ANG II in the proximal tubules of the kidney. Under physiological conditions, nearly all major components of the RAS including AGT, prorenin, renin, ANG I, and ANG II would be filtered by the glomerulus and taken up by the proximal tubules. In ANG II-dependent hypertension, the expression of AGT, prorenin, and (pro)renin receptors, and angiotensin-converting enzyme (ACE) is upregulated rather than downregulated in the kidney. Furthermore, hypertension damages the glomerular filtration barrier, which augments the filtration of circulating AGT, prorenin, renin, ANG I, and ANG II and their uptake in the proximal tubules. Together, increased local ANG II formation and augmented uptake of circulating ANG II in the proximal tubules, via activation of AT1 (AT1a) receptors and Na+/H+ exchanger 3, may provide a powerful feedforward mechanism for promoting Na+ retention and the development of ANG II-induced hypertension.
Literatur
1.
Zurück zum Zitat National Heart, Lung, and Blood Institute. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7). Hypertension. 2003;42:1206. National Heart, Lung, and Blood Institute. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC 7). Hypertension. 2003;42:1206.
2.
Zurück zum Zitat Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De SG, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–215.PubMedCrossRef Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De SG, et al. Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation. 2010;121(7):e46–215.PubMedCrossRef
3.
Zurück zum Zitat James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.PubMedCrossRef James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.PubMedCrossRef
4.
Zurück zum Zitat Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.PubMedCrossRef Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.PubMedCrossRef
5.
Zurück zum Zitat Sarafidis PA, Georgianos P, Bakris GL. Resistant hypertension—its identification and epidemiology. Nat Rev Nephrol. 2013;9(1):51–8.PubMedCrossRef Sarafidis PA, Georgianos P, Bakris GL. Resistant hypertension—its identification and epidemiology. Nat Rev Nephrol. 2013;9(1):51–8.PubMedCrossRef
6.
Zurück zum Zitat Zhuo JL. SH2B3 (LNK) as a novel link of immune signaling, inflammation, and hypertension in Dahl salt-sensitive hypertensive rats. Hypertension. 2015;65(5):989–90.PubMedPubMedCentralCrossRef Zhuo JL. SH2B3 (LNK) as a novel link of immune signaling, inflammation, and hypertension in Dahl salt-sensitive hypertensive rats. Hypertension. 2015;65(5):989–90.PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76.PubMedPubMedCentralCrossRef Newton-Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, et al. Genome-wide association study identifies eight loci associated with blood pressure. Nat Genet. 2009;41(6):666–76.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–87.PubMedPubMedCentralCrossRef Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, et al. Genome-wide association study of blood pressure and hypertension. Nat Genet. 2009;41(6):677–87.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43(6):531–8.PubMedPubMedCentralCrossRef Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43(6):531–8.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Ehret GB. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep. 2010;12(1):17–25.PubMedPubMedCentralCrossRef Ehret GB. Genome-wide association studies: contribution of genomics to understanding blood pressure and essential hypertension. Curr Hypertens Rep. 2010;12(1):17–25.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Roman RJ. Pressure diuresis mechanism in the control of renal function and arterial pressure. Fed Proc. 1986;45(13):2878–84.PubMed Roman RJ. Pressure diuresis mechanism in the control of renal function and arterial pressure. Fed Proc. 1986;45(13):2878–84.PubMed
12.
Zurück zum Zitat Guyton AC. Blood pressure control—special role of the kidneys and body fluids. Science. 1991;252(5014):1813–6.PubMedCrossRef Guyton AC. Blood pressure control—special role of the kidneys and body fluids. Science. 1991;252(5014):1813–6.PubMedCrossRef
13.
Zurück zum Zitat Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17(11):1402–9.PubMedCrossRef Coffman TM. Under pressure: the search for the essential mechanisms of hypertension. Nat Med. 2011;17(11):1402–9.PubMedCrossRef
15.
Zurück zum Zitat Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, et al. Hypertension: physiology and pathophysiology. Compr Physiol. 2012;2(4):2393–442.PubMed Hall JE, Granger JP, do Carmo JM, da Silva AA, Dubinion J, George E, et al. Hypertension: physiology and pathophysiology. Compr Physiol. 2012;2(4):2393–442.PubMed
16.••
Zurück zum Zitat Kemp BA, Howell NL, Gildea JJ, Keller SR, Padia SH, Carey RM. AT(2) receptor activation induces natriuresis and lowers blood pressure. Circ Res. 2014;115(3):388–99. This study shows for the first time that intrarenal AT 2 R activation with C21 prevents Na + retention and lowers blood pressure in angiotensin II-dependent hypertension. Kemp BA, Howell NL, Gildea JJ, Keller SR, Padia SH, Carey RM. AT(2) receptor activation induces natriuresis and lowers blood pressure. Circ Res. 2014;115(3):388–99. This study shows for the first time that intrarenal AT 2 R activation with C21 prevents Na + retention and lowers blood pressure in angiotensin II-dependent hypertension.
18.
Zurück zum Zitat McDonough AA. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2010;298(4):R851–61.PubMedPubMedCentralCrossRef McDonough AA. Mechanisms of proximal tubule sodium transport regulation that link extracellular fluid volume and blood pressure. Am J Physiol Regul Integr Comp Physiol. 2010;298(4):R851–61.PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Wang X, Armando I, Upadhyay K, Pascua A, Jose PA. The regulation of proximal tubular salt transport in hypertension: an update. Curr Opin Nephrol Hypertens. 2009;18(5):412–20.PubMedPubMedCentralCrossRef Wang X, Armando I, Upadhyay K, Pascua A, Jose PA. The regulation of proximal tubular salt transport in hypertension: an update. Curr Opin Nephrol Hypertens. 2009;18(5):412–20.PubMedPubMedCentralCrossRef
20.••
Zurück zum Zitat Gurley SB, Riquier-Brison AD, Schnermann J, Sparks MA, Allen AM, Haase VH, et al. AT1a angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab. 2011;13(4):469–75. This study shows for the first time that proximal tubule-selective deletion of AT 1a receptors reduces proximal fluid reabsorption and alters expression of key sodium transporters, modifying pressure-natriuresis and providing substantial protection against hypertension. Gurley SB, Riquier-Brison AD, Schnermann J, Sparks MA, Allen AM, Haase VH, et al. AT1a angiotensin receptors in the renal proximal tubule regulate blood pressure. Cell Metab. 2011;13(4):469–75. This study shows for the first time that proximal tubule-selective deletion of AT 1a receptors reduces proximal fluid reabsorption and alters expression of key sodium transporters, modifying pressure-natriuresis and providing substantial protection against hypertension.
21.••
Zurück zum Zitat Li XC, Cook JL, Rubera I, Tauc M, Zhang F, Zhuo JL. Intrarenal transfer of an intracellular cyan fluorescent fusion of angiotensin II selectively in proximal tubules increases blood pressure in rats and mice. Am J Physiol Renal Physiol. 2011;300:F1076–88. This study shows for the first time that proximal tubule-selective overexpression of an intracellular ECFP/ANG II fusion protein increases blood pressure in mice. Li XC, Cook JL, Rubera I, Tauc M, Zhang F, Zhuo JL. Intrarenal transfer of an intracellular cyan fluorescent fusion of angiotensin II selectively in proximal tubules increases blood pressure in rats and mice. Am J Physiol Renal Physiol. 2011;300:F1076–88. This study shows for the first time that proximal tubule-selective overexpression of an intracellular ECFP/ANG II fusion protein increases blood pressure in mice.
22.•
Zurück zum Zitat Li H, Weatherford ET, Davis DR, Keen HL, Grobe JL, Daugherty A, et al. Renal proximal tubule angiotensin AT1a receptors regulate blood pressure. Am J Physiol Regul Integr Comp Physiol. 2011;301(4):R1067–77. This study shows that proximal tubule-selective deletion of AT 1a receptors lowered blood pressure in mice. Li H, Weatherford ET, Davis DR, Keen HL, Grobe JL, Daugherty A, et al. Renal proximal tubule angiotensin AT1a receptors regulate blood pressure. Am J Physiol Regul Integr Comp Physiol. 2011;301(4):R1067–77. This study shows that proximal tubule-selective deletion of AT 1a receptors lowered blood pressure in mice.
23.••
Zurück zum Zitat Li XC, Zhuo JL. Proximal tubule-dominant transfer of AT1a receptors induces blood pressure responses to intracellular angiotensin II in AT1a receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2013;304:R588–98. This study shows that adenovirus-mediated rescue of AT 1a receptors selectively in the proximal tubules of AT 1a -KO mice mediates the blood pressure and proximal tubular responses to circulating/systemic ANG II and intracellular ECFP/ANG II. Li XC, Zhuo JL. Proximal tubule-dominant transfer of AT1a receptors induces blood pressure responses to intracellular angiotensin II in AT1a receptor-deficient mice. Am J Physiol Regul Integr Comp Physiol. 2013;304:R588–98. This study shows that adenovirus-mediated rescue of AT 1a receptors selectively in the proximal tubules of AT 1a -KO mice mediates the blood pressure and proximal tubular responses to circulating/systemic ANG II and intracellular ECFP/ANG II.
24.
Zurück zum Zitat Siragy HM, Inagami T, Ichiki T, Carey RM. Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proc Natl Acad Sci U S A. 1999;96(11):6506–10.PubMedPubMedCentralCrossRef Siragy HM, Inagami T, Ichiki T, Carey RM. Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proc Natl Acad Sci U S A. 1999;96(11):6506–10.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Padia SH, Kemp BA, Howell NL, Gildea JJ, Keller SR, Carey RM. Intrarenal angiotensin III infusion induces natriuresis and angiotensin type 2 receptor translocation in Wistar-Kyoto but not in spontaneously hypertensive rats. Hypertension. 2009;53(2):338–43.PubMedCrossRef Padia SH, Kemp BA, Howell NL, Gildea JJ, Keller SR, Carey RM. Intrarenal angiotensin III infusion induces natriuresis and angiotensin type 2 receptor translocation in Wistar-Kyoto but not in spontaneously hypertensive rats. Hypertension. 2009;53(2):338–43.PubMedCrossRef
26.•
Zurück zum Zitat Kemp BA, Bell JF, Rottkamp DM, Howell NL, Shao W, Navar LG, et al. Intrarenal angiotensin III is the predominant agonist for proximal tubule angiotensin type 2 receptors. Hypertension. 2012;60(2):387–95. This study shows that ANG III selectively activates AT 2 rather than AT 1 receptors in the proximal tubules of the kidney to induce natriuresis in rats. Kemp BA, Bell JF, Rottkamp DM, Howell NL, Shao W, Navar LG, et al. Intrarenal angiotensin III is the predominant agonist for proximal tubule angiotensin type 2 receptors. Hypertension. 2012;60(2):387–95. This study shows that ANG III selectively activates AT 2 rather than AT 1 receptors in the proximal tubules of the kidney to induce natriuresis in rats.
27.
Zurück zum Zitat Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet. 1998;19(3):282–5.PubMedCrossRef Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR, et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet. 1998;19(3):282–5.PubMedCrossRef
28.
Zurück zum Zitat Noonan WT, Woo AL, Nieman ML, Prasad V, Schultheis PJ, Shull GE, et al. Blood pressure maintenance in NHE3-deficient mice with transgenic expression of NHE3 in small intestine. Am J Physiol Regul Integr Comp Physiol. 2005;288(3):R685–91.PubMedCrossRef Noonan WT, Woo AL, Nieman ML, Prasad V, Schultheis PJ, Shull GE, et al. Blood pressure maintenance in NHE3-deficient mice with transgenic expression of NHE3 in small intestine. Am J Physiol Regul Integr Comp Physiol. 2005;288(3):R685–91.PubMedCrossRef
29.
Zurück zum Zitat Wang T, Yang CL, Abbiati T, Schultheis PJ, Shull GE, Giebisch G, et al. Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol. 1999;277(2 Pt 2):F298–302.PubMed Wang T, Yang CL, Abbiati T, Schultheis PJ, Shull GE, Giebisch G, et al. Mechanism of proximal tubule bicarbonate absorption in NHE3 null mice. Am J Physiol. 1999;277(2 Pt 2):F298–302.PubMed
30.••
Zurück zum Zitat Li XC, Shull GE, Miguel-Qin E, Zhuo JL. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension. Physiol Genomics. 2015;47(10):479–87. This study first demonstrated that ANG II-induced hypertension was attenuated in global NHE3-KO mice, suggesting that NHE3 is required for the full development of ANG II-induced hypertension. Li XC, Shull GE, Miguel-Qin E, Zhuo JL. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension. Physiol Genomics. 2015;47(10):479–87. This study first demonstrated that ANG II-induced hypertension was attenuated in global NHE3-KO mice, suggesting that NHE3 is required for the full development of ANG II-induced hypertension.
31.••
Zurück zum Zitat Li XC, Shull GE, Miguel-Qin E, Chen F, Zhuo JL. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension in NHE3-deficient mice with transgenic rescue of NHE3 in small intestines. Physiol Rep. 2015;3(11):e12605. This study first demonstrated that ANG II-induced hypertension was attenuated in global NHE3-KO mice with transgenic rescue of the NHE3 gene selectively in small intestines, suggesting that the kidney, primarily the proximal tubule NHE3 plays an important role in the development of ANG II-induced hypertension. Li XC, Shull GE, Miguel-Qin E, Chen F, Zhuo JL. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension in NHE3-deficient mice with transgenic rescue of NHE3 in small intestines. Physiol Rep. 2015;3(11):e12605. This study first demonstrated that ANG II-induced hypertension was attenuated in global NHE3-KO mice with transgenic rescue of the NHE3 gene selectively in small intestines, suggesting that the kidney, primarily the proximal tubule NHE3 plays an important role in the development of ANG II-induced hypertension.
32.••
Zurück zum Zitat Li HC, Du Z, Barone S, Rubera I, McDonough AA, Tauc M, et al. Proximal tubule specific knockout of the Na/H exchanger NHE3: effects on bicarbonate absorption and ammonium excretion. J Mol Med. 2013;91(8):951–63. This is the first study characterizing basal blood pressure and proximal tubular phenotypes in proximal tubule-selective deletion of the NHE3 gene using the Cre/LoxP approach. Li HC, Du Z, Barone S, Rubera I, McDonough AA, Tauc M, et al. Proximal tubule specific knockout of the Na/H exchanger NHE3: effects on bicarbonate absorption and ammonium excretion. J Mol Med. 2013;91(8):951–63. This is the first study characterizing basal blood pressure and proximal tubular phenotypes in proximal tubule-selective deletion of the NHE3 gene using the Cre/LoxP approach.
33.
Zurück zum Zitat Jose PA, Eisner GM, Felder RA. Role of dopamine receptors in the kidney in the regulation of blood pressure. Curr Opin Nephrol Hypertens. 2002;11(1):87–92.PubMedCrossRef Jose PA, Eisner GM, Felder RA. Role of dopamine receptors in the kidney in the regulation of blood pressure. Curr Opin Nephrol Hypertens. 2002;11(1):87–92.PubMedCrossRef
34.
Zurück zum Zitat Zeng C, Jose PA. Dopamine receptors: important antihypertensive counterbalance against hypertensive factors. Hypertension. 2011;57(1):11–7.PubMedCrossRef Zeng C, Jose PA. Dopamine receptors: important antihypertensive counterbalance against hypertensive factors. Hypertension. 2011;57(1):11–7.PubMedCrossRef
35.
Zurück zum Zitat Carey RM. Theodore Cooper lecture: renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension. 2001;38(3):297–302.PubMedCrossRef Carey RM. Theodore Cooper lecture: renal dopamine system: paracrine regulator of sodium homeostasis and blood pressure. Hypertension. 2001;38(3):297–302.PubMedCrossRef
36.
Zurück zum Zitat Harris PJ, Zhuo JL, Mendelsohn FA, Skinner SL. Haemodynamic and renal tubular effects of low doses of endothelin in anaesthetized rats. J Physiol. 1991;433:25–39.PubMedPubMedCentralCrossRef Harris PJ, Zhuo JL, Mendelsohn FA, Skinner SL. Haemodynamic and renal tubular effects of low doses of endothelin in anaesthetized rats. J Physiol. 1991;433:25–39.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Garcia NH, Garvin JL. Endothelin’s biphasic effect on fluid absorption in the proximal straight tubule and its inhibitory cascade. J Clin Invest. 1994;93(6):2572–7.PubMedPubMedCentralCrossRef Garcia NH, Garvin JL. Endothelin’s biphasic effect on fluid absorption in the proximal straight tubule and its inhibitory cascade. J Clin Invest. 1994;93(6):2572–7.PubMedPubMedCentralCrossRef
39.
40.
Zurück zum Zitat Harris PJ, Thomas D, Morgan TO. Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature. 1987;326(6114):697–8.PubMedCrossRef Harris PJ, Thomas D, Morgan TO. Atrial natriuretic peptide inhibits angiotensin-stimulated proximal tubular sodium and water reabsorption. Nature. 1987;326(6114):697–8.PubMedCrossRef
41.
Zurück zum Zitat Zhuo JL, Harris PJ, Skinner SL. Atrial natriuretic factor modulates proximal glomerulotubular balance in anesthetized rats. Hypertension. 1989;14(6):666–73.PubMedCrossRef Zhuo JL, Harris PJ, Skinner SL. Atrial natriuretic factor modulates proximal glomerulotubular balance in anesthetized rats. Hypertension. 1989;14(6):666–73.PubMedCrossRef
42.
Zurück zum Zitat Pandey KN. Emerging roles of natriuretic peptides and their receptors in pathophysiology of hypertension and cardiovascular regulation. J Am Soc Hypertens. 2008;2(4):210–26.PubMedPubMedCentralCrossRef Pandey KN. Emerging roles of natriuretic peptides and their receptors in pathophysiology of hypertension and cardiovascular regulation. J Am Soc Hypertens. 2008;2(4):210–26.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Garvin JL. Inhibition of Jv by ANF in rat proximal straight tubules requires angiotensin. Am J Physiol. 1989;257(5 Pt 2):F907–11.PubMed Garvin JL. Inhibition of Jv by ANF in rat proximal straight tubules requires angiotensin. Am J Physiol. 1989;257(5 Pt 2):F907–11.PubMed
44.
Zurück zum Zitat DiBona GF. Interaction of stress and dietary NaCl intake in hypertension: renal neural mechanisms. Compr Physiol. 2013;3(4):1741–8.PubMedCrossRef DiBona GF. Interaction of stress and dietary NaCl intake in hypertension: renal neural mechanisms. Compr Physiol. 2013;3(4):1741–8.PubMedCrossRef
45.
Zurück zum Zitat DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197.PubMed DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197.PubMed
46.
Zurück zum Zitat Pontes RB, Crajoinas RO, Nishi EE, Oliveira-Sales EB, Girardi AC, Campos RR, et al. Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor. Am J Physiol Renal Physiol. 2015;308(8):F848–56.PubMedCrossRef Pontes RB, Crajoinas RO, Nishi EE, Oliveira-Sales EB, Girardi AC, Campos RR, et al. Renal nerve stimulation leads to the activation of the Na+/H+ exchanger isoform 3 via angiotensin II type I receptor. Am J Physiol Renal Physiol. 2015;308(8):F848–56.PubMedCrossRef
47.
Zurück zum Zitat Harris PJ, Navar LG. Tubular transport responses to angiotensin II. Am J Physiol Renal Physiol. 1985;248:F621–30. Harris PJ, Navar LG. Tubular transport responses to angiotensin II. Am J Physiol Renal Physiol. 1985;248:F621–30.
48.
Zurück zum Zitat Zhuo JL, Thomas D, Harris PJ, Skinner SL. The role of endogenous angiotensin II in the regulation of renal haemodynamics and proximal fluid reabsorption in the rat. J Physiol. 1992;453:1–13.PubMedPubMedCentralCrossRef Zhuo JL, Thomas D, Harris PJ, Skinner SL. The role of endogenous angiotensin II in the regulation of renal haemodynamics and proximal fluid reabsorption in the rat. J Physiol. 1992;453:1–13.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Schuster VL, Kokko JP, Jacobson HR. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest. 1984;73(2):507–15.PubMedPubMedCentralCrossRef Schuster VL, Kokko JP, Jacobson HR. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest. 1984;73(2):507–15.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Navar LG, Carmines PK, Huang WC, Mitchell KD. The tubular effects of angiotensin II. Kidney Int Suppl. 1987;20:S81–8.PubMed Navar LG, Carmines PK, Huang WC, Mitchell KD. The tubular effects of angiotensin II. Kidney Int Suppl. 1987;20:S81–8.PubMed
51.
Zurück zum Zitat Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical renin- angiotensin system in kidney physiology. Compr Physiol. 2014;4(3):1201–28.PubMedPubMedCentralCrossRef Sparks MA, Crowley SD, Gurley SB, Mirotsou M, Coffman TM. Classical renin- angiotensin system in kidney physiology. Compr Physiol. 2014;4(3):1201–28.PubMedPubMedCentralCrossRef
52.
53.
Zurück zum Zitat Navar LG, Kobori H, Prieto MC, Gonzalez-Villalobos RA. Intratubular renin- angiotensin system in hypertension. Hypertension. 2011;57(3):355–62.PubMedPubMedCentralCrossRef Navar LG, Kobori H, Prieto MC, Gonzalez-Villalobos RA. Intratubular renin- angiotensin system in hypertension. Hypertension. 2011;57(3):355–62.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Navar LG, Satou R, Gonzalez-Villalobos RA. The increasing complexity of the intratubular renin-angiotensin system. J Am Soc Nephrol. 2012;23(7):1130–2.PubMedCrossRef Navar LG, Satou R, Gonzalez-Villalobos RA. The increasing complexity of the intratubular renin-angiotensin system. J Am Soc Nephrol. 2012;23(7):1130–2.PubMedCrossRef
55.
Zurück zum Zitat Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.PubMedCrossRef Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.PubMedCrossRef
56.
Zurück zum Zitat Roman RJ, Fan F, Zhuo JL. Intrarenal renin-angiotensin system: locally synthesized or taken up via endocytosis? Hypertension. 2016;67(5):831–3.PubMedCrossRef Roman RJ, Fan F, Zhuo JL. Intrarenal renin-angiotensin system: locally synthesized or taken up via endocytosis? Hypertension. 2016;67(5):831–3.PubMedCrossRef
57.
Zurück zum Zitat Mendelsohn FA. Angiotensin II: evidence for its role as an intrarenal hormone. Kidney Int Suppl. 1982;12:S78–81.PubMed Mendelsohn FA. Angiotensin II: evidence for its role as an intrarenal hormone. Kidney Int Suppl. 1982;12:S78–81.PubMed
58.
Zurück zum Zitat Tang SS, Jung F, Diamant D, Brown D, Bachinsky D, Hellman P, et al. Temperature-sensitive SV40 immortalized rat proximal tubule cell line has functional renin-angiotensin system. Am J Physiol. 1995;268(3 Pt 2):F435–46.PubMed Tang SS, Jung F, Diamant D, Brown D, Bachinsky D, Hellman P, et al. Temperature-sensitive SV40 immortalized rat proximal tubule cell line has functional renin-angiotensin system. Am J Physiol. 1995;268(3 Pt 2):F435–46.PubMed
59.
Zurück zum Zitat Zhuo JL, Mendelsohn FA. Intrarenal angiotensin II receptors. In: Robertson JIS, Nicholls MG, editors. The renin-angiotensin system: biochemistry, pathophysiology and therapeutics. 1st ed. London & New York: Gower Medical Publishing; 1993. p. 25.1–25.14. Zhuo JL, Mendelsohn FA. Intrarenal angiotensin II receptors. In: Robertson JIS, Nicholls MG, editors. The renin-angiotensin system: biochemistry, pathophysiology and therapeutics. 1st ed. London & New York: Gower Medical Publishing; 1993. p. 25.1–25.14.
60.
Zurück zum Zitat Navar LG, Imig JD, Zou L, Wang CT. Intrarenal production of angiotensin II. Semin Nephrol. 1997;17(5):412–22.PubMed Navar LG, Imig JD, Zou L, Wang CT. Intrarenal production of angiotensin II. Semin Nephrol. 1997;17(5):412–22.PubMed
61.
Zurück zum Zitat Harrison-Bernard LM, Zhuo JL, Kobori H, Ohishi M, Navar LG. Intrarenal AT1 receptor and ACE binding in ANG II-induced hypertensive rats. Am J Physiol Renal Physiol. 2002;282(1):F19–25.PubMedPubMedCentralCrossRef Harrison-Bernard LM, Zhuo JL, Kobori H, Ohishi M, Navar LG. Intrarenal AT1 receptor and ACE binding in ANG II-induced hypertensive rats. Am J Physiol Renal Physiol. 2002;282(1):F19–25.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev. 2003;24(3):261–71.PubMedCrossRef Carey RM, Siragy HM. Newly recognized components of the renin-angiotensin system: potential roles in cardiovascular and renal regulation. Endocr Rev. 2003;24(3):261–71.PubMedCrossRef
63.
Zurück zum Zitat Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides. 2011;32(7):1551–65.PubMedPubMedCentralCrossRef Zhuo JL, Li XC. New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/intracellular angiotensin II. Peptides. 2011;32(7):1551–65.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Harris PJ, Zhuo JL, Skinner SL. Effects of angiotensins II and III on glomerulotubular balance in rats. Clin Exp Pharmacol Physiol. 1987;14(6):489–502.PubMedCrossRef Harris PJ, Zhuo JL, Skinner SL. Effects of angiotensins II and III on glomerulotubular balance in rats. Clin Exp Pharmacol Physiol. 1987;14(6):489–502.PubMedCrossRef
65.
Zurück zum Zitat Padia SH, Kemp BA, Howell NL, Siragy HM, Fournie-Zaluski MC, Roques BP, et al. Intrarenal aminopeptidase N inhibition augments natriuretic responses to angiotensin III in angiotensin type 1 receptor-blocked rats. Hypertension. 2007;49(3):625–30.PubMedCrossRef Padia SH, Kemp BA, Howell NL, Siragy HM, Fournie-Zaluski MC, Roques BP, et al. Intrarenal aminopeptidase N inhibition augments natriuretic responses to angiotensin III in angiotensin type 1 receptor-blocked rats. Hypertension. 2007;49(3):625–30.PubMedCrossRef
66.••
Zurück zum Zitat Gwathmey TM, Westwood BM, Pirro NT, Tang L, Rose JC, Diz DI, et al. Nuclear angiotensin-(1-7) receptor is functionally coupled to the formation of nitric oxide. Am J Physiol Renal Physiol. 2010;299(5):F983–90. This study shows that intracellular ANG (1-7) binds and activates nuclear ANG-(1-7) receptors to induce nitric oxide production in fresly isolated sheep kidney nuclei. Gwathmey TM, Westwood BM, Pirro NT, Tang L, Rose JC, Diz DI, et al. Nuclear angiotensin-(1-7) receptor is functionally coupled to the formation of nitric oxide. Am J Physiol Renal Physiol. 2010;299(5):F983–90. This study shows that intracellular ANG (1-7) binds and activates nuclear ANG-(1-7) receptors to induce nitric oxide production in fresly isolated sheep kidney nuclei.
67.
Zurück zum Zitat Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.PubMedPubMedCentralCrossRef Santos RA, Simoes e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003;100(14):8258–63.PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Handa RK, Krebs LT, Harding JW, Handa SE. Angiotensin IV AT4-receptor system in the rat kidney. Am J Physiol. 1998;274(2 Pt 2):F290–9.PubMed Handa RK, Krebs LT, Harding JW, Handa SE. Angiotensin IV AT4-receptor system in the rat kidney. Am J Physiol. 1998;274(2 Pt 2):F290–9.PubMed
69.
Zurück zum Zitat Albiston AL, Yeatman HR, Pham V, Fuller SJ, Diwakarla S, Fernando RN, et al. Distinct distribution of GLUT4 and insulin regulated aminopeptidase in the mouse kidney. Regul Pept. 2011;166(1-3):83–9.PubMedCrossRef Albiston AL, Yeatman HR, Pham V, Fuller SJ, Diwakarla S, Fernando RN, et al. Distinct distribution of GLUT4 and insulin regulated aminopeptidase in the mouse kidney. Regul Pept. 2011;166(1-3):83–9.PubMedCrossRef
70.
Zurück zum Zitat Li XC, Campbell DJ, Ohishi M, Yuan S, Zhuo JL. AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. Am J Physiol Renal Physiol. 2006;290(5):F1024–33.PubMedCrossRef Li XC, Campbell DJ, Ohishi M, Yuan S, Zhuo JL. AT1 receptor-activated signaling mediates angiotensin IV-induced renal cortical vasoconstriction in rats. Am J Physiol Renal Physiol. 2006;290(5):F1024–33.PubMedCrossRef
71.
Zurück zum Zitat Song K, Zhuo JL, Chai SY, Mendelsohn FA. A new method to localize active renin in tissues by autoradiography: application to dog kidney. Kidney Int. 1992;42(3):639–46.PubMedCrossRef Song K, Zhuo JL, Chai SY, Mendelsohn FA. A new method to localize active renin in tissues by autoradiography: application to dog kidney. Kidney Int. 1992;42(3):639–46.PubMedCrossRef
72.
Zurück zum Zitat Zhuo JL, Anderson WP, Song K, Mendelsohn FA. Autoradiographic localization of active renin in the juxtaglomerular apparatus of the dog kidney: effects of sodium intake. Clin Exp Pharmacol Physiol. 1996;23(4):291–8.PubMedCrossRef Zhuo JL, Anderson WP, Song K, Mendelsohn FA. Autoradiographic localization of active renin in the juxtaglomerular apparatus of the dog kidney: effects of sodium intake. Clin Exp Pharmacol Physiol. 1996;23(4):291–8.PubMedCrossRef
73.
Zurück zum Zitat Zhuo JL, Song K, Harris PJ, Mendelsohn FA. In vitro autoradiography reveals predominantly AT1 angiotensin II receptors in rat kidney. Ren Physiol Biochem. 1992;15(5):231–9.PubMed Zhuo JL, Song K, Harris PJ, Mendelsohn FA. In vitro autoradiography reveals predominantly AT1 angiotensin II receptors in rat kidney. Ren Physiol Biochem. 1992;15(5):231–9.PubMed
74.
Zurück zum Zitat Zhuo JL, Moeller I, Jenkins T, Chai SY, Allen AM, Ohishi M, et al. Mapping tissue angiotensin-converting enzyme and angiotensin AT1, AT2 and AT4 receptors. J Hypertens. 1998;16(12 Pt 2):2027–37.PubMedCrossRef Zhuo JL, Moeller I, Jenkins T, Chai SY, Allen AM, Ohishi M, et al. Mapping tissue angiotensin-converting enzyme and angiotensin AT1, AT2 and AT4 receptors. J Hypertens. 1998;16(12 Pt 2):2027–37.PubMedCrossRef
75.
Zurück zum Zitat Zhuo JL, Allen AM, Alcorn D, MacGregor D, Aldred GP, Mendelsohn FA. The distribution of angiotensin II receptors. In: Laragh JH, Brenner BM, editors. Hypertension: pathology, diagnosis & management. 2nd ed. New York: Raven; 1995. p. 1739–62. Zhuo JL, Allen AM, Alcorn D, MacGregor D, Aldred GP, Mendelsohn FA. The distribution of angiotensin II receptors. In: Laragh JH, Brenner BM, editors. Hypertension: pathology, diagnosis & management. 2nd ed. New York: Raven; 1995. p. 1739–62.
76.
Zurück zum Zitat Zhuo JL, Ohishi M, Mendelsohn FA. Roles of AT1 and AT2 receptors in the hypertensive Ren-2 gene transgenic rat kidney. Hypertension. 1999;33(1 Pt2):347–53.PubMedCrossRef Zhuo JL, Ohishi M, Mendelsohn FA. Roles of AT1 and AT2 receptors in the hypertensive Ren-2 gene transgenic rat kidney. Hypertension. 1999;33(1 Pt2):347–53.PubMedCrossRef
77.
Zurück zum Zitat Li XC, Zhuo JL. In vivo regulation of AT1a receptor-mediated intracellular uptake of [125I]-Val5-angiotensin II in the kidneys and adrenal glands of AT1a receptor- deficient mice. Am J Physiol Renal Physiol. 2008;294:F293–302.PubMedCrossRef Li XC, Zhuo JL. In vivo regulation of AT1a receptor-mediated intracellular uptake of [125I]-Val5-angiotensin II in the kidneys and adrenal glands of AT1a receptor- deficient mice. Am J Physiol Renal Physiol. 2008;294:F293–302.PubMedCrossRef
78.
Zurück zum Zitat Seikaly MG, Arant Jr BS, Seney Jr FD. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest. 1990;86(4):1352–7.PubMedPubMedCentralCrossRef Seikaly MG, Arant Jr BS, Seney Jr FD. Endogenous angiotensin concentrations in specific intrarenal fluid compartments of the rat. J Clin Invest. 1990;86(4):1352–7.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Braam B, Mitchell KD, Fox J, Navar LG. Proximal tubular secretion of angiotensin II in rats. Am J Physiol. 1993;264(5 Pt 2):F891–8.PubMed Braam B, Mitchell KD, Fox J, Navar LG. Proximal tubular secretion of angiotensin II in rats. Am J Physiol. 1993;264(5 Pt 2):F891–8.PubMed
80.
Zurück zum Zitat Darby IA, Sernia C. In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys. Cell Tissue Res. 1995;281(2):197–206.PubMedCrossRef Darby IA, Sernia C. In situ hybridization and immunohistochemistry of renal angiotensinogen in neonatal and adult rat kidneys. Cell Tissue Res. 1995;281(2):197–206.PubMedCrossRef
81.
Zurück zum Zitat Terada Y, Tomita K, Nonoguchi H, Marumo F. PCR localization of angiotensin II receptor and angiotensinogen mRNAs in rat kidney. Kidney Int. 1993;43(6):1251–9.PubMedCrossRef Terada Y, Tomita K, Nonoguchi H, Marumo F. PCR localization of angiotensin II receptor and angiotensinogen mRNAs in rat kidney. Kidney Int. 1993;43(6):1251–9.PubMedCrossRef
82.
Zurück zum Zitat Ingelfinger JR, Zuo WM, Fon EA, Ellison KE, Dzau VJ. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest. 1990;85(2):417–23.PubMedPubMedCentralCrossRef Ingelfinger JR, Zuo WM, Fon EA, Ellison KE, Dzau VJ. In situ hybridization evidence for angiotensinogen messenger RNA in the rat proximal tubule. An hypothesis for the intrarenal renin angiotensin system. J Clin Invest. 1990;85(2):417–23.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Kobori H, Harrison-Bernard LM, Navar LG. Enhancement of angiotensinogen expression in angiotensin II-dependent hypertension. Hypertension. 2001;37(5):1329–35.PubMedPubMedCentralCrossRef Kobori H, Harrison-Bernard LM, Navar LG. Enhancement of angiotensinogen expression in angiotensin II-dependent hypertension. Hypertension. 2001;37(5):1329–35.PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Liu L, Gonzalez AA, McCormack M, Seth DM, Kobori H, Navar LG, et al. Increased renin excretion is associated with augmented urinary angiotensin II levels in chronic angiotensin II-infused hypertensive rats. Am J Physiol Renal Physiol. 2011;301(6):F1195–201.PubMedPubMedCentralCrossRef Liu L, Gonzalez AA, McCormack M, Seth DM, Kobori H, Navar LG, et al. Increased renin excretion is associated with augmented urinary angiotensin II levels in chronic angiotensin II-infused hypertensive rats. Am J Physiol Renal Physiol. 2011;301(6):F1195–201.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Gonzalez-Villalobos RA, Seth DM, Satou R, Horton H, Ohashi N, Miyata K, et al. Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. Am J Physiol Renal Physiol. 2008;295(3):F772–9.PubMedCrossRefPubMedCentral Gonzalez-Villalobos RA, Seth DM, Satou R, Horton H, Ohashi N, Miyata K, et al. Intrarenal angiotensin II and angiotensinogen augmentation in chronic angiotensin II-infused mice. Am J Physiol Renal Physiol. 2008;295(3):F772–9.PubMedCrossRefPubMedCentral
86.
Zurück zum Zitat Zou LX, Hymel A, Imig JD, Navar LG. Renal accumulation of circulating angiotensin II in angiotensin II- infused rats. Hypertension. 1996;27(3 Pt 2):658–62.PubMedCrossRef Zou LX, Hymel A, Imig JD, Navar LG. Renal accumulation of circulating angiotensin II in angiotensin II- infused rats. Hypertension. 1996;27(3 Pt 2):658–62.PubMedCrossRef
87.
Zurück zum Zitat Zhuo JL, Imig JD, Hammond TG, Orengo S, Benes E, Navar LG. Ang II accumulation in rat renal endosomes during Ang II-induced hypertension: role of AT1 receptor. Hypertension. 2002;39(1):116–21.PubMedCrossRef Zhuo JL, Imig JD, Hammond TG, Orengo S, Benes E, Navar LG. Ang II accumulation in rat renal endosomes during Ang II-induced hypertension: role of AT1 receptor. Hypertension. 2002;39(1):116–21.PubMedCrossRef
88.
Zurück zum Zitat Li XC, Navar LG, Shao Y, Zhuo JL. Genetic deletion of AT1a receptors attenuates intracellular accumulation of angiotensin II in the kidney of AT1a receptor-deficient mice. Am J Physiol Renal Physiol. 2007;293:F586–93.PubMedPubMedCentralCrossRef Li XC, Navar LG, Shao Y, Zhuo JL. Genetic deletion of AT1a receptors attenuates intracellular accumulation of angiotensin II in the kidney of AT1a receptor-deficient mice. Am J Physiol Renal Physiol. 2007;293:F586–93.PubMedPubMedCentralCrossRef
89.••
Zurück zum Zitat Li XC, Zhuo JL. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats. Kidney Int. 2011;80:620–32. This study shows that NHE3 phosphoproteins in the proximal tubules of the rat kidney were increased by a subpressor dose of ANG II infusion, whereas a pressor dose of ANG II induced marked hypertension associated with decreases in NHE3 phosphoproteins in the proximal tubules and pressure natriuresis in rats. Li XC, Zhuo JL. Phosphoproteomic analysis of AT1 receptor-mediated signaling responses in proximal tubules of angiotensin II-induced hypertensive rats. Kidney Int. 2011;80:620–32. This study shows that NHE3 phosphoproteins in the proximal tubules of the rat kidney were increased by a subpressor dose of ANG II infusion, whereas a pressor dose of ANG II induced marked hypertension associated with decreases in NHE3 phosphoproteins in the proximal tubules and pressure natriuresis in rats.
90.
Zurück zum Zitat Zeng C, Asico LD, Wang X, Hopfer U, Eisner GM, Felder RA, et al. Angiotensin II regulation of AT1 and D3 dopamine receptors in renal proximal tubule cells of SHR. Hypertension. 2003;41(3 Pt 2):724–9.PubMedCrossRef Zeng C, Asico LD, Wang X, Hopfer U, Eisner GM, Felder RA, et al. Angiotensin II regulation of AT1 and D3 dopamine receptors in renal proximal tubule cells of SHR. Hypertension. 2003;41(3 Pt 2):724–9.PubMedCrossRef
91.
Zurück zum Zitat Prieto-Carrasquero MC, Kobori H, Ozawa Y, Gutierrez A, Seth D, Navar LG. AT1 receptor-mediated enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Am J Physiol Renal Physiol. 2005;289(3):F632–7.PubMedPubMedCentralCrossRef Prieto-Carrasquero MC, Kobori H, Ozawa Y, Gutierrez A, Seth D, Navar LG. AT1 receptor-mediated enhancement of collecting duct renin in angiotensin II-dependent hypertensive rats. Am J Physiol Renal Physiol. 2005;289(3):F632–7.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Prieto MC, Williams DE, Liu L, Kavanagh KL, Mullins JJ, Mitchell KD. Enhancement of renin and prorenin receptor in collecting duct of Cyp1a1-Ren2 rats may contribute to development and progression of malignant hypertension. Am J Physiol Renal Physiol. 2011;300(2):F581–8.PubMedCrossRef Prieto MC, Williams DE, Liu L, Kavanagh KL, Mullins JJ, Mitchell KD. Enhancement of renin and prorenin receptor in collecting duct of Cyp1a1-Ren2 rats may contribute to development and progression of malignant hypertension. Am J Physiol Renal Physiol. 2011;300(2):F581–8.PubMedCrossRef
93.
Zurück zum Zitat Prieto MC, Botros FT, Kavanagh K, Navar LG. Prorenin receptor in distal nephron segments of 2-kidney, 1-clip goldblatt hypertensive rats. Ochsner J. 2013;13(1):26–32.PubMedPubMedCentral Prieto MC, Botros FT, Kavanagh K, Navar LG. Prorenin receptor in distal nephron segments of 2-kidney, 1-clip goldblatt hypertensive rats. Ochsner J. 2013;13(1):26–32.PubMedPubMedCentral
94.••
Zurück zum Zitat Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, Kobori H, et al. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol. 2012;23(7):1181–9. This study provides conclusive evidence from liver- and kidney-selective AGT-KO mice that AGT and ANG II in the kidney are derived from liver or circulating sources under physiological conditions. Matsusaka T, Niimura F, Shimizu A, Pastan I, Saito A, Kobori H, et al. Liver angiotensinogen is the primary source of renal angiotensin II. J Am Soc Nephrol. 2012;23(7):1181–9. This study provides conclusive evidence from liver- and kidney-selective AGT-KO mice that AGT and ANG II in the kidney are derived from liver or circulating sources under physiological conditions.
95.
Zurück zum Zitat Pohl M, Kaminski H, Castrop H, Bader M, Himmerkus N, Bleich M, et al. Intrarenal renin angiotensin system revisited: role of megalin-dependent endocytosis along the proximal nephron. J Biol Chem. 2010;285(53):41935–46.PubMedPubMedCentralCrossRef Pohl M, Kaminski H, Castrop H, Bader M, Himmerkus N, Bleich M, et al. Intrarenal renin angiotensin system revisited: role of megalin-dependent endocytosis along the proximal nephron. J Biol Chem. 2010;285(53):41935–46.PubMedPubMedCentralCrossRef
96.••
Zurück zum Zitat Roksnoer LC, Heijnen BFJ, Nakano D, Peti-Peterdi J, Walsh SB, Garrelds IM, et al. On the origin of urinary renin. A translational approach. Hypertension. 2016;67:927–33. This study used intravital multiphoton microscopy to show that fluorescently labeled prorenin and renin are filtered through the glomerulus and completely taken up by the proximal tubules of the kidney in C57BL/6J mice and Cyp1a1- Ren2 rats, and that only in patients with Dent disease with a defective megalin system, do circulating prorenin and renin will appear in urine along with albumin. Roksnoer LC, Heijnen BFJ, Nakano D, Peti-Peterdi J, Walsh SB, Garrelds IM, et al. On the origin of urinary renin. A translational approach. Hypertension. 2016;67:927–33. This study used intravital multiphoton microscopy to show that fluorescently labeled prorenin and renin are filtered through the glomerulus and completely taken up by the proximal tubules of the kidney in C57BL/6J mice and Cyp1a1- Ren2 rats, and that only in patients with Dent disease with a defective megalin system, do circulating prorenin and renin will appear in urine along with albumin.
97.
Zurück zum Zitat von Thun AM, Vari RC, El Dahr SS, Navar LG. Augmentation of intrarenal angiotensin II levels by chronic angiotensin II infusion. Am J Physiol. 1994;266(1 Pt 2):F120–8. von Thun AM, Vari RC, El Dahr SS, Navar LG. Augmentation of intrarenal angiotensin II levels by chronic angiotensin II infusion. Am J Physiol. 1994;266(1 Pt 2):F120–8.
98.
Zurück zum Zitat Zou LX, Imig JD, von Thun AM, Hymel A, Ono H, Navar LG. Receptor-mediated intrarenal angiotensin II augmentation in angiotensin II-infused rats. Hypertension. 1996;28(4):669–77.PubMedCrossRef Zou LX, Imig JD, von Thun AM, Hymel A, Ono H, Navar LG. Receptor-mediated intrarenal angiotensin II augmentation in angiotensin II-infused rats. Hypertension. 1996;28(4):669–77.PubMedCrossRef
99.
Zurück zum Zitat van Kats JP, Schalekamp MA, Verdouw PD, Duncker DJ, Danser AH. Intrarenal angiotensin II: interstitial and cellular levels and site of production. Kidney Int. 2001;60(6):2311–7.PubMedCrossRef van Kats JP, Schalekamp MA, Verdouw PD, Duncker DJ, Danser AH. Intrarenal angiotensin II: interstitial and cellular levels and site of production. Kidney Int. 2001;60(6):2311–7.PubMedCrossRef
100.
Zurück zum Zitat van Kats JP, de Lannoy LM, Jan Danser AH, van Meegen JR, Verdouw PD, Schalekamp MA. Angiotensin II type 1 (AT1) receptor-mediated accumulation of angiotensin II in tissues and its intracellular half-life in vivo. Hypertension. 1997;30(1 Pt 1):42–9.PubMedCrossRef van Kats JP, de Lannoy LM, Jan Danser AH, van Meegen JR, Verdouw PD, Schalekamp MA. Angiotensin II type 1 (AT1) receptor-mediated accumulation of angiotensin II in tissues and its intracellular half-life in vivo. Hypertension. 1997;30(1 Pt 1):42–9.PubMedCrossRef
101.
Zurück zum Zitat Tewksbury DA, Frome WL, Dumas ML. Characterization of human angiotensinogen. J Biol Chem. 1978;253(11):3817–20.PubMed Tewksbury DA, Frome WL, Dumas ML. Characterization of human angiotensinogen. J Biol Chem. 1978;253(11):3817–20.PubMed
102.
Zurück zum Zitat Tewksbury DA, Dart RA, Travis J. The amino terminal amino acid sequence of human angiotensinogen. Biochem Biophys Res Commun. 1981;99(4):1311–5.PubMedCrossRef Tewksbury DA, Dart RA, Travis J. The amino terminal amino acid sequence of human angiotensinogen. Biochem Biophys Res Commun. 1981;99(4):1311–5.PubMedCrossRef
103.
Zurück zum Zitat Bouhnik J, Clauser E, Strosberg D, Frenoy JP, Menard J, Corvol P. Rat angiotensinogen and des(angiotensin I)angiotensinogen: purification, characterization, and partial sequencing. Biochemistry. 1981;20(24):7010–5.PubMedCrossRef Bouhnik J, Clauser E, Strosberg D, Frenoy JP, Menard J, Corvol P. Rat angiotensinogen and des(angiotensin I)angiotensinogen: purification, characterization, and partial sequencing. Biochemistry. 1981;20(24):7010–5.PubMedCrossRef
104.
Zurück zum Zitat Clouston WM, Evans BA, Haralambidis J, Richards RI. Molecular cloning of the mouse angiotensinogen gene. Genomics. 1988;2(3):240–8.PubMedCrossRef Clouston WM, Evans BA, Haralambidis J, Richards RI. Molecular cloning of the mouse angiotensinogen gene. Genomics. 1988;2(3):240–8.PubMedCrossRef
105.
Zurück zum Zitat Taugner R, Hackenthal E, Rix E, Nobiling R, Poulsen K. Immunocytochemistry of the renin-angiotensin system: renin, angiotensinogen, angiotensin I, angiotensin II, and converting enzyme in the kidneys of mice, rats, and tree shrews. Kidney Int Suppl. 1982;12:S33–43.PubMed Taugner R, Hackenthal E, Rix E, Nobiling R, Poulsen K. Immunocytochemistry of the renin-angiotensin system: renin, angiotensinogen, angiotensin I, angiotensin II, and converting enzyme in the kidneys of mice, rats, and tree shrews. Kidney Int Suppl. 1982;12:S33–43.PubMed
106.
Zurück zum Zitat Burns KD, Homma T, Harris RC. The intrarenal renin-angiotensin system. Semin Nephrol. 1993;13(1):13–30.PubMed Burns KD, Homma T, Harris RC. The intrarenal renin-angiotensin system. Semin Nephrol. 1993;13(1):13–30.PubMed
107.
Zurück zum Zitat Kobori H, Harrison-Bernard LM, Navar LG. Expression of angiotensinogen mRNA and protein in angiotensin II-dependent hypertension. J Am Soc Nephrol. 2001;12(3):431–9.PubMedPubMedCentral Kobori H, Harrison-Bernard LM, Navar LG. Expression of angiotensinogen mRNA and protein in angiotensin II-dependent hypertension. J Am Soc Nephrol. 2001;12(3):431–9.PubMedPubMedCentral
108.
Zurück zum Zitat Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int. 2002;61(2):579–85.PubMedPubMedCentralCrossRef Kobori H, Harrison-Bernard LM, Navar LG. Urinary excretion of angiotensinogen reflects intrarenal angiotensinogen production. Kidney Int. 2002;61(2):579–85.PubMedPubMedCentralCrossRef
109.
Zurück zum Zitat Kobori H, Nishiyama A, Harrison-Bernard LM, Navar LG. Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension. Hypertension. 2003;41(1):42–9.PubMedPubMedCentralCrossRef Kobori H, Nishiyama A, Harrison-Bernard LM, Navar LG. Urinary angiotensinogen as an indicator of intrarenal angiotensin status in hypertension. Hypertension. 2003;41(1):42–9.PubMedPubMedCentralCrossRef
110.•
Zurück zum Zitat Ramkumar N, Stuart D, Calquin M, Wang S, Niimura F, Matsusaka T, et al. Possible role for nephron-derived angiotensinogen in angiotensin-II dependent hypertension. Physiol Rep. 2016;4(1):e12675. This study provides evidence that kidney-derived AGT may play a role in the development of ANG II-induced hypertension. Ramkumar N, Stuart D, Calquin M, Wang S, Niimura F, Matsusaka T, et al. Possible role for nephron-derived angiotensinogen in angiotensin-II dependent hypertension. Physiol Rep. 2016;4(1):e12675. This study provides evidence that kidney-derived AGT may play a role in the development of ANG II-induced hypertension.
111.
Zurück zum Zitat Davis JO, Freeman RH. Mechanisms regulating renin release. Physiol Rev. 1976;56(1):1–56.PubMed Davis JO, Freeman RH. Mechanisms regulating renin release. Physiol Rev. 1976;56(1):1–56.PubMed
112.••
Zurück zum Zitat Wang F, Lu X, Liu M, Feng Y, Zhou SF, Yang T. Renal medullary (pro)renin receptor contributes to angiotensin II-induced hypertension in rats via activation of the local renin-angiotensin system. BMC Med. 2015;13:278. doi:10.1186/s12916-015-0514-1.:278-0514. This study demonstrated that (Pro)renin receptors in the medullary collecting ducts also contributes to ANG II-induced hypertension. Wang F, Lu X, Liu M, Feng Y, Zhou SF, Yang T. Renal medullary (pro)renin receptor contributes to angiotensin II-induced hypertension in rats via activation of the local renin-angiotensin system. BMC Med. 2015;13:278. doi:10.​1186/​s12916-015-0514-1.​:​278-0514. This study demonstrated that (Pro)renin receptors in the medullary collecting ducts also contributes to ANG II-induced hypertension.
113.
Zurück zum Zitat Danser AH, van den Dorpel MA, Deinum J, Derkx FH, Franken AA, Peperkamp E, et al. Renin, prorenin, and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinopathy. J Clin Endocrinol Metab. 1989;68(1):160–7.PubMedCrossRef Danser AH, van den Dorpel MA, Deinum J, Derkx FH, Franken AA, Peperkamp E, et al. Renin, prorenin, and immunoreactive renin in vitreous fluid from eyes with and without diabetic retinopathy. J Clin Endocrinol Metab. 1989;68(1):160–7.PubMedCrossRef
114.
Zurück zum Zitat Nguyen G. Renin, (pro)renin and receptor: an update. Clin Sci (Lond). 2011;120(5):169–78.CrossRef Nguyen G. Renin, (pro)renin and receptor: an update. Clin Sci (Lond). 2011;120(5):169–78.CrossRef
116.
Zurück zum Zitat Danser AH, Deinum J. Renin, prorenin and the putative (pro)renin receptor. Hypertension. 2005;46:1069–76.PubMedCrossRef Danser AH, Deinum J. Renin, prorenin and the putative (pro)renin receptor. Hypertension. 2005;46:1069–76.PubMedCrossRef
117.
118.
Zurück zum Zitat Chen M, Harris MP, Rose D, Smart A, He XR, Kretzler M, et al. Renin and renin mRNA in proximal tubules of the rat kidney. J Clin Invest. 1994;94(1):237–43.PubMedPubMedCentralCrossRef Chen M, Harris MP, Rose D, Smart A, He XR, Kretzler M, et al. Renin and renin mRNA in proximal tubules of the rat kidney. J Clin Invest. 1994;94(1):237–43.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Taugner R, Hackenthal E, Inagami T, Nobiling R, Poulsen K. Vascular and tubular renin in the kidneys of mice. Histochemistry. 1982;75(4):473–84.PubMed Taugner R, Hackenthal E, Inagami T, Nobiling R, Poulsen K. Vascular and tubular renin in the kidneys of mice. Histochemistry. 1982;75(4):473–84.PubMed
120.
Zurück zum Zitat Iwao H, Nakamura N, Ikemoto F, Yamamoto K. Subcellular localization of exogenously administered renin in mouse kidney. Jpn Circ J. 1983;47(10):1198–202.PubMedCrossRef Iwao H, Nakamura N, Ikemoto F, Yamamoto K. Subcellular localization of exogenously administered renin in mouse kidney. Jpn Circ J. 1983;47(10):1198–202.PubMedCrossRef
121.
Zurück zum Zitat Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension. 2002;39(1):129–34.PubMedCrossRef Nishiyama A, Seth DM, Navar LG. Renal interstitial fluid concentrations of angiotensins I and II in anesthetized rats. Hypertension. 2002;39(1):129–34.PubMedCrossRef
122.
Zurück zum Zitat Siragy HM, Howell NL, Ragsdale NV, Carey RM. Renal interstitial fluid angiotensin. Modulation by anesthesia, epinephrine, sodium depletion, and renin inhibition. Hypertension. 1995;25(5):1021–4.PubMedCrossRef Siragy HM, Howell NL, Ragsdale NV, Carey RM. Renal interstitial fluid angiotensin. Modulation by anesthesia, epinephrine, sodium depletion, and renin inhibition. Hypertension. 1995;25(5):1021–4.PubMedCrossRef
123.
Zurück zum Zitat Shaltout HA, Westwood BM, Averill DB, Ferrario CM, Figueroa JP, Diz DI, et al. Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II. Am J Physiol Renal Physiol. 2007;292(1):F82–91.PubMedCrossRef Shaltout HA, Westwood BM, Averill DB, Ferrario CM, Figueroa JP, Diz DI, et al. Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II. Am J Physiol Renal Physiol. 2007;292(1):F82–91.PubMedCrossRef
124.
Zurück zum Zitat Zhuo JL. Augmented intratubular renin and prorenin expression in the medullary collecting ducts of the kidney as a novel mechanism of angiotensin II-induced hypertension. Am J Physiol Renal Physiol. 2011;301(6):F1193–4.PubMedPubMedCentralCrossRef Zhuo JL. Augmented intratubular renin and prorenin expression in the medullary collecting ducts of the kidney as a novel mechanism of angiotensin II-induced hypertension. Am J Physiol Renal Physiol. 2011;301(6):F1193–4.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Zou LX, Imig JD, Hymel A, Navar LG. Renal uptake of circulating angiotensin II in Val5-angiotensin II infused rats is mediated by AT1 receptor. Am J Hypertens. 1998;11(5):570–8.PubMedCrossRef Zou LX, Imig JD, Hymel A, Navar LG. Renal uptake of circulating angiotensin II in Val5-angiotensin II infused rats is mediated by AT1 receptor. Am J Hypertens. 1998;11(5):570–8.PubMedCrossRef
126.
Zurück zum Zitat van Kats JP, van Meegen JR, Verdouw PD, Duncker DJ, Schalekamp MA, Danser AH. Subcellular localization of angiotensin II in kidney and adrenal. J Hypertens. 2001;19(3 Pt 2):583–9.PubMedCrossRef van Kats JP, van Meegen JR, Verdouw PD, Duncker DJ, Schalekamp MA, Danser AH. Subcellular localization of angiotensin II in kidney and adrenal. J Hypertens. 2001;19(3 Pt 2):583–9.PubMedCrossRef
127.
Zurück zum Zitat Shao W, Seth DM, Navar LG. Augmentation of endogenous intrarenal angiotensin II levels in Val5-Ang II infused rats. Am J Physiol Renal Physiol. 2009;296(5):F1067–71.PubMedPubMedCentralCrossRef Shao W, Seth DM, Navar LG. Augmentation of endogenous intrarenal angiotensin II levels in Val5-Ang II infused rats. Am J Physiol Renal Physiol. 2009;296(5):F1067–71.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Li XC, Zhuo JL. Selective knockdown of AT1 receptors by RNA interference inhibits Val5-Ang II endocytosis and NHE-3 expression in immortalized rabbit proximal tubule cells. Am J Physiol Cell Physiol. 2007;293:C367–78.PubMedPubMedCentralCrossRef Li XC, Zhuo JL. Selective knockdown of AT1 receptors by RNA interference inhibits Val5-Ang II endocytosis and NHE-3 expression in immortalized rabbit proximal tubule cells. Am J Physiol Cell Physiol. 2007;293:C367–78.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Li XC, Carretero OA, Navar LG, Zhuo JL. AT1 receptor-mediated accumulation of extracellular angiotensin II in proximal tubule cells: role of cytoskeleton microtubules and tyrosine phosphatases. Am J Physiol Renal Physiol. 2006;291:F375–83.PubMedPubMedCentralCrossRef Li XC, Carretero OA, Navar LG, Zhuo JL. AT1 receptor-mediated accumulation of extracellular angiotensin II in proximal tubule cells: role of cytoskeleton microtubules and tyrosine phosphatases. Am J Physiol Renal Physiol. 2006;291:F375–83.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Li XC, Hopfer U, Zhuo JL. AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through the microtubule-dependent endocytic pathway. Am J Physiol Renal Physiol. 2009;297(5):F1342–52.PubMedPubMedCentralCrossRef Li XC, Hopfer U, Zhuo JL. AT1 receptor-mediated uptake of angiotensin II and NHE-3 expression in proximal tubule cells through the microtubule-dependent endocytic pathway. Am J Physiol Renal Physiol. 2009;297(5):F1342–52.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Zeng C, Yang Z, Wang Z, Jones J, Wang X, Altea J, et al. Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Hypertension. 2005;45(4):804–10.PubMedCrossRef Zeng C, Yang Z, Wang Z, Jones J, Wang X, Altea J, et al. Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Hypertension. 2005;45(4):804–10.PubMedCrossRef
132.
Zurück zum Zitat Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol. 2002;3(4):256–66.PubMedCrossRef Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol. 2002;3(4):256–66.PubMedCrossRef
133.
Zurück zum Zitat Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol. 2001;280(4):F562–73.PubMed Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol. 2001;280(4):F562–73.PubMed
134.
Zurück zum Zitat Birn H, Verroust PJ, Nexo E, Hager H, Jacobsen C, Christensen EI, et al. Characterization of an epithelial approximately 460-kDa protein that facilitates endocytosis of intrinsic factor-vitamin B12 and binds receptor-associated protein. J Biol Chem. 1997;272(42):26497–504.PubMedCrossRef Birn H, Verroust PJ, Nexo E, Hager H, Jacobsen C, Christensen EI, et al. Characterization of an epithelial approximately 460-kDa protein that facilitates endocytosis of intrinsic factor-vitamin B12 and binds receptor-associated protein. J Biol Chem. 1997;272(42):26497–504.PubMedCrossRef
135.
Zurück zum Zitat Gonzalez-Villalobos R, Klassen RB, Allen PL, Navar LG, Hammond TG. Megalin binds and internalizes angiotensin II. Am J Physiol Renal Physiol. 2005;288:F420–7.PubMedCrossRef Gonzalez-Villalobos R, Klassen RB, Allen PL, Navar LG, Hammond TG. Megalin binds and internalizes angiotensin II. Am J Physiol Renal Physiol. 2005;288:F420–7.PubMedCrossRef
136.••
Zurück zum Zitat Li XC, Zhuo JL. Mechanisms of AT1 receptor-mediated uptake of angiotensin II by proximal tubule cells: a novel role of the multiligand endocytic receptor megalin. Am J Physiol Renal Physiol. 2014;307(2):F222–33. This study shows that silencing megalin expression in mouse proximal tubule cells significantly attenuates AT 1a receptor-mediated uptake of FITC-labeled ANG II, suggesting that this endocytic receptor also plays an important role in proximal tubular uptake of ANG II. Li XC, Zhuo JL. Mechanisms of AT1 receptor-mediated uptake of angiotensin II by proximal tubule cells: a novel role of the multiligand endocytic receptor megalin. Am J Physiol Renal Physiol. 2014;307(2):F222–33. This study shows that silencing megalin expression in mouse proximal tubule cells significantly attenuates AT 1a receptor-mediated uptake of FITC-labeled ANG II, suggesting that this endocytic receptor also plays an important role in proximal tubular uptake of ANG II.
137.••
Zurück zum Zitat Li XC, Gu V, Miguel-Qin E, Zhuo JL. Role of caveolin 1 in AT1a receptor-mediated uptake of angiotensin II in the proximal tubule of the kidney. Am J Physiol Renal Physiol. 2014;307(8):F949–61. This study shows that silencing caveolin 1 expression in mouse proximal tubule cells or global deletion of caveolin 1 in mice attenuates AT 1a receptor-mediated uptake of fluorescently labeled ANG II, suggesting that caveolin 1 may also play a role in proximal tubular uptake of ANG II. Li XC, Gu V, Miguel-Qin E, Zhuo JL. Role of caveolin 1 in AT1a receptor-mediated uptake of angiotensin II in the proximal tubule of the kidney. Am J Physiol Renal Physiol. 2014;307(8):F949–61. This study shows that silencing caveolin 1 expression in mouse proximal tubule cells or global deletion of caveolin 1 in mice attenuates AT 1a receptor-mediated uptake of fluorescently labeled ANG II, suggesting that caveolin 1 may also play a role in proximal tubular uptake of ANG II.
138.
Zurück zum Zitat Kessler SP, deS Senanayake P, Scheidemantel TS, Gomos JB, Rowe TM, Sen GC. Maintenance of normal blood pressure and renal functions are independent effects of angiotensin-converting enzyme. J Biol Chem. 2003;278(23):21105–12.PubMedCrossRef Kessler SP, deS Senanayake P, Scheidemantel TS, Gomos JB, Rowe TM, Sen GC. Maintenance of normal blood pressure and renal functions are independent effects of angiotensin-converting enzyme. J Biol Chem. 2003;278(23):21105–12.PubMedCrossRef
139.••
Zurück zum Zitat Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MT, Riquier-Brison AD, et al. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013;123(5):2011–23. This study used kidney-selective ACE-KO mice to demonstrate that ACE in the kidney is necessary for the development of hypertension. Gonzalez-Villalobos RA, Janjoulia T, Fletcher NK, Giani JF, Nguyen MT, Riquier-Brison AD, et al. The absence of intrarenal ACE protects against hypertension. J Clin Invest. 2013;123(5):2011–23. This study used kidney-selective ACE-KO mice to demonstrate that ACE in the kidney is necessary for the development of hypertension.
140.
Zurück zum Zitat Gonzalez-Villalobos RA, Billet S, Kim C, Satou R, Fuchs S, Bernstein KE, et al. Intrarenal angiotensin-converting enzyme induces hypertension in response to angiotensin I infusion. J Am Soc Nephrol. 2011;22(3):449–59.PubMedPubMedCentralCrossRef Gonzalez-Villalobos RA, Billet S, Kim C, Satou R, Fuchs S, Bernstein KE, et al. Intrarenal angiotensin-converting enzyme induces hypertension in response to angiotensin I infusion. J Am Soc Nephrol. 2011;22(3):449–59.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Crowley SD, Gurley SB, Oliverio MI, Pazmino AK, Griffiths R, Flannery PJ, et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest. 2005;115:1092–9.PubMedPubMedCentralCrossRef Crowley SD, Gurley SB, Oliverio MI, Pazmino AK, Griffiths R, Flannery PJ, et al. Distinct roles for the kidney and systemic tissues in blood pressure regulation by the renin-angiotensin system. J Clin Invest. 2005;115:1092–9.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Crowley SD, Zhang J, Herrera M, Griffiths RC, Ruiz P, Coffman TM. The role of AT1 receptor-mediated aalt retention in angiotensin II-dependent hypertension. Am J Physiol Renal Physiol. 2011;301(5):F1124–30.PubMedPubMedCentralCrossRef Crowley SD, Zhang J, Herrera M, Griffiths RC, Ruiz P, Coffman TM. The role of AT1 receptor-mediated aalt retention in angiotensin II-dependent hypertension. Am J Physiol Renal Physiol. 2011;301(5):F1124–30.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 2001;53(1):1–24.PubMed Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev. 2001;53(1):1–24.PubMed
144.
Zurück zum Zitat Zhang J, Ferguson SS, Barak LS, Aber MJ, Giros B, Lefkowitz RJ, et al. Molecular mechanisms of G protein-coupled receptor signaling: role of G protein-coupled receptor kinases and arrestins in receptor desensitization and resensitization. Receptors Channels. 1997;5(3-4):193–9.PubMed Zhang J, Ferguson SS, Barak LS, Aber MJ, Giros B, Lefkowitz RJ, et al. Molecular mechanisms of G protein-coupled receptor signaling: role of G protein-coupled receptor kinases and arrestins in receptor desensitization and resensitization. Receptors Channels. 1997;5(3-4):193–9.PubMed
145.
Zurück zum Zitat Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52:639–72.PubMed Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52:639–72.PubMed
146.
Zurück zum Zitat Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82–97.PubMedCrossRef Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82–97.PubMedCrossRef
147.
Zurück zum Zitat Luttrell LM, Gesty-Palmer D. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev. 2010;62(2):305–30.PubMedPubMedCentralCrossRef Luttrell LM, Gesty-Palmer D. Beyond desensitization: physiological relevance of arrestin-dependent signaling. Pharmacol Rev. 2010;62(2):305–30.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Zhuo JL, Li XC, Garvin JL, Navar LG, Carretero OA. Intracellular angiotensin II induces cytosolic Ca2+ mobilization by stimulating intracellular AT1 receptors in proximal tubule cells. Am J Physiol Renal Physiol. 2006;290:F1382–90.PubMedCrossRef Zhuo JL, Li XC, Garvin JL, Navar LG, Carretero OA. Intracellular angiotensin II induces cytosolic Ca2+ mobilization by stimulating intracellular AT1 receptors in proximal tubule cells. Am J Physiol Renal Physiol. 2006;290:F1382–90.PubMedCrossRef
149.
Zurück zum Zitat Zhuo JL, Carretero OA, Li XC. Effects of AT1 receptor-mediated endocytosis of extracellular Ang II on activation of nuclear factor-kappa B in proximal tubule cells. Ann N Y Acad Sci. 2006;1091:336–45.PubMedPubMedCentralCrossRef Zhuo JL, Carretero OA, Li XC. Effects of AT1 receptor-mediated endocytosis of extracellular Ang II on activation of nuclear factor-kappa B in proximal tubule cells. Ann N Y Acad Sci. 2006;1091:336–45.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Li XC, Zhuo JL. Intracellular ANG II directly induces in vitro transcription of TGF- beta1, MCP-1, and NHE-3 mRNAs in isolated rat renal cortical nuclei via activation of nuclear AT1a receptors. Am J Physiol Cell Physiol. 2008;294(4):C1034–45.PubMedPubMedCentralCrossRef Li XC, Zhuo JL. Intracellular ANG II directly induces in vitro transcription of TGF- beta1, MCP-1, and NHE-3 mRNAs in isolated rat renal cortical nuclei via activation of nuclear AT1a receptors. Am J Physiol Cell Physiol. 2008;294(4):C1034–45.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Haller H, Lindschau C, Erdmann B, Quass P, Luft FC. Effects of intracellular angiotensin II in vascular smooth muscle cells. Circ Res. 1996;79(4):765–72.PubMedCrossRef Haller H, Lindschau C, Erdmann B, Quass P, Luft FC. Effects of intracellular angiotensin II in vascular smooth muscle cells. Circ Res. 1996;79(4):765–72.PubMedCrossRef
152.
Zurück zum Zitat Pendergrass KD, Averill DB, Ferrario CM, Diz DI, Chappell MC. Differential expression of nuclear AT1 receptors and angiotensin II within the kidney of the male congenic mRen2.Lewis rat. Am J Physiol Renal Physiol. 2006;290(6):F1497–506.PubMedCrossRef Pendergrass KD, Averill DB, Ferrario CM, Diz DI, Chappell MC. Differential expression of nuclear AT1 receptors and angiotensin II within the kidney of the male congenic mRen2.Lewis rat. Am J Physiol Renal Physiol. 2006;290(6):F1497–506.PubMedCrossRef
153.
Zurück zum Zitat Gwathmey T, Shaltout HA, Pendergrass KD, Pirro NT, Figueroa JP, Rose JC, et al. Nuclear angiotensin II-type 2 (AT2) receptors are functionally linked to nitric oxide production. Am J Physiol Renal Physiol. 2009;296:F1484–93.PubMedPubMedCentralCrossRef Gwathmey T, Shaltout HA, Pendergrass KD, Pirro NT, Figueroa JP, Rose JC, et al. Nuclear angiotensin II-type 2 (AT2) receptors are functionally linked to nitric oxide production. Am J Physiol Renal Physiol. 2009;296:F1484–93.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Tadevosyan A, Maguy A, Villeneuve LR, Babin J, Bonnefoy A, Allen BG, et al. Nuclear-delimited angiotensin receptor-mediated signaling regulates cardiomyocyte gene expression. J Biol Chem. 2010;285(29):22338–49.PubMedPubMedCentralCrossRef Tadevosyan A, Maguy A, Villeneuve LR, Babin J, Bonnefoy A, Allen BG, et al. Nuclear-delimited angiotensin receptor-mediated signaling regulates cardiomyocyte gene expression. J Biol Chem. 2010;285(29):22338–49.PubMedPubMedCentralCrossRef
155.••
Zurück zum Zitat Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ, Jain A, et al. Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci U S A. 2011;108(36):14849–54. This is the first study to demonstrate the localization of AT 1 and AT 2 receptors in the mitochondria of rodent and human tissues that linked to nitric oxide production. Abadir PM, Foster DB, Crow M, Cooke CA, Rucker JJ, Jain A, et al. Identification and characterization of a functional mitochondrial angiotensin system. Proc Natl Acad Sci U S A. 2011;108(36):14849–54. This is the first study to demonstrate the localization of AT 1 and AT 2 receptors in the mitochondria of rodent and human tissues that linked to nitric oxide production.
156.
Zurück zum Zitat Cook JL, Re R, Alam J, Hart M, Zhang Z. Intracellular angiotensin II fusion protein alters AT1 receptor fusion protein distribution and activates CREB. J Mol Cell Cardiol. 2004;36(1):75–90.PubMedCrossRef Cook JL, Re R, Alam J, Hart M, Zhang Z. Intracellular angiotensin II fusion protein alters AT1 receptor fusion protein distribution and activates CREB. J Mol Cell Cardiol. 2004;36(1):75–90.PubMedCrossRef
157.
Zurück zum Zitat Cook JL, Mills SJ, Naquin R, Alam J, Re RN. Nuclear accumulation of the AT1 receptor in a rat vascular smooth muscle cell line: effects upon signal transduction and cellular proliferation. J Mol Cell Cardiol. 2006;40(5):696–707.PubMedCrossRef Cook JL, Mills SJ, Naquin R, Alam J, Re RN. Nuclear accumulation of the AT1 receptor in a rat vascular smooth muscle cell line: effects upon signal transduction and cellular proliferation. J Mol Cell Cardiol. 2006;40(5):696–707.PubMedCrossRef
158.••
Zurück zum Zitat Redding KM, Chen BL, Singh A, Re RN, Navar LG, Seth DM, et al. Transgenic mice expressing an intracellular fluorescent fusion of angiotensin II demonstrate renal thrombotic microangiopathy and elevated blood pressure. Am J Physiol Heart Circ Physiol. 2010;298:H1807–18. This study shows for the first time that global overexpression of an intracellular ECFP/ANG II fusion protein in mice may increase blood pressure and induce kidney injury. Redding KM, Chen BL, Singh A, Re RN, Navar LG, Seth DM, et al. Transgenic mice expressing an intracellular fluorescent fusion of angiotensin II demonstrate renal thrombotic microangiopathy and elevated blood pressure. Am J Physiol Heart Circ Physiol. 2010;298:H1807–18. This study shows for the first time that global overexpression of an intracellular ECFP/ANG II fusion protein in mice may increase blood pressure and induce kidney injury.
159.••
Zurück zum Zitat Li XC, Hopfer U, Zhuo JL. Novel signaling mechanisms of intracellular angiotensin II-induced NHE3 expression and activation in mouse proximal tubule cells. Am J Physiol Renal Physiol. 2012;303(12):F1617–28. This study shows that proximal tubule-selective overexpression of an intracellular ECFP/ANG II in the kidney induced MAP kinases ERK1/2, NF-кB, and NHE3 signaling and increase blood pressure in mice. Li XC, Hopfer U, Zhuo JL. Novel signaling mechanisms of intracellular angiotensin II-induced NHE3 expression and activation in mouse proximal tubule cells. Am J Physiol Renal Physiol. 2012;303(12):F1617–28. This study shows that proximal tubule-selective overexpression of an intracellular ECFP/ANG II in the kidney induced MAP kinases ERK1/2, NF-кB, and NHE3 signaling and increase blood pressure in mice.
160.••
Zurück zum Zitat Zhuo JL, Kobori H, Li XC, Satou R, Katsurada A, Navar LG. Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via AT1a/MAPK/NF-кB signaling pathways. Am J Physiol Renal Physiol. 2016;310(10):F1103–12. This study shows that overexpression of an intracellular ECFP/ANG II in mouse proximal tubule cells or selectively in the proximal tubules of the mouse kidney increased AGT mRNA and protein expression. Zhuo JL, Kobori H, Li XC, Satou R, Katsurada A, Navar LG. Augmentation of angiotensinogen expression in the proximal tubule by intracellular angiotensin II via AT1a/MAPK/NF-кB signaling pathways. Am J Physiol Renal Physiol. 2016;310(10):F1103–12. This study shows that overexpression of an intracellular ECFP/ANG II in mouse proximal tubule cells or selectively in the proximal tubules of the mouse kidney increased AGT mRNA and protein expression.
161.
Zurück zum Zitat Yun CH, Tse CM, Nath SK, Levine SA, Brant SR, Donowitz M. Mammalian Na+/H+ exchanger gene family: structure and function studies. Am J Physiol. 1995;269(1 Pt 1):G1–11.PubMedCrossRef Yun CH, Tse CM, Nath SK, Levine SA, Brant SR, Donowitz M. Mammalian Na+/H+ exchanger gene family: structure and function studies. Am J Physiol. 1995;269(1 Pt 1):G1–11.PubMedCrossRef
162.
Zurück zum Zitat Donowitz M, Li X. Regulatory binding partners and complexes of NHE3. Physiol Rev. 2007;87(3):825–72.PubMedCrossRef Donowitz M, Li X. Regulatory binding partners and complexes of NHE3. Physiol Rev. 2007;87(3):825–72.PubMedCrossRef
163.
Zurück zum Zitat Biemesderfer D, Pizzonia J, Abu-Alfa A, Exner M, Reilly R, Igarashi P, et al. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am J Physiol. 1993;265(5 Pt 2):F736–42.PubMed Biemesderfer D, Pizzonia J, Abu-Alfa A, Exner M, Reilly R, Igarashi P, et al. NHE3: a Na+/H+ exchanger isoform of renal brush border. Am J Physiol. 1993;265(5 Pt 2):F736–42.PubMed
164.
Zurück zum Zitat Moe OW. Acute regulation of proximal tubule apical membrane Na/H exchanger NHE-3: role of phosphorylation, protein trafficking, and regulatory factors. J Am Soc Nephrol. 1999;10:2412–25.PubMed Moe OW. Acute regulation of proximal tubule apical membrane Na/H exchanger NHE-3: role of phosphorylation, protein trafficking, and regulatory factors. J Am Soc Nephrol. 1999;10:2412–25.PubMed
165.
Zurück zum Zitat Alpern RJ. Cell mechanisms of proximal tubule acidification. Physiol Rev. 1990;70(1):79–114.PubMed Alpern RJ. Cell mechanisms of proximal tubule acidification. Physiol Rev. 1990;70(1):79–114.PubMed
166.
Zurück zum Zitat Aronson PS. Mechanisms of active H+ secretion in the proximal tubule. Am J Physiol. 1983;245(6):F647–59.PubMed Aronson PS. Mechanisms of active H+ secretion in the proximal tubule. Am J Physiol. 1983;245(6):F647–59.PubMed
167.
Zurück zum Zitat Weinman EJ, Shenolikar S. Regulation of the renal brush border membrane Na+- H+ exchanger. Annu Rev Physiol. 1993;55:289–304.PubMedCrossRef Weinman EJ, Shenolikar S. Regulation of the renal brush border membrane Na+- H+ exchanger. Annu Rev Physiol. 1993;55:289–304.PubMedCrossRef
168.
Zurück zum Zitat Biemesderfer D, Rutherford PA, Nagy T, Pizzonia JH, bu-Alfa AK, Aronson PS. Monoclonal antibodies for high-resolution localization of NHE3 in adult and neonatal rat kidney. Am J Physiol. 1997;273(2 Pt 2):F289–99.PubMed Biemesderfer D, Rutherford PA, Nagy T, Pizzonia JH, bu-Alfa AK, Aronson PS. Monoclonal antibodies for high-resolution localization of NHE3 in adult and neonatal rat kidney. Am J Physiol. 1997;273(2 Pt 2):F289–99.PubMed
169.
Zurück zum Zitat Amemiya M, Loffing J, Lotscher M, Kaissling B, Alpern RJ, Moe OW. Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int. 1995;48(4):1206–15.PubMedCrossRef Amemiya M, Loffing J, Lotscher M, Kaissling B, Alpern RJ, Moe OW. Expression of NHE-3 in the apical membrane of rat renal proximal tubule and thick ascending limb. Kidney Int. 1995;48(4):1206–15.PubMedCrossRef
170.
Zurück zum Zitat Ledoussal C, Lorenz JN, Nieman ML, Soleimani M, Schultheis PJ, Shull GE. Renal salt wasting in mice lacking NHE3 Na+/H+ exchanger but not in mice lacking NHE2. Am J Physiol Renal Physiol. 2001;281(4):F718–27.PubMed Ledoussal C, Lorenz JN, Nieman ML, Soleimani M, Schultheis PJ, Shull GE. Renal salt wasting in mice lacking NHE3 Na+/H+ exchanger but not in mice lacking NHE2. Am J Physiol Renal Physiol. 2001;281(4):F718–27.PubMed
171.
Zurück zum Zitat Woo AL, Noonan WT, Schultheis PJ, Neumann JC, Manning PA, Lorenz JN, et al. Renal function in NHE3-deficient mice with transgenic rescue of small intestinal absorptive defect. Am J Physiol Renal Physiol. 2003;284(6):F1190–8.PubMedCrossRef Woo AL, Noonan WT, Schultheis PJ, Neumann JC, Manning PA, Lorenz JN, et al. Renal function in NHE3-deficient mice with transgenic rescue of small intestinal absorptive defect. Am J Physiol Renal Physiol. 2003;284(6):F1190–8.PubMedCrossRef
172.
Zurück zum Zitat Bobulescu IA, Dwarakanath V, Zou L, Zhang J, Baum M, Moe OW. Glucocorticoids acutely increase cell surface Na+/H+ exchanger-3 (NHE3) by activation of NHE3 exocytosis. Am J Physiol Renal Physiol. 2005;289(4):F685–91.PubMedPubMedCentralCrossRef Bobulescu IA, Dwarakanath V, Zou L, Zhang J, Baum M, Moe OW. Glucocorticoids acutely increase cell surface Na+/H+ exchanger-3 (NHE3) by activation of NHE3 exocytosis. Am J Physiol Renal Physiol. 2005;289(4):F685–91.PubMedPubMedCentralCrossRef
173.
Zurück zum Zitat Jose PA, Soares-da-Silva P, Eisner GM, Felder RA. Dopamine and G protein- coupled receptor kinase 4 in the kidney: role in blood pressure regulation. Biochim Biophys Acta. 2010;1802(12):1259–67.PubMedPubMedCentralCrossRef Jose PA, Soares-da-Silva P, Eisner GM, Felder RA. Dopamine and G protein- coupled receptor kinase 4 in the kidney: role in blood pressure regulation. Biochim Biophys Acta. 2010;1802(12):1259–67.PubMedPubMedCentralCrossRef
174.
Zurück zum Zitat He P, Klein J, Yun CC. Activation of Na+/H+ exchanger NHE3 by angiotensin II is mediated by inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3 (IRBIT) and Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 2010;285(36):27869–78.PubMedPubMedCentralCrossRef He P, Klein J, Yun CC. Activation of Na+/H+ exchanger NHE3 by angiotensin II is mediated by inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3 (IRBIT) and Ca2+/calmodulin-dependent protein kinase II. J Biol Chem. 2010;285(36):27869–78.PubMedPubMedCentralCrossRef
175.•
Zurück zum Zitat Nguyen MT, Han J, Ralph DL, Veiras LC, McDonough AA. Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron. Physiol Rep. 2015;3(9), e12496. This study also shows that infusion of a low dose of ANG II increased NHE3 abundance in the proximal tubules of the kidney in the absence of hypertension and GFR. Nguyen MT, Han J, Ralph DL, Veiras LC, McDonough AA. Short-term nonpressor angiotensin II infusion stimulates sodium transporters in proximal tubule and distal nephron. Physiol Rep. 2015;3(9), e12496. This study also shows that infusion of a low dose of ANG II increased NHE3 abundance in the proximal tubules of the kidney in the absence of hypertension and GFR.
176.
Zurück zum Zitat Bloch RD, Zikos D, Fisher KA, Schleicher L, Oyama M, Cheng JC, et al. Activation of proximal tubular Na(+)- H+ exchange by angiotensin II. Am J Physiol. 1992;263(1 Pt 2):F135–43.PubMed Bloch RD, Zikos D, Fisher KA, Schleicher L, Oyama M, Cheng JC, et al. Activation of proximal tubular Na(+)- H+ exchange by angiotensin II. Am J Physiol. 1992;263(1 Pt 2):F135–43.PubMed
177.
Zurück zum Zitat Houillier P, Chambrey R, Achard JM, Froissart M, Poggioli J, Paillard M. Signaling pathways in the biphasic effect of angiotensin II on apical Na/H antiport activity in proximal tubule. Kidney Int. 1996;50(5):1496–505.PubMedCrossRef Houillier P, Chambrey R, Achard JM, Froissart M, Poggioli J, Paillard M. Signaling pathways in the biphasic effect of angiotensin II on apical Na/H antiport activity in proximal tubule. Kidney Int. 1996;50(5):1496–505.PubMedCrossRef
178.
Zurück zum Zitat Du CD, Chalumeau C, Defontaine N, Klein C, Kellermann O, Paillard M, et al. Angiotensin II stimulates NHE3 activity by exocytic insertion of the transporter: role of PI 3-kinase. Kidney Int. 2003;64(3):939–49.CrossRef Du CD, Chalumeau C, Defontaine N, Klein C, Kellermann O, Paillard M, et al. Angiotensin II stimulates NHE3 activity by exocytic insertion of the transporter: role of PI 3-kinase. Kidney Int. 2003;64(3):939–49.CrossRef
179.
Zurück zum Zitat Banday AA, Lokhandwala MF. Angiotensin II-mediated biphasic regulation of proximal tubular Na+/H+ exchanger 3 is impaired during oxidative stress. Am J Physiol Renal Physiol. 2011;301(2):F364–70.PubMedCrossRef Banday AA, Lokhandwala MF. Angiotensin II-mediated biphasic regulation of proximal tubular Na+/H+ exchanger 3 is impaired during oxidative stress. Am J Physiol Renal Physiol. 2011;301(2):F364–70.PubMedCrossRef
180.
Zurück zum Zitat Leong PK, Yang LE, Holstein-Rathlou NH, McDonough AA. Angiotensin II clamp prevents the second step in renal apical NHE3 internalization during acute hypertension. Am J Physiol Renal Physiol. 2002;283(5):F1142–50.PubMedCrossRef Leong PK, Yang LE, Holstein-Rathlou NH, McDonough AA. Angiotensin II clamp prevents the second step in renal apical NHE3 internalization during acute hypertension. Am J Physiol Renal Physiol. 2002;283(5):F1142–50.PubMedCrossRef
181.
Zurück zum Zitat Yang L, Leong PK, Chen JO, Patel N, Hamm-Alvarez SF, McDonough AA. Acute hypertension provokes internalization of proximal tubule NHE3 without inhibition of transport activity. Am J Physiol Renal Physiol. 2002;282(4):F730–40.PubMedCrossRef Yang L, Leong PK, Chen JO, Patel N, Hamm-Alvarez SF, McDonough AA. Acute hypertension provokes internalization of proximal tubule NHE3 without inhibition of transport activity. Am J Physiol Renal Physiol. 2002;282(4):F730–40.PubMedCrossRef
182.••
Zurück zum Zitat Nguyen MT, Lee DH, Delpire E, McDonough AA. Differential regulation of Na+ transporters along nephron during ANG II-dependent hypertension: distal stimulation counteracted by proximal inhibition. Am J Physiol Renal Physiol. 2013;305(4):F510–9. This study reported that NHE3 abundance in the cortex of the kidney was reduced in ANG II-dependent hypertension, but many Na + transporters were increased in the distal nephron segments. Nguyen MT, Lee DH, Delpire E, McDonough AA. Differential regulation of Na+ transporters along nephron during ANG II-dependent hypertension: distal stimulation counteracted by proximal inhibition. Am J Physiol Renal Physiol. 2013;305(4):F510–9. This study reported that NHE3 abundance in the cortex of the kidney was reduced in ANG II-dependent hypertension, but many Na + transporters were increased in the distal nephron segments.
183.
Zurück zum Zitat Riquier-Brison AD, Leong PK, Pihakaski-Maunsbach K, McDonough AA. Angiotensin II stimulates trafficking of NHE3, NaPi2, and associated proteins into the proximal tubule microvilli. Am J Physiol Renal Physiol. 2010;298(1):F177–86.PubMedCrossRef Riquier-Brison AD, Leong PK, Pihakaski-Maunsbach K, McDonough AA. Angiotensin II stimulates trafficking of NHE3, NaPi2, and associated proteins into the proximal tubule microvilli. Am J Physiol Renal Physiol. 2010;298(1):F177–86.PubMedCrossRef
Metadaten
Titel
Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension
verfasst von
Xiao C. Li
Jia L. Zhuo
Publikationsdatum
01.08.2016
Verlag
Springer US
Erschienen in
Current Hypertension Reports / Ausgabe 8/2016
Print ISSN: 1522-6417
Elektronische ISSN: 1534-3111
DOI
https://doi.org/10.1007/s11906-016-0668-z

Weitere Artikel der Ausgabe 8/2016

Current Hypertension Reports 8/2016 Zur Ausgabe

Device-Based Approaches for Hypertension (M Schlaich, Section Editor)

Device-based Therapy for Hypertension

Device-Based Approaches for Hypertension (M Schlaich, Section Editor)

Device-Based Therapy for Drug-Resistant Hypertension: An Update

Secondary Hypertension: Nervous System Mechanisms (M Wyss, Section Editor)

Baroreflex Activation Therapy in Congestive Heart Failure: Novel Findings and Future Insights

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.