Skip to main content
Erschienen in: BMC Public Health 1/2008

Open Access 01.12.2008 | Research article

Risk factors for bone mineral density at the calcaneus in 40–59 year-old male workers: A cross-sectional study in Korea

verfasst von: Hyun-Ju Seo, Soo-Geun Kim, Chong-Soon Kim

Erschienen in: BMC Public Health | Ausgabe 1/2008

Abstract

Background

Few epidemiologic studies have attempted to investigate the prevalence and risk factors for osteopenia and osteoporosis in middle-aged Asian men. We performed this study to determine the prevalence and risk factors of osteopenia and osteoporosis in this population.

Methods

This cross-sectional study was conducted from March to July, 2004. The subjects were 2,073 males aged from 40 to 59 years in the KHNP (Korea Hydro & Nuclear Power) workplace-based cohort. Bone mineral density (BMD) was measured by peripheral, dual-energy, X-ray absorptiometry (DXA) at the calcaneus. Anthropometric and lifestyle factors were investigated using a standard, self-reported questionnaire.

Results

BMD was 0.60 ± 0.09 g/cm2 (mean ± standard deviation) and was negatively correlated with age (r = -0.18, P < 0.001), but positively correlated with waist-to-hip ratio (WHR; r = 0.15, P < 0.001), body fat (r = 0.10, P < 0.001), BMI (r = 0.35, P < 0.001), height (r = 0.26, P < 0.001), and weight (r = 0.43, P < 0.001).
In multiple linear regression analysis, the independent determinants associated with BMD were increasing age (coefficient = -0.002, P < 0.001), physical activity (≤ 2/week vs. ≥ 3/week; coefficient = 0.017, P < 0.001), WHR (coefficient = -0.796, P < 0.001), body mass index (BMI; coefficient = 0.023, P < 0.001) and smoking status (never vs. ever; coefficient = -0.018, P < 0.001).

Conclusion

We suggest that BMD of the calcaneus is correlated negatively with exposure to smoke and increased WHR, but positively with regular exercise and increased BMI.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

H–JS performed the data analysis, and drafted and revised the manuscript. S–GK was responsible for the study design and helped to draft the manuscript. C–SK gathered the data and helped to draft the manuscript. All authors have read and approved the final manuscript.

Background

WHO recognizes osteoporosis as an important, global health problem that will increase in significance as the world population both increases and ages [1, 2]. Since most of the lifestyle aspects that affect osteoporosis are modifiable, lifestyle modification is important in the prevention of osteoporosis.
In recent studies, the prevalence of osteoporosis in men older than 49 years old was about 7% [3], and fatalities caused by femoral neck fracture were more common in men than in women [4]. In addition, osteoporosis in elderly men has become an important disease because one study found that 25% of men were in danger of fracture due to osteoporosis [5]. Moreover, a quick recovery from osteoporosis is not possible and osteoporosis increases the fracture risk [6], therefore increasing the importance of prompt treatment through prevention and early diagnosis. Therefore, the quality of life in Korea, which is an aging society, can be improved by focusing on the prevention of osteoporosis in the general population.
Previous studies of osteoporosis examined the risk factors of osteoporosis [79], exercise and bone density [10, 11] and calcium and bone density [12, 13]. However, the study subjects were American or European women. Studies of lifestyles related to osteoporosis in women have been performed, especially climacteric women [14] and university and college students [15], but the epidemiological conditions and risk factors of osteoporosis in Korean men remain to be elucidated due to the absence of any studies of osteoporosis in Korean men. Moreover, most subjects of domestic and foreign studies were older than 47 years old [1623]. Therefore, the aim of this study was to assess the prevalence of osteoporosis, which is a major health problem, in 40–59 year-old male workers, and to obtain epidemiological data for the association between life style factors and bone density.

Methods

Subjects and methods

The subjects comprised 2,073 male workers with age ranging from 40 to 59 at five hydroelectric and nuclear power plants operated by Korea Hydro & Nuclear Power (KHNP) company at Kori, Yonggwang, Ulchin, Wolsong, and Seoul in Korea.
The KHNP cohort inspected the workers working for the nuclear power plants. The aim of this survey was to examine the impact of exposure to low-dose radiation on the employees' health status. In 2004, 6,980 workers, with an average age of 39.8 ± 8.3 years, underwent an annual health check-up.
The 40–59 year-old men comprised 47.0% of this population. We conducted epidemiology research at five sites from March to July, 2004, and enrolled 2,073 subjects who agreed to our survey among the 3,275 total. The study was designed to analyze the database; health examinations' data of KHNP workers on the condition of secrecy under worker's information. Therefore the study was exempted from a review of the Institutional Review Board at a point of its planning time since it was the observational study for academic purpose using an existing dataset that did not involve personal information under the exemption criteria. The data deleted the name and citizen registration number of each worker was provided. Researchers only accessed to analyze the database.
All participants agreed with written informed consent described the purpose of the establishment of a program for health promotion about diseases related with lifestyles.
We measured the bone mineral density (BMD), body composition (body fat percentage, waist-to-hip ratio (WHR)), height, and weight. To collect data on lifestyles, we investigated educational levels, smoking status, drinking status, and frequency of physical activity through standard, self-reported questionnaires.
For examination of body composition, we used Inbody 3.0 of Biospace Co. to measure body fat percentage and WHR, the latter via bioimpedance measurement [24].

Bone mineral density (BMD) measurement

BMD was assessed by measurements taken at the calcaneus by dual-energy X-ray absorptiometry (DXA) using an EXA-3000 (Osteosys, Seoul, Korea), according to the protocol (precision error; <1.0% CV in vivo). Quality control procedures were carried out in accordance with the manufacturer's guidance.
We measured the bone density at the calcaneus, which has been validated as a measurement site and is considered to be highly predictive of fracture risk [25]. In addition, this peripheral densitometry device has the advantages of low cost and portability for field epidemiologic study of osteoporosis.
BMD measurements provided absolute values for the calcaneus site and were then compared to those of healthy young Korean adults (T score). The reference population was 81 female and 81 male subjects, as provided by the manufacturer of the bone densitometry.

Statistical analysis

The results are presented as means (± SD) and categorical variables are expressed as frequencies. We used Pearson's correlation coefficient to examine the effect of continuous variables on BMD, and performed multiple linear regression analysis to determine the independent effect of variables related with BMD. To examine the multi-collinearity of the regression model, we checked the variance inflation factor. A variance inflation factor greater than 10 indicates that the model is problematic [26]. Associations were considered statistically significant at the p < 0.05 level. The SPSS 12.0 (for window) statistical software package was used for statistical analysis.

Results

The general characteristics of study subjects are shown in Table 1. The mean age of the subjects was 47.1 years old, and the mean BMD was 0.60 ± 0.09 g/cm2.
Table 1
General characteristics of the study subjects (n = 2,073)
Variables
Mean ± SD
Age(year)
47.1 ± 4.8
Height(cm)
169.5 ± 5.4
Weight(kg)
69.6 ± 8.4
BMI(kg/m2)
24.2 ± 2.5
Body fat(%)
21.3 ± 4.2
Waist hip ratio
0.9 ± 0.1
Bone mineral density (g/cm2)
0.60 ± 0.09
Education level (year)
 
   ≤ 12
884 (42.6)
   >12
1,189 (57.4)
Smoking status
 
   never-smoker
473 (22.8)
   ever-smoker
1,600 (77.2)
Drinking status
 
   never-drinker
191 (9.2)
   ever-drinker
1882 (90.8)
Physical activity (time/week)
 
   ≤ 2
1,038 (50.1)
   ≥ 3
1,035 (49.9)
Bone mineral density grouping(n(%))*
 
   normal group
1,539 (74.2)
   osteopenia
472 (22.8)
   osteoporosis
62 (3.0)
* Bone mineral density grouping: according to diagnostic criteria of WHO, normal group; T-score ≥ -1.0, osteopenia; -2.5 ≤ T-score < -1.0, osteoporosis; T-score < -2.5
n(%)
Correlation analysis was conducted to investigate the continuous variables related with BMD. BMD was correlated negatively with age (r = -0.18, P < 0.001), but positively with WHR (r = 0.15, P < 0.001), body fat (r = 0.10, P < 0.001), height (r = 0.26, P < 0.001), and weight (r = 0.43, P < 0.001) (Table 2).
Table 2
Correlation between various parameters and bone mineral density
 
r
P
Age (year)
-0.18
<0.001
WHR
0.15
<0.001
Body fat (%)
0.10
<0.001
BMI (kg/m2)
0.35
<0.001
Height (cm)
0.26
<0.001
Weight (Kg)
0.43
<0.001
Pearson correlation coefficient (r)
Multiple linear regression analysis was performed to identify the related factors that affect BMD. Age, education level (<12 years vs. ≥ 12 years), physical activity (≤ 2/week vs. ≥ 3/week), WHR, BMI, drinking status (never vs. ever), and smoking status (never vs. ever) were selected from those subjects scoring less than 10.0 in the variance inflation factors, i.e., body fat, height and weight were excluded.
The independent parameters associated with BMD were age (coefficient = -0.002, P < 0.001), physical activity (≤ 2/week vs. ≥ 3/week; coefficient = 0.017, P < 0.001), WHR (coefficient = -0.796, P < 0.001), BMI (coefficient = 0.023, P < 0.001) and smoking status (never vs. ever; coefficient = -0.018, P < 0.001). The variance inflation factors in this regression model were less than 4.01 and the adjusted R2 value was 20.7% (Table 3).
Table 3
Multiple linear regression analysis on variables associated with bone mineral density
 
Coefficient
Standard error
t
P*
Age (year)
-0.002
0.000
-5.522
<0.001
Education level (<12 years vs. ≥ 12 years)
0.001
0.004
0.301
0.763
Physical activity (≤ 2/week vs. ≥ 3/week)
0.017
0.003
4.895
<0.001
WHR
-0.796
0.093
-8.569
<0.001
BMI (kg/m2)
0.023
0.001
17.033
<0.001
Drinking status (never vs. ever)
-0.002
0.006
-0.259
0.795
Smoking status (never vs. ever)
-0.018
0.004
-4.317
<0.001
*P < 0.05 by multiple linear regression analysis, R2 = 0.21

Discussion

Osteoporosis is a cause of significant morbidity and mortality in both postmenopausal women and men [27]. At present, there are no sufficient data for epidemiological research on the bone density of healthy, middle-aged, male workers in Korea.
In a study with 152 healthy, middle-aged men [28], the prevalence of osteoporosis and osteopenia in the lumbar vertebra was 3.9% and 28.3%, respectively. In a study that investigated the bone density of the femoral neck of American men older than 49 years old, the prevalence of osteoporosis was 3~6% and that of osteopenia 28~47% [29]. In a study of Canadian men older than 49 years old, the prevalence of osteoporosis in the lumbar vertebra and femoral neck was 2.9% and 4.8%, respectively, giving a total of 6.6% [30]. In the present study, the prevalence of osteoporosis in the calcaneus was 3.0% and that of osteopenia was 22.8%, according to the diagnostic criteria of WHO.
Several studies have reported physical activity to be a relevant factor of osteoporosis [10, 31, 32]. Rikli & McManics [33] reported that weight load exercise was an effective training form. Hsu et al [34] reported that vigorous physical activity decreased osteopenia by 0.87-fold and osteoporosis by 0.74-fold. Consistent with these results of previous studies, physical activity (people who exercised three times or more a week) in the present study was positively associated with BMD.
Tobacco exposure has been implicated as a risk factor for decreased bone density, which might result in osteoporosis. Similar to previous studies, we observed negative associations between the smoking exposure and BMD. Byron and Jay [35] suggested that serum cotinine, as a marker for tobacco exposure, is a significant risk factor for decreased bone mineral content. In addition, the bone density of smokers may be low because smokers lack calcium uptake or tend to exercise less than never smokers [36]. In a study of 410 people aged from 61 to 73, the density of the lumbar vertebra of smokers was lower than that of never smokers [37]. In middle-aged men, there was a negative correlation between history of smoking and BMD, and this correlation was especially strong in current smokers [17, 20, 38].
Consistent with previous studies, there was a negative association between BMD and age. The most powerful predictor of osteoporosis was increased age [39, 40]. Eastell et al [41] reported that age-induced decrease of bone density could be the result of decrease of kidney function, deficiency of vitamin D, increase of parathyroid hormone, decrease of testosterone or decrease of both calcium uptake and absorption. Moreover, two studies reported that the odds ratio for fracture in men with osteoporosis was 2–2.7 compared to men with normal bone density, indicating that decreased bone density in men was also associated with an increased risk for fracture [42, 43].
BMI and WHR were used as parameters of general obesity and fat distribution, respectively. BMI was positively related to BMD, whereas WHR was inversely associated with BMD. Our results are consistent with those from other studies presenting a positive association of BMD with BMI [16, 17, 19, 41, 4446] and WHR [32, 47, 48].
We suggest that BMD of the calcaneus is associated negatively with smoke exposure and increased WHR, but positively with regular exercise and increased BMI.
The study limitation was that the workplace-based participants may not truly represent the general Korean population due to the selection bias known as the healthy worker effect.

Conclusion

This research provided epidemiological data on the BMD of Korean middle-aged men. We suggest that among 40 to 59 year-old male workers, BMD is negatively related to smoke exposure and increased WHR, but positively with regularly physical activity and increased BMI.

Acknowledgements

This research was funded by Research Grant A04NS02 from the Korea Hydro and Nuclear Power Co., LTD.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

H–JS performed the data analysis, and drafted and revised the manuscript. S–GK was responsible for the study design and helped to draft the manuscript. C–SK gathered the data and helped to draft the manuscript. All authors have read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994, 843: 1-129. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser. 1994, 843: 1-129.
2.
Zurück zum Zitat Delmas PD, Fraser M: Strong bones in later life: luxury or necessity?. Bull World Health Organ. 1999, 77: 416-422.PubMedPubMedCentral Delmas PD, Fraser M: Strong bones in later life: luxury or necessity?. Bull World Health Organ. 1999, 77: 416-422.PubMedPubMedCentral
3.
Zurück zum Zitat Melton LJ: The prevalence of osteoporosis: gender and racial comparison. Calcif Tissue Int. 2001, 69: 179-181. 10.1007/s00223-001-1043-9.CrossRefPubMed Melton LJ: The prevalence of osteoporosis: gender and racial comparison. Calcif Tissue Int. 2001, 69: 179-181. 10.1007/s00223-001-1043-9.CrossRefPubMed
4.
Zurück zum Zitat Kelepouris N, Harper KD, Gannon F, Kaplan FS, Haddad JG: Severe osteoporosis in men. Ann Intern Med. 1995, 123 (6): 452-460.CrossRefPubMed Kelepouris N, Harper KD, Gannon F, Kaplan FS, Haddad JG: Severe osteoporosis in men. Ann Intern Med. 1995, 123 (6): 452-460.CrossRefPubMed
5.
Zurück zum Zitat Nguyen TV, Eisman JA, Kelly PJ, Sambrook PN: Risk factors for osteoporotic fractures in elderly men. Am J Epidemiol. 1996, 144: 255-263.CrossRefPubMed Nguyen TV, Eisman JA, Kelly PJ, Sambrook PN: Risk factors for osteoporotic fractures in elderly men. Am J Epidemiol. 1996, 144: 255-263.CrossRefPubMed
6.
Zurück zum Zitat Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993, 94: 646-650. 10.1016/0002-9343(93)90218-E. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993, 94: 646-650. 10.1016/0002-9343(93)90218-E.
7.
Zurück zum Zitat Kim SY: Literature review and pilot study on risk factors of postmenopausal osteoporosis. Master thesis. 1995, Graduate school of public health, Seoul National University, Department of public health (in Korean) Kim SY: Literature review and pilot study on risk factors of postmenopausal osteoporosis. Master thesis. 1995, Graduate school of public health, Seoul National University, Department of public health (in Korean)
8.
Zurück zum Zitat O GW, Yun EJ, O ES, Im JA, Lee WY, Baeg GH, Kang MI, Choei MG, You HJ, Park SU: Factors associated with bone density in Korean middle-aged men. Korean J Med. 2003, 65: 315-322. (in Korean) O GW, Yun EJ, O ES, Im JA, Lee WY, Baeg GH, Kang MI, Choei MG, You HJ, Park SU: Factors associated with bone density in Korean middle-aged men. Korean J Med. 2003, 65: 315-322. (in Korean)
9.
Zurück zum Zitat Kim YI, Park JH, Lee JS, Kim JW, Yang SO, Jeon DJ, Kim MC, Jeong TH, Lee YG, Rhee BD: Prevalence and risk factors of the osteoporosis of perimenopausal women in the community population. Korean J Intern Med. 2002, 62: 11-24. (in Korean) Kim YI, Park JH, Lee JS, Kim JW, Yang SO, Jeon DJ, Kim MC, Jeong TH, Lee YG, Rhee BD: Prevalence and risk factors of the osteoporosis of perimenopausal women in the community population. Korean J Intern Med. 2002, 62: 11-24. (in Korean)
10.
Zurück zum Zitat Baek UJ, Kim SY, Cho HG, Choei E, Lee YG, Han IG: Exercise patterns and Bone density in Women. J Korean Acad Rehabil Med. 1996, 20: 194-199. (in Korean) Baek UJ, Kim SY, Cho HG, Choei E, Lee YG, Han IG: Exercise patterns and Bone density in Women. J Korean Acad Rehabil Med. 1996, 20: 194-199. (in Korean)
11.
Zurück zum Zitat Henderson NK, White CP, Eisman JA: The role of exercise and fall risk reduction in the prevention of osteoporosis. Endocrinol Metab Clin North Am. 1998, 27: 369-387. 10.1016/S0889-8529(05)70010-4.CrossRefPubMed Henderson NK, White CP, Eisman JA: The role of exercise and fall risk reduction in the prevention of osteoporosis. Endocrinol Metab Clin North Am. 1998, 27: 369-387. 10.1016/S0889-8529(05)70010-4.CrossRefPubMed
12.
Zurück zum Zitat Holmes-Walker J, Prelevic GM, Jacobs HS: Effects of calcium and exercise on bone density in premenopausal women with osteoporosis. Curr Opin Obstet Gynecol. 1995, 7: 323-326.CrossRefPubMed Holmes-Walker J, Prelevic GM, Jacobs HS: Effects of calcium and exercise on bone density in premenopausal women with osteoporosis. Curr Opin Obstet Gynecol. 1995, 7: 323-326.CrossRefPubMed
13.
Zurück zum Zitat Reid IR: Therapy of osteoporosis: Calcium, Vitamin D, and Exercise. Am J Med Sci. 1996, 312: 278-286. 10.1097/00000441-199612000-00006.CrossRefPubMed Reid IR: Therapy of osteoporosis: Calcium, Vitamin D, and Exercise. Am J Med Sci. 1996, 312: 278-286. 10.1097/00000441-199612000-00006.CrossRefPubMed
14.
Zurück zum Zitat Oh SA: A Study on the Osteoporosis Risk Factors of the Climacteric women. Master thesis. 1998, Graduate school of Yonsei University, Department of Community Health Nursing (in Korean) Oh SA: A Study on the Osteoporosis Risk Factors of the Climacteric women. Master thesis. 1998, Graduate school of Yonsei University, Department of Community Health Nursing (in Korean)
15.
Zurück zum Zitat Kim YM, Kim YH: A Study of the Osteoporosis-related Lifestyle and Health Promotion Behavior of University and College Female Student. The Journal of Rheumatology Health. 2002, 9: 53-67. (in Korean) Kim YM, Kim YH: A Study of the Osteoporosis-related Lifestyle and Health Promotion Behavior of University and College Female Student. The Journal of Rheumatology Health. 2002, 9: 53-67. (in Korean)
16.
Zurück zum Zitat Jones G, Nguyen T, Sambrook P, Kelly PJ, Eisman JA: Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ. 1994, 309: 691-695.CrossRefPubMedPubMedCentral Jones G, Nguyen T, Sambrook P, Kelly PJ, Eisman JA: Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study. BMJ. 1994, 309: 691-695.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Bendavid EJ, Shan J, Barrett-Connor E: Factors associated with bone density in middle-aged men. J Bone Miner Res. 1996, 11: 1185-1190.CrossRefPubMed Bendavid EJ, Shan J, Barrett-Connor E: Factors associated with bone density in middle-aged men. J Bone Miner Res. 1996, 11: 1185-1190.CrossRefPubMed
18.
Zurück zum Zitat Burger H, de Laet CEDH, van Daele PLA, Weel AE, Witteman JC, Hofman A, Pols HA: Risk factors for increased bone loss in an elderly population: the Rotterdam study. Am J Epidemiol. 1998, 147: 871-879.CrossRefPubMed Burger H, de Laet CEDH, van Daele PLA, Weel AE, Witteman JC, Hofman A, Pols HA: Risk factors for increased bone loss in an elderly population: the Rotterdam study. Am J Epidemiol. 1998, 147: 871-879.CrossRefPubMed
19.
Zurück zum Zitat Dennison E, Eastell R, Fall CHD, Kellingray S, Wood PJ, Cooper C: Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporos Int. 1999, 10: 384-391. 10.1007/s001980050244.CrossRefPubMed Dennison E, Eastell R, Fall CHD, Kellingray S, Wood PJ, Cooper C: Determinants of bone loss in elderly men and women: a prospective population-based study. Osteoporos Int. 1999, 10: 384-391. 10.1007/s001980050244.CrossRefPubMed
20.
Zurück zum Zitat Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP: Risk factors for longitudinal bone loss in elderly men and women. J Bone Miner Res. 2000, 15: 710-720. 10.1359/jbmr.2000.15.4.710.CrossRefPubMed Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP: Risk factors for longitudinal bone loss in elderly men and women. J Bone Miner Res. 2000, 15: 710-720. 10.1359/jbmr.2000.15.4.710.CrossRefPubMed
21.
Zurück zum Zitat Huuskonen J, Vaisanen SB, Kroger H, Jurvelin C, Bouchard C, Alhava E, Rauranmaa R: Determinants of bone density in middle aged men: a population-based study. Osteoporos Int. 2000, 11: 702-708. 10.1007/s001980070069.CrossRefPubMed Huuskonen J, Vaisanen SB, Kroger H, Jurvelin C, Bouchard C, Alhava E, Rauranmaa R: Determinants of bone density in middle aged men: a population-based study. Osteoporos Int. 2000, 11: 702-708. 10.1007/s001980070069.CrossRefPubMed
22.
Zurück zum Zitat Lunt M, Masaryk P, Scheidt-Nave C, Nijs J, Poor G, Pols H, Falch JA, Hammermeister G, Reid DM, Benevolenskaya L, Weber K, Cannata J, O'Neill TW, Felsenberg D, Silman AJ, Reeve J: The effects of lifestyle, dietary dairy intake and diabetes on bone density and vertebral deformity prevalence: The EVOS study. Osteoporos Int. 2001, 12: 688-698. 10.1007/s001980170069.CrossRefPubMed Lunt M, Masaryk P, Scheidt-Nave C, Nijs J, Poor G, Pols H, Falch JA, Hammermeister G, Reid DM, Benevolenskaya L, Weber K, Cannata J, O'Neill TW, Felsenberg D, Silman AJ, Reeve J: The effects of lifestyle, dietary dairy intake and diabetes on bone density and vertebral deformity prevalence: The EVOS study. Osteoporos Int. 2001, 12: 688-698. 10.1007/s001980170069.CrossRefPubMed
23.
Zurück zum Zitat Kroger H, Tuppurainen M, Honkanen R, Alhava E, Saarikoski S: Bone mineral density and risk factors for osteoporosis--a population-based study of 1600 perimenopausal women. Calcif Tissue Int. 1994, 55: 1-7. 10.1007/BF00310160.CrossRefPubMed Kroger H, Tuppurainen M, Honkanen R, Alhava E, Saarikoski S: Bone mineral density and risk factors for osteoporosis--a population-based study of 1600 perimenopausal women. Calcif Tissue Int. 1994, 55: 1-7. 10.1007/BF00310160.CrossRefPubMed
24.
Zurück zum Zitat Sartorio A, Malavolti M, Agosti F, Marinone PG, Caiti O, Battistini N, Bedogni G: Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis. Eur J Clin Nutr. 2005, 59: 155-160. 10.1038/sj.ejcn.1602049.CrossRefPubMed Sartorio A, Malavolti M, Agosti F, Marinone PG, Caiti O, Battistini N, Bedogni G: Body water distribution in severe obesity and its assessment from eight-polar bioelectrical impedance analysis. Eur J Clin Nutr. 2005, 59: 155-160. 10.1038/sj.ejcn.1602049.CrossRefPubMed
25.
Zurück zum Zitat Vogel JM, Wasnich RD, Ross PD: The clinical relevance of calcaneus bone mineral measurements: a review. Bone Miner. 1988, 5: 35-58. 10.1016/0169-6009(88)90005-0.CrossRefPubMed Vogel JM, Wasnich RD, Ross PD: The clinical relevance of calcaneus bone mineral measurements: a review. Bone Miner. 1988, 5: 35-58. 10.1016/0169-6009(88)90005-0.CrossRefPubMed
26.
Zurück zum Zitat Binkley N, Krueger D: Osteoposis in men. WMJ. 2002, 101: 28-32.PubMed Binkley N, Krueger D: Osteoposis in men. WMJ. 2002, 101: 28-32.PubMed
27.
Zurück zum Zitat Bonnick SL: Osteoporosis in men and women. Clin Cornerstone. 2006, 8: 28-39. 10.1016/S1098-3597(06)80063-3.CrossRefPubMed Bonnick SL: Osteoporosis in men and women. Clin Cornerstone. 2006, 8: 28-39. 10.1016/S1098-3597(06)80063-3.CrossRefPubMed
28.
Zurück zum Zitat O GW, O ES, Kim KA, Kim SW, Moon SY, Lee DC, Lee WY, Baeg GH, Kang MI: Risk factors of osteoporosis in Korean males. Proceedings of the 53rd Korean J Internal Med Conference: 26–27 October 2002; poster presentation (in Korean). 2002, October ; poster presentation (in Korean) O GW, O ES, Kim KA, Kim SW, Moon SY, Lee DC, Lee WY, Baeg GH, Kang MI: Risk factors of osteoporosis in Korean males. Proceedings of the 53rd Korean J Internal Med Conference: 26–27 October 2002; poster presentation (in Korean). 2002, October ; poster presentation (in Korean)
29.
Zurück zum Zitat Looker AC, Orwoll ES, Johnston CC, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP: Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res. 1997, 12: 1761-1768. 10.1359/jbmr.1997.12.11.1761.CrossRefPubMed Looker AC, Orwoll ES, Johnston CC, Lindsay RL, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP: Prevalence of low femoral bone density in older U.S. adults from NHANES III. J Bone Miner Res. 1997, 12: 1761-1768. 10.1359/jbmr.1997.12.11.1761.CrossRefPubMed
30.
Zurück zum Zitat Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray TM, Bondeau L, Berger C, Hanley DA, Prior JC: Estimation of the prevalence of low bone density in Canadian women and men using a population specific DXA reference standard. Osteoporosis Int. 2000, 11: 897-904. 10.1007/s001980070050.CrossRef Tenenhouse A, Joseph L, Kreiger N, Poliquin S, Murray TM, Bondeau L, Berger C, Hanley DA, Prior JC: Estimation of the prevalence of low bone density in Canadian women and men using a population specific DXA reference standard. Osteoporosis Int. 2000, 11: 897-904. 10.1007/s001980070050.CrossRef
31.
Zurück zum Zitat Yun SJ, Lee GS, Moon HS: The Risk Factors of Osteoporosis. J Korean Acad Fam Med. 1996, 17: 1450-61. (in Korean) Yun SJ, Lee GS, Moon HS: The Risk Factors of Osteoporosis. J Korean Acad Fam Med. 1996, 17: 1450-61. (in Korean)
32.
Zurück zum Zitat Lin J-D, Chen J-F, Chang H-Y, Ho C: Evaluation of bone mineral density by quantitative ultrasound of bone in 16862 subjects during routine health examination. Br J Radiol. 2001, 74: 602-606.CrossRefPubMed Lin J-D, Chen J-F, Chang H-Y, Ho C: Evaluation of bone mineral density by quantitative ultrasound of bone in 16862 subjects during routine health examination. Br J Radiol. 2001, 74: 602-606.CrossRefPubMed
33.
Zurück zum Zitat Rikli RE, McManis BG: Effect of exercise on bone mineral contents in postmenopausal women. Res Q Exerc Sport. 1990, 61: 243-249.CrossRefPubMed Rikli RE, McManis BG: Effect of exercise on bone mineral contents in postmenopausal women. Res Q Exerc Sport. 1990, 61: 243-249.CrossRefPubMed
34.
Zurück zum Zitat Yi-Hsiang Hsu, Venners Scott, Feng A Terwedow Yan Henry, Niu Tianhua, Li Zhiping, Laird Nan, Brain Joseph, Cummings Steve, Bouxsein Mary, Rosen Cliff, Xu Xiping: Relation of body composition, fat mass and serum lipids to osteoporotic fractures and bone density in Chinese men and women. Am J Clin Nutr. 2006, 83: 146-154. Yi-Hsiang Hsu, Venners Scott, Feng A Terwedow Yan Henry, Niu Tianhua, Li Zhiping, Laird Nan, Brain Joseph, Cummings Steve, Bouxsein Mary, Rosen Cliff, Xu Xiping: Relation of body composition, fat mass and serum lipids to osteoporotic fractures and bone density in Chinese men and women. Am J Clin Nutr. 2006, 83: 146-154.
35.
Zurück zum Zitat Byron WB, Jay DS: Inclusion of tobacco exposure as a predictive factor for decreased bone mineral content. Nicotine Tob Res. 2005, 7: 719-724. 10.1080/14622200500259119.CrossRef Byron WB, Jay DS: Inclusion of tobacco exposure as a predictive factor for decreased bone mineral content. Nicotine Tob Res. 2005, 7: 719-724. 10.1080/14622200500259119.CrossRef
36.
Zurück zum Zitat Gambert SR, Schyltz BM, Hamdy RC: Osteoporosis: Clinical features, prevention and treatment. Endocrinol Metab Clin North Am. 1995, 24: 317-371.PubMed Gambert SR, Schyltz BM, Hamdy RC: Osteoporosis: Clinical features, prevention and treatment. Endocrinol Metab Clin North Am. 1995, 24: 317-371.PubMed
37.
Zurück zum Zitat Eagger P, Duggledy S, Hobbs R, Fall C, Cooper C: Cigarette smoking & bone density in the elderly. J Epidemiol Community Health. 1996, 50: 47-50.CrossRef Eagger P, Duggledy S, Hobbs R, Fall C, Cooper C: Cigarette smoking & bone density in the elderly. J Epidemiol Community Health. 1996, 50: 47-50.CrossRef
38.
Zurück zum Zitat Orwoll ES, Oviatt SK, McClung MR, Deftos LJ, Sexton G: The rate of bone mineral loss in normal men and the effects of calcium and cholecalciferol supplementation. Ann Intern Med. 1990, 112: 29-34.CrossRefPubMed Orwoll ES, Oviatt SK, McClung MR, Deftos LJ, Sexton G: The rate of bone mineral loss in normal men and the effects of calcium and cholecalciferol supplementation. Ann Intern Med. 1990, 112: 29-34.CrossRefPubMed
39.
Zurück zum Zitat Kim YS, Chung HY, Yang IM, Kim JW, Kim KW, Choi YK: Changes of the total body bone density with increasing age and determinant of the fracture threshold in patients with osteoporosis. Korean J Endocrinol. 1990, 5: 185-192. (in Korean) Kim YS, Chung HY, Yang IM, Kim JW, Kim KW, Choi YK: Changes of the total body bone density with increasing age and determinant of the fracture threshold in patients with osteoporosis. Korean J Endocrinol. 1990, 5: 185-192. (in Korean)
40.
Zurück zum Zitat Kanis JA, Alexandre JM, Bone HG, Abadie E, Brasseur D, Chassany O, Durrleman S, Lekkerkerker JF, Caulin F: Study design in osteoporosis: a European perspective. J Bone Miner Res. 2003, 18: 1133-1138. 10.1359/jbmr.2003.18.6.1133.CrossRefPubMed Kanis JA, Alexandre JM, Bone HG, Abadie E, Brasseur D, Chassany O, Durrleman S, Lekkerkerker JF, Caulin F: Study design in osteoporosis: a European perspective. J Bone Miner Res. 2003, 18: 1133-1138. 10.1359/jbmr.2003.18.6.1133.CrossRefPubMed
41.
Zurück zum Zitat Eastell R, Boyle IT, Compston J, Cooper C, Fogelman I, Francis RM, Hosking DJ, Purdie DW, Ralston S, Reeve J, Reid DM, Russell RG, Stevenson JC: Management of male osteoporosis: report of the UK Consensus Group. QJM. 1998, 91: 71-92. 10.1093/qjmed/91.2.71.CrossRefPubMed Eastell R, Boyle IT, Compston J, Cooper C, Fogelman I, Francis RM, Hosking DJ, Purdie DW, Ralston S, Reeve J, Reid DM, Russell RG, Stevenson JC: Management of male osteoporosis: report of the UK Consensus Group. QJM. 1998, 91: 71-92. 10.1093/qjmed/91.2.71.CrossRefPubMed
42.
Zurück zum Zitat Melton LJ, Atkinson EJ, O'Connor MK, O'Fallon WM, Riggs BL: Bone density and fracture risk in men. J Bone Miner Res. 1998, 13: 1915-1923. 10.1359/jbmr.1998.13.12.1915.CrossRefPubMed Melton LJ, Atkinson EJ, O'Connor MK, O'Fallon WM, Riggs BL: Bone density and fracture risk in men. J Bone Miner Res. 1998, 13: 1915-1923. 10.1359/jbmr.1998.13.12.1915.CrossRefPubMed
43.
Zurück zum Zitat Legrand E, Chappard D, Pascaretti C, Duquenne M, Rondeau C, Simon Y, Rondeau C, Simon Y, Basle MF, Audran M: Bone density and vertebral fractures in men. Osteoporos Int. 1999, 10: 265-270. 10.1007/s001980050225.CrossRefPubMed Legrand E, Chappard D, Pascaretti C, Duquenne M, Rondeau C, Simon Y, Rondeau C, Simon Y, Basle MF, Audran M: Bone density and vertebral fractures in men. Osteoporos Int. 1999, 10: 265-270. 10.1007/s001980050225.CrossRefPubMed
44.
Zurück zum Zitat Babaroutsi E, Magkos F, Manios Y, Sidossis LS: Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific manner. J Bone Miner Metab. 2005, 23: 157-166. 10.1007/s00774-004-0555-6.CrossRefPubMed Babaroutsi E, Magkos F, Manios Y, Sidossis LS: Body mass index, calcium intake, and physical activity affect calcaneal ultrasound in healthy Greek males in an age-dependent and parameter-specific manner. J Bone Miner Metab. 2005, 23: 157-166. 10.1007/s00774-004-0555-6.CrossRefPubMed
45.
Zurück zum Zitat Naves M, Diaz-Lopez JB, Gomez C, Rodriguez-Rebollar A, Serrano-Arias M, Cannata-Andia JB: Prevalence of osteoporosis in men and determinants of changes in bone mass in a non-selected Spanish population. Osteoporos Int. 2005, 16: 603-609. 10.1007/s00198-004-1727-x.CrossRefPubMed Naves M, Diaz-Lopez JB, Gomez C, Rodriguez-Rebollar A, Serrano-Arias M, Cannata-Andia JB: Prevalence of osteoporosis in men and determinants of changes in bone mass in a non-selected Spanish population. Osteoporos Int. 2005, 16: 603-609. 10.1007/s00198-004-1727-x.CrossRefPubMed
46.
Zurück zum Zitat Lim S, Joung H, Shin CS, Lee HK, Kim KS, Shin EK, Kim HY, Lim MK, Cho SI: Body composition changes with age have gender-specific impacts on bone mineral density. Bone. 2004, 35: 792-798. 10.1016/j.bone.2004.05.016.CrossRefPubMed Lim S, Joung H, Shin CS, Lee HK, Kim KS, Shin EK, Kim HY, Lim MK, Cho SI: Body composition changes with age have gender-specific impacts on bone mineral density. Bone. 2004, 35: 792-798. 10.1016/j.bone.2004.05.016.CrossRefPubMed
47.
Zurück zum Zitat Jankowska EA, Rogucka E, Medras M: Are general obesity and visceral adiposity in men linked to reduced bone mineral content resulting from normal ageing? A population-based study. Andrologia. 2001, 33: 384-389. 10.1046/j.1439-0272.2001.00469.x.CrossRefPubMed Jankowska EA, Rogucka E, Medras M: Are general obesity and visceral adiposity in men linked to reduced bone mineral content resulting from normal ageing? A population-based study. Andrologia. 2001, 33: 384-389. 10.1046/j.1439-0272.2001.00469.x.CrossRefPubMed
48.
Zurück zum Zitat Ardawi MS, Maimany AA, Bahksh TM, Nasrat HA, Milaat WA, Al-Raddadi RM: Bone mineral density of the spine and femur in healthy Saudis. Osteoporos Int. 2005, 16: 43-55. 10.1007/s00198-004-1639-9.CrossRefPubMed Ardawi MS, Maimany AA, Bahksh TM, Nasrat HA, Milaat WA, Al-Raddadi RM: Bone mineral density of the spine and femur in healthy Saudis. Osteoporos Int. 2005, 16: 43-55. 10.1007/s00198-004-1639-9.CrossRefPubMed
Metadaten
Titel
Risk factors for bone mineral density at the calcaneus in 40–59 year-old male workers: A cross-sectional study in Korea
verfasst von
Hyun-Ju Seo
Soo-Geun Kim
Chong-Soon Kim
Publikationsdatum
01.12.2008
Verlag
BioMed Central
Erschienen in
BMC Public Health / Ausgabe 1/2008
Elektronische ISSN: 1471-2458
DOI
https://doi.org/10.1186/1471-2458-8-253

Weitere Artikel der Ausgabe 1/2008

BMC Public Health 1/2008 Zur Ausgabe