Skip to main content
Erschienen in: European Journal of Medical Research 1/2014

Open Access 01.12.2014 | Research

Retrospective analysis of the frequency of centrofacial telangiectasia in systemic sclerosis patients treated with bosentan or ilomedin

verfasst von: Sonja Hetzer, Bettina Alexandra Buhren, Holger Schrumpf, Edwin Bölke, Stephan Meller, Kai Kammers, Peter Arne Gerber, Bernhard Homey

Erschienen in: European Journal of Medical Research | Ausgabe 1/2014

Abstract

Background

Bosentan is a dual endothelin receptor antagonist initially introduced for the treatment of pulmonary arterial hypertension and recently approved for the treatment of digital ulcers in patients with systemic sclerosis (SSc). Our clinical observations indicate that bosentan therapy may be associated with an increased frequency of centrofacial telangiectasia (TAE). Here, we sought to analyze the frequency of TAE in patients with SSc who were treated with either bosentan or the prostacyclin analog iloprost.

Methods

We conducted a retrospective analysis in 27 patients with SSc undergoing therapy with either bosentan (n = 11) or iloprost (n = 16). Standardized photodocumentations of all patients (n = 27) were obtained at a time point ten months after therapy initiation and analyzed. A subgroup of patients (bosentan: n = 6; iloprost: n = 6) was additionally photodocumented prior to therapy initiation, enabling an intraindividual analysis over the course of therapy.

Results

After ten months of therapy patients with SSc receiving bosentan showed a significantly (P = 0.0028) higher frequency of centrofacial TAE (41.6 ± 27.8) as compared to patients with SSc receiving iloprost (14.3 ± 13.1). Detailed subgroup analysis revealed that the frequency of TAE in the bosentan group (n = 6 patients) increased markedly and significantly (P = 0.027) by 44.4 after ten months of therapy (TAE at therapy initiation: 10.8 ± 5.1; TAE after ten months of therapy: 55.2 ± 29.8), whereas an only minor increase of 1.9 was observed in the iloprost group (n = 6 patients; TAE at therapy initiation: 18.3 ± 14.5; TAE after ten months of therapy: 20.2 ± 15.5), yet without reaching statistical significance (P = 0.420).

Conclusions

The use of bosentan may be associated with an increased frequency of TAE in patients with SSc. Patients should be informed about this potential adverse effect prior to therapy. Treatment options may include camouflage or laser therapy.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​2047-783X-19-2) contains supplementary material, which is available to authorized users.
Sonja Hetzer, Bettina Alexandra Buhren, Peter Arne Gerber and Bernhard Homey contributed equally to this work.

Competing interest

PAG and SM have received travel/meeting support by Actelion Ltd., Allschwil, Switzerland.
SM has received research funding by Actelion Ltd., Allschwil, Switzerland.

Authors’ contributions

SH collected the data. BAB, HS, EB, SM, PAG and BH performed data analysis and interpretation. KK performed statistical analyses. BAB, PAG and BH wrote the manuscript. All authors read and approved the final manuscript.
Abkürzungen
ANA
Antinuclear antibodies
ACA
Anti-centromere antibodies
ACR
American College of Rheumatology
CREST
Calcinosis Raynaud’s Esophageal dysmotility Sclerodactyly Telangiectasia
CTGF
connective tissue growth factor
ET-1
endothelin-1
HHT
hereditary hemorrhagic telangiectasia
QOL
quality of life
SSc
systemic sclerosis, scleroderma
lcSSc
limited cutaneous scleroderma
dcSSc
diffuse cutaneous scleroderma
RAPIDS
Randomized, Placebo-controlled study on the Prevention of Ischemic Digital Ulcers secondary to Scleroderma
TAE
telangiectasia.

Background

Scleroderma (systemic sclerosis, SSc) is a rare autoimmune disease characterized by excessive extracellular matrix deposition, fibrosis and vascular alterations[1, 2]. The disorder can affect almost any organ, including the kidneys, the gastrointestinal tract, lungs or heart, and most notably the skin, and may lead to severe dysfunction up to complete organ failure[3]. The two major forms of SSc are localized scleroderma and systemic scleroderma. Localized scleroderma is the more common form of the disease and only affects the skin without any internal organ involvement. By contrast, systemic scleroderma or systemic sclerosis is characterized by cutaneous and non-cutaneous involvement and can be further subdivided into limited cutaneous scleroderma (lcSSc) and diffuse cutaneous scleroderma (dcSSc). The latter types are defined with regard to the extent of skin tightening, the number of affected inner organs as well as their typical autoantibody profile. Any combination of SSc and a rheumatologic disease such as lupus erythematosus, polymyositis, rheumatoid arthritis or Sjögren’s syndrome, is referred to as overlap syndrome[24].
Clinically, digital ulcers and gangrene are a frequent and chronically recurrent complication of SSc and may result in considerable disability[57]. Of note, the incidence for finger amputation was reported to be as high as 1.2% per patient-year in patients with SSc affected by digital ulcers[5]. The main causes of digital ulcers are SSc-associated vascular alterations[8, 9]. Vascular disease involves the microcirculation and arterioles and comprises swelling of the intima, intimal proliferation in the arterioles and distortion of the capillaries with occasional capillary necrosis. Endothelial apoptosis has been recognized as an important component of the vascular disease[10, 11]. The resulting capillary destruction leads to a reduced size of microvascular beds, followed by decreased organ blood flow, eventually resulting in chronic ischemia. In addition, patients with SSc demonstrate a vascular dysfunction that is characterized by vascular permeability, a deregulated control of the vascular tone as well as an activation of the platelets and the coagulation systems[10, 12].
Endothelin is a potent vasoconstrictor that is released by fibroblasts[13]. Endothelin overexpression has been associated with various medium- and long-term physiologic processes, such as mitogenesis, fibrosis, vascular hypertrophy, inflammation, and tissue remodeling[14, 15]. Additionally, there is now accumulating evidence that endothelin-1 (ET-1) is a key mediator in the regulation of the vascular tone. In SSc, the endothelin production is significantly enhanced, leading to vasoconstriction, vessel remodeling, local ischemia and formation of ulcers of the fingertips[16, 17]. So far, bosentan represents the only approved drug for the treatment of SSc-related symptoms, namely digital ulcers.
The treatment of SSc includes the following objectives: reduction of vasospastic phenomena, improvement of vascular permeability, counteracting endothelial dysfunction and antiplatelet action, prevention of visceral involvement, and improvement in quality of life (QOL)[1821]. New specific therapies have been developed targeting prostacyclin and endothelin, two major mediators governing endothelial function, leading to endothelial dysfunction[1]. In this context, stable analogs of prostacyclin, like iloprost, have shown efficacy and improved life expectancy in patients with SSc[2123]. The main pharmacological effects of iloprost are inhibition of platelet aggregation and vasodilatation. Both effects are mediated by an activity of adenylate cyclase/cAMP complex, activation of fibrinolysis, and reduced release of free oxygen radicals[24, 25].
Bosentan is a dual endothelin receptor antagonist. It competes with ET-1 by binding to the receptors ET-A and ET-B, which are localized in the endothelial and muscle layers of the blood vessel walls. The contribution of ET-1 to the development of digital ulcers and the efficacy of bosentan therapy in patients with SSc was assessed in clinical studies by Korn et al. and Matucci-Cerinic et al.[26, 27]. RAPIDS-2 (RAndomized, Placebo-controlled study on the prevention of Ischemic Digital ulcers secondary to Scleroderma) demonstrated a reduced incidence of new digital ulcers in those patients who already had ulcers, whereas bosentan did not exert any effect on the healing of ulcers[27]. The results of RAPIDS-2 are also included in a recent meta-analysis of the healing and prevention of digital ulcers in patients with SSc by Tingey et al. Notably, results from studies on iloprost have been similar, demonstrating no statistically significant effects on the healing or improvement of digital ulcers in patients with SSc, while intravenous iloprost was reported to prevent new ulcers[28]. In spite of the aforementioned positive effects of both bosentan and iloprost in the treatment of SSc, few common, non-serious adverse effects have to be mentioned, including vasodilatation leading to flush, headache, gastrointestinal symptoms, hypotensive reactions, bradycardia or paresthesia. Moreover, bosentan therapy has been associated with an elevation of the liver aminotransferases (ALT and AST) as well as bilirubin[2931].
Our own clinical observations suggest that the frequency of centrofacial telangiectasia (TAE) may be increased in patients with SSc treated with bosentan. Here, we sought to assess the frequency on TAE in patients with SSc treated with bosentan or iloprost. Results may point toward a hitherto little-known, in some cases stigmatizing adverse effect of bosentan therapy.

Methods

Patients

We conducted retrospective analysis in 27 Caucasian patients with SSc (24 female, 3 male; median age 60.9 years, range 27 to 81 years; median disease duration 13.5 years, range 2 to 32 years) treated with either iloprost (n = 16) or bosentan (n = 11). Of these, 17 had lcSSc, 7 had dcSSc and 3 had overlap syndrome, according to the criteria of the American College of Rheumatology (ACR) and LeRoy et al.[4]. Patients of the iloprost and bosentan group did not show relevant differences with regard to gender, age, type of diseases, profiles of autoantibodies, or co-medications. The patients’ characteristics are listed in Table 1.
Table 1
Characteristics of the subgroups of patients treated with either iloprost (n = 16) or bosentan (n = 11)
Characteristic
Iloprost
Bosentan
lcSSc
12 (75%)
5 (45.5%)
dcSSc
2 (12.5%)
5 (45.5%)
Overlap
2 (12.5%)
1 (9%)
CREST+
8 (50%)
4 (36.4%)
ANA+
14 (87.5%)
11 (100%)
ACA + (overlap excluded)
5 (35.7%)
3 (30%)
Anti-Scl-70 (overlap excluded)
5 (35.7%)
4 (40%)
Anti-CENP-B (overlap excluded)
2 (14.3%)
2 (20%)
Anti-Ro/SS-A (overlap excluded)
4 (28.6%)
1 (10%)
Anri-Ro/SS-B (overlap excluded)
1 (7.1%)
0
Anti-RNP (-Sm, -70) (overlap excluded)
1 (7.1%)
1 (10%)

Medication

Bosentan (Tracleer®, Actelion Ltd., Allschwil, Switzerland) was administered at a starting dose of 62.5 mg twice daily and increased to 125 mg twice daily after four weeks of treatment according to the manufacturer’s recommendation. Iloprost (Ilomedin®, 20 μg/ml, Schering AG, Berlin, Germany) was given intravenously, body-weight adapted (0.5 ng/kg per minute for eight hours on five successive days), according to the manufacturer’s recommendation. Patients received additional therapy with antimalarial and immunosuppressive agents. Other co-mediations are listed in Table 2.
Table 2
Co-medication of the subgroups of patients treated with either iloprost (n = 16) or bosentan (n = 11)
Co-medication
Iloprost
Bosentan
Calcium channel blockers
10 (62.5%)
7 (63.7%)
Acetyl salicylic acid
7 (43.8%)
6 (54.5%)
Nitrates
3 (18.8%)
2 (18.2%)
β-blockers
1 (6.3%)
3 (27.3%)
Diuretics
2 (12.5%)
3 (27.3%)
ACE-inhibitors
2 (12.5%)
2 (18.2%)
Statins
2 (12.5%)
1 (9.1%)
Systemic steroids
5 (31.3%)
4 (36.4%)
Methotrexate
4 (25%)
1 (9.1%)
Azathioprine
0 (0%)
1 (9.1%)
Analgesics
16 (100%)
10 (90.9%)
Antidepressants
4 (25%)
3 (27.3%)
Proton pump inhibitors
15 (93.8%)
10 (90.9%)
Thyroxine
3 (18.8%)
2 (18.2%)
Warfarin
0 (0%)
1 (9.1%)

Assessment of TAE

Standardized photodocumentation of all patients was performed after ten months of therapy after obtaining informed consent. After we had initially observed a potentially higher incidence of TAE in patients treated with bosentan, new patients referring to our department for bosentan or iloprost therapy were photodocumented also prior to the initiation of therapy. This subgroup (n = 12) did not show any relevant differences (for example. gender, age, disease characteristics, duration of therapy) with regard to the rest of the cohort. For the assessment of TAE, digitized images were edited with monochrome and red-adjustment. All images were obtained and digitized for blinded reading.

Statistical methods

Data were evaluated using Student’s t-tests. For comparing the overall difference for patients treated with bosentan and patients treated with iloprost, a P-value from a two-sided Student’s t-test was calculated. An addition, multivariate linear regression models with frequency of TAE as response variable and treatment (bosentan versus iloprost) in combination with other clinical factors as explanatory variables were calculated. In order to investigate treatment effects over time within the subgroups of patients for both therapies separately, paired Student’s t-tests were conducted. Reported P-values for Student’s t-tests were corrected for multiple comparisons by considering the conservative Bonferroni correction. P-values of less than 0.05 were declared to be significant.

Results

Frequency of TAE

After ten months, patients treated with bosentan (n = 11 patients) showed a significantly (P = 0.0028) higher frequency of centrofacial TAE (n = 41.6 ± 27.8) as compared to patients receiving iloprost (n = 16 patients; n = 14.3 ± 13.1) (Figure 1). Multivariate linear regression analyses show that in the presence of other clinically assessed factors, treatment (bosentan versus iloprost) remains the only significant predictor for the frequency of TAE (P = 0.099) after adjusting for lcSSc and dcSSc (P = 0.017 after adjusting for all clinical factors presented in Table 1). A prospective sub-group analysis of the frequency of TAE prior to and after ten months of therapy demonstrated a significant (P = 0.027) increase in the bosentan group (n = 6 patients; TAE before therapy: n = 10.8 ± 5.1; TAE after ten months of therapy: n = 55.2 ± 29.8) (Figure 2a) as compared to the iloprost group (n = 6 patients; TAE before therapy: n = 18.3 ± 14.5; TAE after ten months of therapy: n = 20.2 ± 15.5; P = 0.420) (Figure 2b). Whereas the majority of patients in the bosentan group reported a fast or rapid development of TAE after initiation of the bosentan therapy and suspected a likely correlation to the drug, patients of the iloprost group reported a progressive development of TAE over several years and suspected a correlation to the progression of the SSc disease, not the drug.

Appearance of TAE

TAE in bosentan patients had a rather dotted clinical appearance and showed a tendency to persist under diascopic pressure, whereas iloprost patients had rather linear or elongated TAE which tended to fade under diascopic pressure (Figures 3 and4). The two patients with the most rapid development of TAE discontinued bosentan therapy due to the stigmatizing aspect of the lesions. These two patients did not exhibit any additional special characteristics as compared to the remaining cohort.

Discussion

The ET-1 receptor antagonist bosentan and the prostacyclin analog iloprost are well established in the management of Raynaud’s phenomenon and ischemic ulcers in patients with SSc[3, 25, 27, 28, 32]. The most important documented adverse effects of iloprost include flushing, photosensitivity, jaw pain, headaches, diarrhea, nausea and vomiting[28, 33]. Documented adverse effects of bosentan comprise pruritus, urticaria, leukocytoclastic vasculitis, indurated erythema, flushing, peripheral edema, elevated aminotransferases, headache, dizziness, cough, nasal congestion and a potential worsening of symptoms in heart failure patients[27, 28, 3437]. Interestingly, even though flushing is a known adverse effect of bosentan, persistent alterations of the facial vasculature such as TAE, have remained largely unnoticed.
TAE are a characteristic feature of connective tissue diseases such as SSc, dermatomyositis and overlap syndromes[4, 38]. Indeed, they reflect one of the cardinal symptoms of CREST syndrome (Calcinosis, Raynaud’s phenomenon, Esophageal dysmotility, Sclerodactyly, TAE). Whereas some authors state that the acronym CREST is obsolete, others still considered it to be a form of a limited cutaneous SSc (lcSSc)[2, 39]. Hence, the observation of TAE in our cohort of patients with SSc is not surprising. Yet, while it cannot be ruled out that the increase in the number of TAE is a consequence of a worsening of the disease over the course of the therapy, the frequency and rapid progression of TAE in patients with SSc treated with bosentan is remarkable. This hypothesis is supported by the fact that patients treated with bosentan suspected that the onset of TAE correlated to the administration of the drug, whereas no such correlations were suspected by patients treated with iloprost. A further limitation of our study is the small number of patients included. Yet, our results are in line with a recent case report by Tong and Kumarasinghe in a 76-year-old woman treated with bosentan for four years. In this patient, a prominent flushing gradually progressed to persistent redness and TAE[37].
The molecular and cellular mechanisms governing the development of TAE in SSc, as well as the mechanisms by which bosentan may induce persistent vascular alterations, have remained largely elusive. It has been proposed that TAE in SSc develop as a response to endothelial injury. This concept is supported by micro-capillaroscopic analyses that reveal an extensive derangement and destruction of the microvasculature in a variety of organ systems[38]. Interestingly, the distribution and appearance of TAE in SSc correspond to TAE in patients with hereditary hemorrhagic telangiectasia (HHT; Osler-Weber-Rendu syndrome), pointing toward similar pathogenetic mechanisms. HHT is an autosomal dominant disorder of the vasculature development characterized by TAE and arteriovenous malformations[40]. Abnormal TGF-β signaling has been shown to play a crucial role in the pathogenesis of HHT[41]. Moreover, TGF-β signaling has been recognized as a key regulator of wound healing and fibrosis and exerts a variety of effects on the biology of endothelial cells and vascular tissue[1]. Likewise van Royen et al. could show that exogenous TGF-β stimulated the angiogenesis in the peripheral circulation in an in vivo rabbit model[42]. Interestingly, patients with SSc show elevated serum levels of connective tissue growth factor (CTGF), a downstream target of TGF-β, and scleroderma fibroblasts show an increased expression of the TGF-β receptor[43, 44]. Therefore, it is tempting to speculate that TGF-β signaling may also play a role in the pathogenesis of TAE in patients with SSc[38].
With regard to ET-1 antagonists, a recent case report demonstrated a significant alteration of the macrovascular involvement by bosentan in a 50-year-old Japanese patient with SSc. Magnetic resonance angiography showed an attenuation of a stenosis of the ulnar artery. The authors concluded that bosentan, besides reversing the vasoconstrictive effects of ET-1, also exerts remodeling effects on the vasculature[45]. Accordingly, ET-1 has been shown to contribute to the mitogenic activity of fibroblasts and smooth muscle cells in vitro[46, 47]. Hence, the promotion of TAE development by bosentan in patients with SSc may be the result of vasodilatatory and/or direct vascular remodeling effects.

Conclusions

In summary, we here show that bosentan therapy may be associated with a significant increase in the number of facial TAE. Because these stigmatizing lesions are a potential obstacle to patients’ adherence to therapy, they should be informed about this adverse effect that has remained largely unrecognized until recently. Management options may include camouflage ointment or laser therapy.

Acknowledgements

This analysis is part of the thesis of SH.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interest

PAG and SM have received travel/meeting support by Actelion Ltd., Allschwil, Switzerland.
SM has received research funding by Actelion Ltd., Allschwil, Switzerland.

Authors’ contributions

SH collected the data. BAB, HS, EB, SM, PAG and BH performed data analysis and interpretation. KK performed statistical analyses. BAB, PAG and BH wrote the manuscript. All authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Bhattacharyya S, Wei J, Varga J: Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 2011, 8(1):42–54. 10.1038/nrrheum.2011.149PubMedPubMedCentralCrossRef Bhattacharyya S, Wei J, Varga J: Understanding fibrosis in systemic sclerosis: shifting paradigms, emerging opportunities. Nat Rev Rheumatol 2011, 8(1):42–54. 10.1038/nrrheum.2011.149PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Gabrielli A, Avvedimento EV, Krieg T: Scleroderma. N Engl J Med 2009, 360: 1989–2003. 10.1056/NEJMra0806188PubMedCrossRef Gabrielli A, Avvedimento EV, Krieg T: Scleroderma. N Engl J Med 2009, 360: 1989–2003. 10.1056/NEJMra0806188PubMedCrossRef
3.
Zurück zum Zitat Pope J, Fenlon D, Thompson A, et al.: Iloprost and cisaprost for Raynaud’s phenomenon in progressive systemic sclerosis. Cochrane Database Syst Rev 2000, 2: CD000953.PubMed Pope J, Fenlon D, Thompson A, et al.: Iloprost and cisaprost for Raynaud’s phenomenon in progressive systemic sclerosis. Cochrane Database Syst Rev 2000, 2: CD000953.PubMed
4.
Zurück zum Zitat LeRoy EC, Black C, Fleischmajer R, et al.: Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 1988, 15: 202–205.PubMed LeRoy EC, Black C, Fleischmajer R, et al.: Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 1988, 15: 202–205.PubMed
5.
Zurück zum Zitat Hachulla E, Clerson P, Launay D, et al.: Natural history of ischemic digital ulcers in systemic sclerosis: single-center retrospective longitudinal study. J Rheumatol 2007, 34: 2423–2430.PubMed Hachulla E, Clerson P, Launay D, et al.: Natural history of ischemic digital ulcers in systemic sclerosis: single-center retrospective longitudinal study. J Rheumatol 2007, 34: 2423–2430.PubMed
6.
Zurück zum Zitat Lambova S, Muller-Ladner U: Connective tissue diseases: treatment of digital ulcers in systemic sclerosis. Nat Rev Rheumatol 2011, 7: 5–6. 10.1038/nrrheum.2010.207PubMedCrossRef Lambova S, Muller-Ladner U: Connective tissue diseases: treatment of digital ulcers in systemic sclerosis. Nat Rev Rheumatol 2011, 7: 5–6. 10.1038/nrrheum.2010.207PubMedCrossRef
7.
Zurück zum Zitat Walker UA, Tyndall A, Czirjak L, et al.: Clinical risk assessment of organ manifestations in systemic sclerosis: a report from the EULAR Scleroderma Trials And Research group database. Ann Rheum Dis 2007, 66: 754–763. 10.1136/ard.2006.062901PubMedPubMedCentralCrossRef Walker UA, Tyndall A, Czirjak L, et al.: Clinical risk assessment of organ manifestations in systemic sclerosis: a report from the EULAR Scleroderma Trials And Research group database. Ann Rheum Dis 2007, 66: 754–763. 10.1136/ard.2006.062901PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Fleischmajer R, Perlish JS: Capillary alterations in scleroderma. J Am Acad Dermatol 1980, 2: 161–170. 10.1097/00000372-198000220-00013PubMedCrossRef Fleischmajer R, Perlish JS: Capillary alterations in scleroderma. J Am Acad Dermatol 1980, 2: 161–170. 10.1097/00000372-198000220-00013PubMedCrossRef
9.
Zurück zum Zitat Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P: Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol 1992, 166: 255–263. 10.1002/path.1711660307PubMedCrossRef Prescott RJ, Freemont AJ, Jones CJ, Hoyland J, Fielding P: Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol 1992, 166: 255–263. 10.1002/path.1711660307PubMedCrossRef
10.
Zurück zum Zitat Kahaleh MB, LeRoy EC: Autoimmunity and vascular involvement in systemic sclerosis (SSc). Autoimmunity 1999, 31: 195–214. 10.3109/08916939908994064PubMedCrossRef Kahaleh MB, LeRoy EC: Autoimmunity and vascular involvement in systemic sclerosis (SSc). Autoimmunity 1999, 31: 195–214. 10.3109/08916939908994064PubMedCrossRef
11.
Zurück zum Zitat Sgonc R, Gruschwitz MS, Boeck G, Sepp N, Gruber J, Wick G: Endothelial cell apoptosis in systemic sclerosis is induced by antibody-dependent cell-mediated cytotoxicity via CD95. Arthritis Rheum 2000, 43: 2550–2562. 10.1002/1529-0131(200011)43:11<2550::AID-ANR24>3.0.CO;2-HPubMedCrossRef Sgonc R, Gruschwitz MS, Boeck G, Sepp N, Gruber J, Wick G: Endothelial cell apoptosis in systemic sclerosis is induced by antibody-dependent cell-mediated cytotoxicity via CD95. Arthritis Rheum 2000, 43: 2550–2562. 10.1002/1529-0131(200011)43:11<2550::AID-ANR24>3.0.CO;2-HPubMedCrossRef
12.
Zurück zum Zitat Kahaleh B, Matucci-Cerinic M: Raynaud’s phenomenon and scleroderma. Dysregulated neuroendothelial control of vascular tone. Arthritis Rheum 1995, 38: 1–4. 10.1002/art.1780380102PubMedCrossRef Kahaleh B, Matucci-Cerinic M: Raynaud’s phenomenon and scleroderma. Dysregulated neuroendothelial control of vascular tone. Arthritis Rheum 1995, 38: 1–4. 10.1002/art.1780380102PubMedCrossRef
13.
Zurück zum Zitat Kawaguchi Y, Suzuki K, Hara M, et al.: Increased endothelin-1 production in fibroblasts derived from patients with systemic sclerosis. Ann Rheum Dis 1994, 53: 506–510. 10.1136/ard.53.8.506PubMedPubMedCentralCrossRef Kawaguchi Y, Suzuki K, Hara M, et al.: Increased endothelin-1 production in fibroblasts derived from patients with systemic sclerosis. Ann Rheum Dis 1994, 53: 506–510. 10.1136/ard.53.8.506PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Clozel M: Effects of bosentan on cellular processes involved in pulmonary arterial hypertension: do they explain the long-term benefit? Ann Med 2003, 35: 605–613. 10.1080/07853890310017477PubMedCrossRef Clozel M: Effects of bosentan on cellular processes involved in pulmonary arterial hypertension: do they explain the long-term benefit? Ann Med 2003, 35: 605–613. 10.1080/07853890310017477PubMedCrossRef
15.
Zurück zum Zitat Mayes MD: Endothelin and endothelin receptor antagonists in systemic rheumatic disease. Arthritis Rheum 2003, 48: 1190–1199. 10.1002/art.10895PubMedCrossRef Mayes MD: Endothelin and endothelin receptor antagonists in systemic rheumatic disease. Arthritis Rheum 2003, 48: 1190–1199. 10.1002/art.10895PubMedCrossRef
16.
Zurück zum Zitat Abraham D, Dashwood M: Endothelin - role in vascular disease. Rheumatology (Oxford) 2008, 47(Suppl 5):v23-v24.CrossRef Abraham D, Dashwood M: Endothelin - role in vascular disease. Rheumatology (Oxford) 2008, 47(Suppl 5):v23-v24.CrossRef
17.
Zurück zum Zitat Riccardi MT, Chiala A, Lannone F, Grattagliano V, Covelli M, Lapadula G: Treatment of digital ulcers in systemic sclerosis with endothelin-1 receptor antagonist (bosentan). Reumatismo 2007, 59: 135–139.PubMed Riccardi MT, Chiala A, Lannone F, Grattagliano V, Covelli M, Lapadula G: Treatment of digital ulcers in systemic sclerosis with endothelin-1 receptor antagonist (bosentan). Reumatismo 2007, 59: 135–139.PubMed
18.
Zurück zum Zitat Caramaschi P, Volpe A, Tinazzi I, Bambara LM, Carletto A, Biasi D: Does cyclically iloprost infusion prevent severe isolated pulmonary hypertension in systemic sclerosis? Preliminary results. Rheumatol Int 2006, 27: 203–205. 10.1007/s00296-006-0222-4PubMedCrossRef Caramaschi P, Volpe A, Tinazzi I, Bambara LM, Carletto A, Biasi D: Does cyclically iloprost infusion prevent severe isolated pulmonary hypertension in systemic sclerosis? Preliminary results. Rheumatol Int 2006, 27: 203–205. 10.1007/s00296-006-0222-4PubMedCrossRef
19.
Zurück zum Zitat Kowal-Bielecka O, Landewe R, Avouac J, et al.: EULAR recommendations for the treatment of systemic sclerosis: a report from the EULAR Scleroderma Trials and Research group (EUSTAR). Ann Rheum Dis 2009, 68: 620–628. 10.1136/ard.2008.096677PubMedCrossRef Kowal-Bielecka O, Landewe R, Avouac J, et al.: EULAR recommendations for the treatment of systemic sclerosis: a report from the EULAR Scleroderma Trials and Research group (EUSTAR). Ann Rheum Dis 2009, 68: 620–628. 10.1136/ard.2008.096677PubMedCrossRef
20.
Zurück zum Zitat Sfikakis PP, Papamichael C, Stamatelopoulos KS, et al.: Improvement of vascular endothelial function using the oral endothelin receptor antagonist bosentan in patients with systemic sclerosis. Arthritis Rheum 2007, 56: 1985–1993. 10.1002/art.22634PubMedCrossRef Sfikakis PP, Papamichael C, Stamatelopoulos KS, et al.: Improvement of vascular endothelial function using the oral endothelin receptor antagonist bosentan in patients with systemic sclerosis. Arthritis Rheum 2007, 56: 1985–1993. 10.1002/art.22634PubMedCrossRef
21.
Zurück zum Zitat Walker KM, Pope J: Expert agreement on EULAR/EUSTAR recommendations for the management of systemic sclerosis. J Rheumatol 2011, 38: 1326–1328. 10.3899/jrheum.101262PubMedCrossRef Walker KM, Pope J: Expert agreement on EULAR/EUSTAR recommendations for the management of systemic sclerosis. J Rheumatol 2011, 38: 1326–1328. 10.3899/jrheum.101262PubMedCrossRef
22.
Zurück zum Zitat Matucci-Cerinic M, Del Rosso A, Federico P, et al.: Therapeutic challenges for systemic sclerosis: facts and future targets. Ann N Y Acad Sci 2007, 1110: 448–454. 10.1196/annals.1423.047CrossRef Matucci-Cerinic M, Del Rosso A, Federico P, et al.: Therapeutic challenges for systemic sclerosis: facts and future targets. Ann N Y Acad Sci 2007, 1110: 448–454. 10.1196/annals.1423.047CrossRef
23.
Zurück zum Zitat Scorza R, Caronni M, Mascagni B, et al.: Effects of long-term cyclic iloprost therapy in systemic sclerosis with Raynaud’s phenomenon. A randomized, controlled study. Clin Exp Rheumatol 2001, 19: 503–508.PubMed Scorza R, Caronni M, Mascagni B, et al.: Effects of long-term cyclic iloprost therapy in systemic sclerosis with Raynaud’s phenomenon. A randomized, controlled study. Clin Exp Rheumatol 2001, 19: 503–508.PubMed
24.
Zurück zum Zitat Balbir-Gurman A, Braun-Moscovici Y, Livshitz V, et al.: Antioxidant status after iloprost treatment in patients with Raynaud’s phenomenon secondary to systemic sclerosis. Clin Rheumatol 2007, 26: 1517–1521. 10.1007/s10067-007-0613-2PubMedCrossRef Balbir-Gurman A, Braun-Moscovici Y, Livshitz V, et al.: Antioxidant status after iloprost treatment in patients with Raynaud’s phenomenon secondary to systemic sclerosis. Clin Rheumatol 2007, 26: 1517–1521. 10.1007/s10067-007-0613-2PubMedCrossRef
25.
Zurück zum Zitat Wigley FM, Wise RA, Seibold JR, et al.: Intravenous iloprost infusion in patients with Raynaud phenomenon secondary to systemic sclerosis. A multicenter, placebo-controlled, double-blind study. Ann Intern Med 1994, 120: 199–206. 10.7326/0003-4819-120-3-199402010-00004PubMedCrossRef Wigley FM, Wise RA, Seibold JR, et al.: Intravenous iloprost infusion in patients with Raynaud phenomenon secondary to systemic sclerosis. A multicenter, placebo-controlled, double-blind study. Ann Intern Med 1994, 120: 199–206. 10.7326/0003-4819-120-3-199402010-00004PubMedCrossRef
26.
Zurück zum Zitat Korn JH, Mayes M, Matucci-Cerinic M, et al.: Digital ulcers in systemic sclerosis: prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum 2004, 50: 3985–3993. 10.1002/art.20676PubMedCrossRef Korn JH, Mayes M, Matucci-Cerinic M, et al.: Digital ulcers in systemic sclerosis: prevention by treatment with bosentan, an oral endothelin receptor antagonist. Arthritis Rheum 2004, 50: 3985–3993. 10.1002/art.20676PubMedCrossRef
27.
Zurück zum Zitat Matucci-Cerinic M, Denton CP, Furst DE, et al.: Bosentan treatment of digital ulcers related to systemic sclerosis: results from the RAPIDS-2 randomized, double-blind, placebo-controlled trial. Ann Rheum Dis 2011, 70: 32–38. 10.1136/ard.2010.130658PubMedPubMedCentralCrossRef Matucci-Cerinic M, Denton CP, Furst DE, et al.: Bosentan treatment of digital ulcers related to systemic sclerosis: results from the RAPIDS-2 randomized, double-blind, placebo-controlled trial. Ann Rheum Dis 2011, 70: 32–38. 10.1136/ard.2010.130658PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Tingey T, Shu J, Smuczek J, Pope J: Meta-analysis of healing and prevention of digital ulcers in systemic sclerosis. Arthritis Care Res (Hoboken) 2013, 65: 1460–1471. 10.1002/acr.22018CrossRef Tingey T, Shu J, Smuczek J, Pope J: Meta-analysis of healing and prevention of digital ulcers in systemic sclerosis. Arthritis Care Res (Hoboken) 2013, 65: 1460–1471. 10.1002/acr.22018CrossRef
29.
Zurück zum Zitat Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee: Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum 1980, 23: 581–590. 10.1002/art.1780230510CrossRef Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee: Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum 1980, 23: 581–590. 10.1002/art.1780230510CrossRef
30.
Zurück zum Zitat Bettoni L, Geri A, Airo P, et al.: Systemic sclerosis therapy with iloprost: a prospective observational study of 30 patients treated for a median of three years. Clin Rheumatol 2002, 21: 244–250. 10.1007/PL00011223PubMedCrossRef Bettoni L, Geri A, Airo P, et al.: Systemic sclerosis therapy with iloprost: a prospective observational study of 30 patients treated for a median of three years. Clin Rheumatol 2002, 21: 244–250. 10.1007/PL00011223PubMedCrossRef
31.
Zurück zum Zitat McHugh NJ, Csuka M, Watson H, et al.: Infusion of iloprost, a prostacyclin analog, for treatment of Raynaud’s phenomenon in systemic sclerosis. Ann Rheum Dis 1988, 47: 43–47. 10.1136/ard.47.1.43PubMedPubMedCentralCrossRef McHugh NJ, Csuka M, Watson H, et al.: Infusion of iloprost, a prostacyclin analog, for treatment of Raynaud’s phenomenon in systemic sclerosis. Ann Rheum Dis 1988, 47: 43–47. 10.1136/ard.47.1.43PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Wigley FM, Seibold JR, Wise RA, McCloskey DA, Dole WP: Intravenous iloprost treatment of Raynaud’s phenomenon and ischemic ulcers secondary to systemic sclerosis. J Rheumatol 1992, 19: 1407–1414.PubMed Wigley FM, Seibold JR, Wise RA, McCloskey DA, Dole WP: Intravenous iloprost treatment of Raynaud’s phenomenon and ischemic ulcers secondary to systemic sclerosis. J Rheumatol 1992, 19: 1407–1414.PubMed
33.
Zurück zum Zitat Paramothayan NS, Lasserson TJ, Wells AU, Walters EH: Prostacyclin for pulmonary hypertension. Cochrane Database Syst Rev 2003, 2: CD002994.PubMed Paramothayan NS, Lasserson TJ, Wells AU, Walters EH: Prostacyclin for pulmonary hypertension. Cochrane Database Syst Rev 2003, 2: CD002994.PubMed
34.
Zurück zum Zitat Dingemanse J, van Giersbergen PL: Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin Pharmacokinet 2004, 43: 1089–1115. 10.2165/00003088-200443150-00003PubMedCrossRef Dingemanse J, van Giersbergen PL: Clinical pharmacology of bosentan, a dual endothelin receptor antagonist. Clin Pharmacokinet 2004, 43: 1089–1115. 10.2165/00003088-200443150-00003PubMedCrossRef
35.
Zurück zum Zitat Gallardo F, Toll A, Malvehy J, et al.: Large atypical melanocytic nevi in recessive dystrophic epidermolysis bullosa: clinicopathological, ultrastructural, and dermoscopic study. Pediatr Dermatol 2005, 22: 338–343. 10.1111/j.1525-1470.2005.22412.xPubMedCrossRef Gallardo F, Toll A, Malvehy J, et al.: Large atypical melanocytic nevi in recessive dystrophic epidermolysis bullosa: clinicopathological, ultrastructural, and dermoscopic study. Pediatr Dermatol 2005, 22: 338–343. 10.1111/j.1525-1470.2005.22412.xPubMedCrossRef
37.
Zurück zum Zitat Tong PL, Kumarasinghe SP: Bosentan - a previously unrecognized cause of facial telangiectasia. Ann Acad Med Singapore 2010, 39: 874–875.PubMed Tong PL, Kumarasinghe SP: Bosentan - a previously unrecognized cause of facial telangiectasia. Ann Acad Med Singapore 2010, 39: 874–875.PubMed
38.
Zurück zum Zitat Mould TL, Roberts-Thomson PJ: Pathogenesis of telangiectasia in scleroderma. Asian Pac J Allergy Immunol 2000, 18: 195–200.PubMed Mould TL, Roberts-Thomson PJ: Pathogenesis of telangiectasia in scleroderma. Asian Pac J Allergy Immunol 2000, 18: 195–200.PubMed
39.
Zurück zum Zitat Hachulla E, Launay D: Diagnosis and classification of systemic sclerosis. Clin Rev Allergy Immunol 2011, 40: 78–83. 10.1007/s12016-010-8198-yPubMedCrossRef Hachulla E, Launay D: Diagnosis and classification of systemic sclerosis. Clin Rev Allergy Immunol 2011, 40: 78–83. 10.1007/s12016-010-8198-yPubMedCrossRef
40.
Zurück zum Zitat McDonald J, Bayrak-Toydemir P, Pyeritz RE: Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet Med 2011, 13: 607–616. 10.1097/GIM.0b013e3182136d32PubMedCrossRef McDonald J, Bayrak-Toydemir P, Pyeritz RE: Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis. Genet Med 2011, 13: 607–616. 10.1097/GIM.0b013e3182136d32PubMedCrossRef
41.
Zurück zum Zitat Walshe TE: TGF-beta and microvessel homeostasis. Microvasc Res 2010, 80: 166–173. 10.1016/j.mvr.2010.03.003PubMedCrossRef Walshe TE: TGF-beta and microvessel homeostasis. Microvasc Res 2010, 80: 166–173. 10.1016/j.mvr.2010.03.003PubMedCrossRef
42.
Zurück zum Zitat van Royen N, Hoefer I, Buschmann I, et al.: Exogenous application of transforming growth factor beta 1 stimulates arteriogenesis in the peripheral circulation. FASEB J 2002, 16: 432–434.PubMed van Royen N, Hoefer I, Buschmann I, et al.: Exogenous application of transforming growth factor beta 1 stimulates arteriogenesis in the peripheral circulation. FASEB J 2002, 16: 432–434.PubMed
43.
Zurück zum Zitat Kawakami T, Ihn H, Xu W, Smith E, LeRoy C, Trojanowska M: Increased expression of TGF-beta receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-beta signaling to scleroderma phenotype. J Invest Dermatol 1998, 110: 47–51. 10.1046/j.1523-1747.1998.00073.xPubMedCrossRef Kawakami T, Ihn H, Xu W, Smith E, LeRoy C, Trojanowska M: Increased expression of TGF-beta receptors by scleroderma fibroblasts: evidence for contribution of autocrine TGF-beta signaling to scleroderma phenotype. J Invest Dermatol 1998, 110: 47–51. 10.1046/j.1523-1747.1998.00073.xPubMedCrossRef
44.
Zurück zum Zitat Sato S, Nagaoka T, Hasegawa M, et al.: Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol 2000, 27: 149–154.PubMed Sato S, Nagaoka T, Hasegawa M, et al.: Serum levels of connective tissue growth factor are elevated in patients with systemic sclerosis: association with extent of skin sclerosis and severity of pulmonary fibrosis. J Rheumatol 2000, 27: 149–154.PubMed
45.
Zurück zum Zitat Ichimura Y, Asano Y, Hatano M, et al.: Significant attenuation of macrovascular involvement by bosentan in a patient with diffuse cutaneous systemic sclerosis with multiple digital ulcers and gangrene. Mod Rheumatol 2011, 21: 548–552.PubMedCrossRef Ichimura Y, Asano Y, Hatano M, et al.: Significant attenuation of macrovascular involvement by bosentan in a patient with diffuse cutaneous systemic sclerosis with multiple digital ulcers and gangrene. Mod Rheumatol 2011, 21: 548–552.PubMedCrossRef
46.
Zurück zum Zitat Cambrey AD, Harrison NK, Dawes KE, et al.: Increased levels of endothelin-1 in bronchoalveolar lavage fluid from patients with systemic sclerosis contribute to fibroblast mitogenic activity in vitro . Am J Respir Cell Mol Biol 1994, 11: 439–445. 10.1165/ajrcmb.11.4.7917311PubMedCrossRef Cambrey AD, Harrison NK, Dawes KE, et al.: Increased levels of endothelin-1 in bronchoalveolar lavage fluid from patients with systemic sclerosis contribute to fibroblast mitogenic activity in vitro . Am J Respir Cell Mol Biol 1994, 11: 439–445. 10.1165/ajrcmb.11.4.7917311PubMedCrossRef
47.
Zurück zum Zitat Yang Z, Krasnici N, Luscher TF: Endothelin-1 potentiates human smooth muscle cell growth to PDGF: effects of ETA and ETB receptor blockade. Circulation 1999, 100: 5–8. 10.1161/01.CIR.100.1.5PubMedCrossRef Yang Z, Krasnici N, Luscher TF: Endothelin-1 potentiates human smooth muscle cell growth to PDGF: effects of ETA and ETB receptor blockade. Circulation 1999, 100: 5–8. 10.1161/01.CIR.100.1.5PubMedCrossRef
Metadaten
Titel
Retrospective analysis of the frequency of centrofacial telangiectasia in systemic sclerosis patients treated with bosentan or ilomedin
verfasst von
Sonja Hetzer
Bettina Alexandra Buhren
Holger Schrumpf
Edwin Bölke
Stephan Meller
Kai Kammers
Peter Arne Gerber
Bernhard Homey
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
European Journal of Medical Research / Ausgabe 1/2014
Elektronische ISSN: 2047-783X
DOI
https://doi.org/10.1186/2047-783X-19-2

Weitere Artikel der Ausgabe 1/2014

European Journal of Medical Research 1/2014 Zur Ausgabe