Skip to main content

22.06.2019

Role of ATP-Sensitive Potassium Channel (KATP) and eNOS in Mediating the Protective Effect of Nicorandil in Cyclophosphamide-Induced Cardiotoxicity

verfasst von: Marwa M. M. Refaie, Sayed Shehata, Maram El-Hussieny, Wedad M. Abdelraheem, Asmaa M. A. Bayoumi

Erschienen in: Cardiovascular Toxicology

Einloggen, um Zugang zu erhalten

Abstract

Cyclophosphamide (CP) is a widely used chemotherapeutic agent but its clinical usefulness is challenged with different forms of toxicities. No studies have evaluated the possible protective effect of nicorandil (NIC) in CP-induced cardiotoxicity. Our study aimed to investigate this effect by using NIC (3 mg/kg/day) orally for 5 days, in the presence or absence of cardiotoxicity induced by intraperitoneal (i.p.) injection of CP (150 mg/kg) on 4th and 5th days. We confirmed the role of ATP-sensitive potassium channel (KATP) by coadministration of glibenclamide (GP) (5 mg/kg/day) 2 h before NIC (3 mg/kg/day) for 5 days. Moreover, the role of endothelial nitric oxide synthase (eNOS) was confirmed by coadministration of nitro-ω-l-arginine (l-NNA) (25 mg/kg/day) for 5 days. Results showed that CP succeeded in induction of cardiotoxicity which manifested by a significant increase in heart weights, creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), troponin I, cardiac tissue malondialdehyde (MDA), tumor necrosis factor alpha (TNF-α), interleukin 1β (IL1 β), and caspase-3 levels. Furthermore, CP group showed toxic histopathological changes of marked cardiac damage in addition to a significant decrease in total antioxidant capacity (TAC), superoxide dismutase (SOD), eNOS gene expression, and B cell lymphoma 2 (Bcl2) immunoexpression. NIC succeeded in reversing CP-induced cardiotoxicity by its potassium channel opening effect, stimulating eNOS gene expression, anti-inflammatory, antiapoptotic, and antioxidant properties. Coadministration of GP or l-NNA could diminish the protective effect of NIC. This proves the important role of KATP and eNOS in mediating such protection.
Literatur
1.
Zurück zum Zitat Mahipal, P., & Pawar, R. S. (2017). Nephroprotective effect of Murraya koenigii on cyclophosphamide induced nephrotoxicity in rats. Asian Pacific Journal of Tropical Medicine,10, 808–812.CrossRef Mahipal, P., & Pawar, R. S. (2017). Nephroprotective effect of Murraya koenigii on cyclophosphamide induced nephrotoxicity in rats. Asian Pacific Journal of Tropical Medicine,10, 808–812.CrossRef
2.
Zurück zum Zitat Fouad, A. A., Qutub, H. O., & Al-Melhim, W. N. (2016). Punicalagin alleviates hepatotoxicity in rats challenged with cyclophosphamide. Environmental Toxicology and Pharmacology,45, 158–162.CrossRef Fouad, A. A., Qutub, H. O., & Al-Melhim, W. N. (2016). Punicalagin alleviates hepatotoxicity in rats challenged with cyclophosphamide. Environmental Toxicology and Pharmacology,45, 158–162.CrossRef
3.
Zurück zum Zitat Avci, H., Epikmen, E. T., Ipek, E., Tunca, R., Birincioglu, S. S., Aksit, H., et al. (2017). Protective effects of silymarin and curcumin on cyclophosphamide-induced cardiotoxicity. Experimental and Toxicologic Pathology,69, 317–327.CrossRef Avci, H., Epikmen, E. T., Ipek, E., Tunca, R., Birincioglu, S. S., Aksit, H., et al. (2017). Protective effects of silymarin and curcumin on cyclophosphamide-induced cardiotoxicity. Experimental and Toxicologic Pathology,69, 317–327.CrossRef
4.
Zurück zum Zitat El-Kashef, D. H. (2018). Role of venlafaxine in prevention of cyclophosphamide-induced lung toxicity and airway hyperactivity in rats. Environmental Toxicology and Pharmacology,58, 70–76.CrossRef El-Kashef, D. H. (2018). Role of venlafaxine in prevention of cyclophosphamide-induced lung toxicity and airway hyperactivity in rats. Environmental Toxicology and Pharmacology,58, 70–76.CrossRef
5.
Zurück zum Zitat Mahmoud, A. M. (2014). Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARgamma and abrogation of oxidative stress and inflammation. Canadian Journal of Physiology and Pharmacology,92, 717–724.CrossRef Mahmoud, A. M. (2014). Hesperidin protects against cyclophosphamide-induced hepatotoxicity by upregulation of PPARgamma and abrogation of oxidative stress and inflammation. Canadian Journal of Physiology and Pharmacology,92, 717–724.CrossRef
6.
Zurück zum Zitat Nafees, S., Rashid, S., Ali, N., Hasan, S. K., & Sultana, S. (2015). Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFkappaB/MAPK pathway. Chemico-Biological Interactions,231, 98–107.CrossRef Nafees, S., Rashid, S., Ali, N., Hasan, S. K., & Sultana, S. (2015). Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFkappaB/MAPK pathway. Chemico-Biological Interactions,231, 98–107.CrossRef
7.
Zurück zum Zitat Refaie, M. M. M., El-Hussieny, M., & Zenhom, N. M. (2018). Protective role of nebivolol in cadmium-induced hepatotoxicity via downregulation of oxidative stress, apoptosis and inflammatory pathways. Environmental Toxicology and Pharmacology,58, 212–219.CrossRef Refaie, M. M. M., El-Hussieny, M., & Zenhom, N. M. (2018). Protective role of nebivolol in cadmium-induced hepatotoxicity via downregulation of oxidative stress, apoptosis and inflammatory pathways. Environmental Toxicology and Pharmacology,58, 212–219.CrossRef
8.
Zurück zum Zitat Potnuri, A. G., Allakonda, L., & Lahkar, M. (2018). Crocin attenuates cyclophosphamide induced testicular toxicity by preserving glutathione redox system. Biomedicine & Pharmacotherapy,101, 174–180.CrossRef Potnuri, A. G., Allakonda, L., & Lahkar, M. (2018). Crocin attenuates cyclophosphamide induced testicular toxicity by preserving glutathione redox system. Biomedicine & Pharmacotherapy,101, 174–180.CrossRef
9.
Zurück zum Zitat Omole, J. G., Ayoka, O. A., Alabi, Q. K., Adefisayo, M. A., Asafa, M. A., Olubunmi, B. O., et al. (2018). Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats. Journal of Evidence-Based Integrative Medicine,23, 2156587218757649.CrossRef Omole, J. G., Ayoka, O. A., Alabi, Q. K., Adefisayo, M. A., Asafa, M. A., Olubunmi, B. O., et al. (2018). Protective effect of kolaviron on cyclophosphamide-induced cardiac toxicity in rats. Journal of Evidence-Based Integrative Medicine,23, 2156587218757649.CrossRef
10.
Zurück zum Zitat Ravindran, S., Swaminathan, K., Ramesh, A., & Kurian, G. A. (2017). Nicorandil attenuates neuronal mitochondrial dysfunction and oxidative stress associated with murine model of vascular calcification. Acta Neurobiologiae Experimentalis (Wars),77, 57–67.CrossRef Ravindran, S., Swaminathan, K., Ramesh, A., & Kurian, G. A. (2017). Nicorandil attenuates neuronal mitochondrial dysfunction and oxidative stress associated with murine model of vascular calcification. Acta Neurobiologiae Experimentalis (Wars),77, 57–67.CrossRef
11.
Zurück zum Zitat Wu, H., Ye, M., Yang, J., Ding, J., Yang, J., Dong, W., et al. (2015). Nicorandil protects the heart from ischemia/reperfusion injury by attenuating endoplasmic reticulum response-induced apoptosis through PI3K/Akt signaling pathway. Cellular Physiology and Biochemistry,35, 2320–2332.CrossRef Wu, H., Ye, M., Yang, J., Ding, J., Yang, J., Dong, W., et al. (2015). Nicorandil protects the heart from ischemia/reperfusion injury by attenuating endoplasmic reticulum response-induced apoptosis through PI3K/Akt signaling pathway. Cellular Physiology and Biochemistry,35, 2320–2332.CrossRef
12.
Zurück zum Zitat Abdel-Raheem, I. T., Taye, A., & Abouzied, M. M. (2013). Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic & Clinical Pharmacology & Toxicology,113, 158–166.CrossRef Abdel-Raheem, I. T., Taye, A., & Abouzied, M. M. (2013). Cardioprotective effects of nicorandil, a mitochondrial potassium channel opener against doxorubicin-induced cardiotoxicity in rats. Basic & Clinical Pharmacology & Toxicology,113, 158–166.CrossRef
13.
Zurück zum Zitat Zhai, X., Yang, X., Zou, P., Shao, Y., Yuan, S., Abd El-Aty, A. M., et al. (2018). Protective effect of chitosan oligosaccharides against cyclophosphamide-induced immunosuppression and irradiation injury in mice. Journal of Food Science,83, 535–542.CrossRef Zhai, X., Yang, X., Zou, P., Shao, Y., Yuan, S., Abd El-Aty, A. M., et al. (2018). Protective effect of chitosan oligosaccharides against cyclophosphamide-induced immunosuppression and irradiation injury in mice. Journal of Food Science,83, 535–542.CrossRef
14.
Zurück zum Zitat Gunes, S., Sahinturk, V., Uslu, S., Ayhanci, A., Kacar, S., & Uyar, R. (2018). Protective effects of selenium on cyclophosphamide-induced oxidative stress and kidney injury. Biological Trace Element Research,185, 116–123.CrossRef Gunes, S., Sahinturk, V., Uslu, S., Ayhanci, A., Kacar, S., & Uyar, R. (2018). Protective effects of selenium on cyclophosphamide-induced oxidative stress and kidney injury. Biological Trace Element Research,185, 116–123.CrossRef
15.
Zurück zum Zitat Saito, M., Ohmasa, F., Tsounapi, P., Inoue, S., Dimitriadis, F., Kinoshita, Y., et al. (2012). Nicorandil ameliorates hypertension-related bladder dysfunction in the rat. Neurourology and Urodynamics,31, 695–701.CrossRef Saito, M., Ohmasa, F., Tsounapi, P., Inoue, S., Dimitriadis, F., Kinoshita, Y., et al. (2012). Nicorandil ameliorates hypertension-related bladder dysfunction in the rat. Neurourology and Urodynamics,31, 695–701.CrossRef
16.
Zurück zum Zitat Ahmed, L. A., El-Maraghy, S. A., & Rizk, S. M. (2015). Role of the KATP channel in the protective effect of nicorandil on cyclophosphamide-induced lung and testicular toxicity in rats. Scientific Reports,5, 14043.CrossRef Ahmed, L. A., El-Maraghy, S. A., & Rizk, S. M. (2015). Role of the KATP channel in the protective effect of nicorandil on cyclophosphamide-induced lung and testicular toxicity in rats. Scientific Reports,5, 14043.CrossRef
17.
Zurück zum Zitat Ibrahim, M. A., Geddawy, A., & Abdel-Wahab, S. (2018). Sitagliptin prevents isoproterenol-induced myocardial infarction in rats by modulating nitric oxide synthase enzymes. European Journal of Pharmacology,829, 63–69.CrossRef Ibrahim, M. A., Geddawy, A., & Abdel-Wahab, S. (2018). Sitagliptin prevents isoproterenol-induced myocardial infarction in rats by modulating nitric oxide synthase enzymes. European Journal of Pharmacology,829, 63–69.CrossRef
18.
Zurück zum Zitat Mihara, M., & Uchiyama, M. (1983). Properties of thiobarbituric acid-reactive materials obtained from lipid peroxide and tissue homogenate. Chemical and Pharmaceutical Bulletin (Tokyo),31, 605–611.CrossRef Mihara, M., & Uchiyama, M. (1983). Properties of thiobarbituric acid-reactive materials obtained from lipid peroxide and tissue homogenate. Chemical and Pharmaceutical Bulletin (Tokyo),31, 605–611.CrossRef
19.
Zurück zum Zitat Nishikimi, M., Appaji, N., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications,46, 849–854.CrossRef Nishikimi, M., Appaji, N., & Yagi, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications,46, 849–854.CrossRef
20.
Zurück zum Zitat El-Agamy, D. S., Abo-Haded, H. M., & Elkablawy, M. A. (2016). Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats. Experimental Biology and Medicine (Maywood),241, 1577–1587.CrossRef El-Agamy, D. S., Abo-Haded, H. M., & Elkablawy, M. A. (2016). Cardioprotective effects of sitagliptin against doxorubicin-induced cardiotoxicity in rats. Experimental Biology and Medicine (Maywood),241, 1577–1587.CrossRef
21.
Zurück zum Zitat VanGuilder, H. D., Vrana, K. E., & Freeman, W. M. (2008). Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques,44, 619–626.CrossRef VanGuilder, H. D., Vrana, K. E., & Freeman, W. M. (2008). Twenty-five years of quantitative PCR for gene expression analysis. BioTechniques,44, 619–626.CrossRef
23.
Zurück zum Zitat Gonzalez-Moles, M. A., Bascones-Ilundain, C., Gil Montoya, J. A., Ruiz-Avila, I., Delgado-Rodriguez, M., & Bascones-Martinez, A. (2006). Cell cycle regulating mechanisms in oral lichen planus: Molecular bases in epithelium predisposed to malignant transformation. Archives of Oral Biology,51, 1093–1103.CrossRef Gonzalez-Moles, M. A., Bascones-Ilundain, C., Gil Montoya, J. A., Ruiz-Avila, I., Delgado-Rodriguez, M., & Bascones-Martinez, A. (2006). Cell cycle regulating mechanisms in oral lichen planus: Molecular bases in epithelium predisposed to malignant transformation. Archives of Oral Biology,51, 1093–1103.CrossRef
24.
Zurück zum Zitat Sherif, I. O. (2018). The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: Role of Nrf2/HO-1 pathway. International Immunopharmacology,61, 29–36.CrossRef Sherif, I. O. (2018). The effect of natural antioxidants in cyclophosphamide-induced hepatotoxicity: Role of Nrf2/HO-1 pathway. International Immunopharmacology,61, 29–36.CrossRef
25.
Zurück zum Zitat Mansour, D. F., Saleh, D. O., & Mostafa, R. E. (2017). Genistein ameliorates cyclophosphamide—induced hepatotoxicity by modulation of oxidative stress and inflammatory mediators. Open Access Macedonian Journal of Medical Sciences,5, 836–843.CrossRef Mansour, D. F., Saleh, D. O., & Mostafa, R. E. (2017). Genistein ameliorates cyclophosphamide—induced hepatotoxicity by modulation of oxidative stress and inflammatory mediators. Open Access Macedonian Journal of Medical Sciences,5, 836–843.CrossRef
26.
Zurück zum Zitat Elshater, A. A., Haridy, M. A. M., Salman, M. M. A., Fayyad, A. S., & Hammad, S. (2018). Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomedicine & Pharmacotherapy,97, 53–59.CrossRef Elshater, A. A., Haridy, M. A. M., Salman, M. M. A., Fayyad, A. S., & Hammad, S. (2018). Fullerene C60 nanoparticles ameliorated cyclophosphamide-induced acute hepatotoxicity in rats. Biomedicine & Pharmacotherapy,97, 53–59.CrossRef
27.
Zurück zum Zitat Bertinchant, J. P., Polge, A., Juan, J. M., Oliva-Lauraire, M. C., Giuliani, I., Marty-Double, C., et al. (2003). Evaluation of cardiac troponin I and T levels as markers of myocardial damage in doxorubicin-induced cardiomyopathy rats, and their relationship with echocardiographic and histological findings. Clinica Chimica Acta,329, 39–51.CrossRef Bertinchant, J. P., Polge, A., Juan, J. M., Oliva-Lauraire, M. C., Giuliani, I., Marty-Double, C., et al. (2003). Evaluation of cardiac troponin I and T levels as markers of myocardial damage in doxorubicin-induced cardiomyopathy rats, and their relationship with echocardiographic and histological findings. Clinica Chimica Acta,329, 39–51.CrossRef
28.
Zurück zum Zitat Asiri, Y. A. (2010). Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxidative Medicine and Cellular Longevity,3, 308–316.CrossRef Asiri, Y. A. (2010). Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxidative Medicine and Cellular Longevity,3, 308–316.CrossRef
29.
Zurück zum Zitat Nagi, M. N., Al-Shabanah, O. A., Hafez, M. M., & Sayed-Ahmed, M. M. (2011). Thymoquinone supplementation attenuates cyclophosphamide-induced cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology,25, 135–142.CrossRef Nagi, M. N., Al-Shabanah, O. A., Hafez, M. M., & Sayed-Ahmed, M. M. (2011). Thymoquinone supplementation attenuates cyclophosphamide-induced cardiotoxicity in rats. Journal of Biochemical and Molecular Toxicology,25, 135–142.CrossRef
30.
Zurück zum Zitat Asiri, Y. A. (2010). Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxidative Medicine and Cellular Longevity,3(5), 308–316.CrossRef Asiri, Y. A. (2010). Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxidative Medicine and Cellular Longevity,3(5), 308–316.CrossRef
31.
Zurück zum Zitat Kupsco, A., & Schlenk, D. (2015). Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. International Review of Cell and Molecular Biology,317, 1–66.CrossRef Kupsco, A., & Schlenk, D. (2015). Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. International Review of Cell and Molecular Biology,317, 1–66.CrossRef
32.
Zurück zum Zitat Lixin, X., Lijun, Y., & Songping, H. (2019). Ganoderic acid A against cyclophosphamide-induced hepatic toxicity in mice. Journal of Biochemical and Molecular Toxicology,33, e22271.CrossRef Lixin, X., Lijun, Y., & Songping, H. (2019). Ganoderic acid A against cyclophosphamide-induced hepatic toxicity in mice. Journal of Biochemical and Molecular Toxicology,33, e22271.CrossRef
33.
Zurück zum Zitat Has, A. L., Alotaibi, M. F., Bin-Jumah, M., Elgebaly, H., & Mahmoud, A. M. (2019). Olea europaea leaf extract up-regulates Nrf2/ARE/HO-1 signaling and attenuates cyclophosphamide-induced oxidative stress, inflammation and apoptosis in rat kidney. Biomedicine & Pharmacotherapy,111, 676–685.CrossRef Has, A. L., Alotaibi, M. F., Bin-Jumah, M., Elgebaly, H., & Mahmoud, A. M. (2019). Olea europaea leaf extract up-regulates Nrf2/ARE/HO-1 signaling and attenuates cyclophosphamide-induced oxidative stress, inflammation and apoptosis in rat kidney. Biomedicine & Pharmacotherapy,111, 676–685.CrossRef
34.
Zurück zum Zitat Tang, J., Zhen, H., Wang, N., Yan, Q., Jing, H., & Jiang, Z. (2019). Curdlan oligosaccharides having higher immunostimulatory activity than curdlan in mice treated with cyclophosphamide. Carbohydrate Polymers,207, 131–142.CrossRef Tang, J., Zhen, H., Wang, N., Yan, Q., Jing, H., & Jiang, Z. (2019). Curdlan oligosaccharides having higher immunostimulatory activity than curdlan in mice treated with cyclophosphamide. Carbohydrate Polymers,207, 131–142.CrossRef
35.
Zurück zum Zitat Dantas, A., Batista-Júnior, F., Macedo, L., Mendes, M., Azevedo, I., & Medeiros, A. (2010). Protective effect of simvastatin in the cyclophosphamide-induced hemohrragic cystitis in rats. Acta Cirúrgica Brasileira,25(1), 43–46.CrossRef Dantas, A., Batista-Júnior, F., Macedo, L., Mendes, M., Azevedo, I., & Medeiros, A. (2010). Protective effect of simvastatin in the cyclophosphamide-induced hemohrragic cystitis in rats. Acta Cirúrgica Brasileira,25(1), 43–46.CrossRef
36.
Zurück zum Zitat Singh, N., & Kumar, R. (2003). Effect of nicorandil and amlodipine on bio-chemical parameters during isoproterenol induced myocardial necrosis in rats. Indian Journal of Clinical Biochemistry,18, 99–102.CrossRef Singh, N., & Kumar, R. (2003). Effect of nicorandil and amlodipine on bio-chemical parameters during isoproterenol induced myocardial necrosis in rats. Indian Journal of Clinical Biochemistry,18, 99–102.CrossRef
37.
Zurück zum Zitat Tajima, M., Ishizuka, N., Saitoh, K., & Sakagami, H. (2008). Nicorandil enhances the effect of endothelial nitric oxide under hypoxia-reoxygenation: Role of the KATP channel. European Journal of Pharmacology,579, 86–92.CrossRef Tajima, M., Ishizuka, N., Saitoh, K., & Sakagami, H. (2008). Nicorandil enhances the effect of endothelial nitric oxide under hypoxia-reoxygenation: Role of the KATP channel. European Journal of Pharmacology,579, 86–92.CrossRef
38.
Zurück zum Zitat Horinaka, S., Kobayashi, N., Higashi, T., Hara, K., Hara, S., & Matsuoka, H. (2001). Nicorandil enhances cardiac endothelial nitric oxide synthase expression via activation of adenosine triphosphate-sensitive K channel in rat. Journal of Cardiovascular Pharmacology,38, 200–210.CrossRef Horinaka, S., Kobayashi, N., Higashi, T., Hara, K., Hara, S., & Matsuoka, H. (2001). Nicorandil enhances cardiac endothelial nitric oxide synthase expression via activation of adenosine triphosphate-sensitive K channel in rat. Journal of Cardiovascular Pharmacology,38, 200–210.CrossRef
39.
Zurück zum Zitat Lee, T. M., Lin, S. Z., & Chang, N. C. (2018). Nicorandil regulates the macrophage skewing and ameliorates myofibroblasts by inhibition of RhoA/Rho-kinase signalling in infarcted rats. Journal of Cellular and Molecular Medicine,22, 1056–1069.CrossRef Lee, T. M., Lin, S. Z., & Chang, N. C. (2018). Nicorandil regulates the macrophage skewing and ameliorates myofibroblasts by inhibition of RhoA/Rho-kinase signalling in infarcted rats. Journal of Cellular and Molecular Medicine,22, 1056–1069.CrossRef
40.
Zurück zum Zitat Ahmed, L. A., & El-Maraghy, S. A. (2013). Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection. Biochemical Pharmacology,86, 1301–1310.CrossRef Ahmed, L. A., & El-Maraghy, S. A. (2013). Nicorandil ameliorates mitochondrial dysfunction in doxorubicin-induced heart failure in rats: possible mechanism of cardioprotection. Biochemical Pharmacology,86, 1301–1310.CrossRef
41.
Zurück zum Zitat Afzal, M. Z., Reiter, M., Gastonguay, C., McGivern, J. V., Guan, X., Ge, Z. D., et al. (2016). Nicorandil, a nitric oxide donor and ATP-sensitive potassium channel opener, protects against dystrophin-deficient cardiomyopathy. Journal of Cardiovascular Pharmacology and Therapeutics,21, 549–562.CrossRef Afzal, M. Z., Reiter, M., Gastonguay, C., McGivern, J. V., Guan, X., Ge, Z. D., et al. (2016). Nicorandil, a nitric oxide donor and ATP-sensitive potassium channel opener, protects against dystrophin-deficient cardiomyopathy. Journal of Cardiovascular Pharmacology and Therapeutics,21, 549–562.CrossRef
Metadaten
Titel
Role of ATP-Sensitive Potassium Channel (KATP) and eNOS in Mediating the Protective Effect of Nicorandil in Cyclophosphamide-Induced Cardiotoxicity
verfasst von
Marwa M. M. Refaie
Sayed Shehata
Maram El-Hussieny
Wedad M. Abdelraheem
Asmaa M. A. Bayoumi
Publikationsdatum
22.06.2019
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-019-09535-8