Skip to main content
Erschienen in: European Spine Journal 9/2008

01.09.2008 | Original Article

Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview

verfasst von: Samar Hamid, Ray Hayek

Erschienen in: European Spine Journal | Ausgabe 9/2008

Einloggen, um Zugang zu erhalten

Abstract

Structural discontinuity in the spinal cord after injury results in a disruption in the impulse conduction resulting in loss of various bodily functions depending upon the level of injury. This article presents a summary of the scientific research employing electrical stimulation as a means for anatomical or functional recovery for patients suffering from spinal cord injury. Electrical stimulation in the form of functional electrical stimulation (FES) can help facilitate and improve upper/lower limb mobility along with other body functions lost due to injury e.g. respiratory, sexual, bladder or bowel functions by applying a controlled electrical stimulus to generate contractions and functional movement in the paralysed muscles. The available rehabilitative techniques based on FES technology and various Food and Drug Administration, USA approved neuroprosthetic devices that are in use are discussed. The second part of the article summarises the experimental work done in the past 2 decades to study the effects of weakly applied direct current fields in promoting regeneration of neurites towards the cathode and the new emerging technique of oscillating field stimulation which has shown to promote bidirectional regeneration in the injured nerve fibres. The present article is not intended to be an exhaustive review but rather a summary aiming to highlight these two applications of electrical stimulation and the degree of anatomical/functional recovery associated with these in the field of spinal cord injury research.
Literatur
1.
Zurück zum Zitat Al-Majed AA, Brushart TM, Gordon T (2000) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12(12):4381–4390PubMedCrossRef Al-Majed AA, Brushart TM, Gordon T (2000) Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur J Neurosci 12(12):4381–4390PubMedCrossRef
2.
Zurück zum Zitat Al-Majed AA, Tam SL, Gordon T (2004) Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 24(3):379–402PubMedCrossRef Al-Majed AA, Tam SL, Gordon T (2004) Electrical stimulation accelerates and enhances expression of regeneration-associated genes in regenerating rat femoral motoneurons. Cell Mol Neurobiol 24(3):379–402PubMedCrossRef
3.
Zurück zum Zitat Alon G, McBride K (2003) Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch Phys Med Rehabil 84(1):119–124PubMedCrossRef Alon G, McBride K (2003) Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch Phys Med Rehabil 84(1):119–124PubMedCrossRef
4.
Zurück zum Zitat Borgens RB (1982) What is the role of naturally produced electric current in vertebrate regeneration and healing? Int Rev Cytol 76:245–298PubMedCrossRef Borgens RB (1982) What is the role of naturally produced electric current in vertebrate regeneration and healing? Int Rev Cytol 76:245–298PubMedCrossRef
5.
Zurück zum Zitat Borgens RB (2003) Restoring function to the injured human spinal cord. Adv Anat Embryol Cell Biol 171:III-IV, 1–155 Borgens RB (2003) Restoring function to the injured human spinal cord. Adv Anat Embryol Cell Biol 171:III-IV, 1–155
6.
Zurück zum Zitat Borgens RB, Bohnert DM (1997) The responses of mammalian spinal axons to an applied DC voltage gradient. Exp Neurol 145:376–389PubMedCrossRef Borgens RB, Bohnert DM (1997) The responses of mammalian spinal axons to an applied DC voltage gradient. Exp Neurol 145:376–389PubMedCrossRef
7.
Zurück zum Zitat Borgens RB, Roederer E, Cohen MJ (1981) Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213:611–617PubMedCrossRef Borgens RB, Roederer E, Cohen MJ (1981) Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213:611–617PubMedCrossRef
8.
Zurück zum Zitat Borgens RB, McGinnis Vanable JW et al (1984) Stump currents in regenerating salamanders and newts. J Exp Zool 231(2):249–256PubMedCrossRef Borgens RB, McGinnis Vanable JW et al (1984) Stump currents in regenerating salamanders and newts. J Exp Zool 231(2):249–256PubMedCrossRef
9.
Zurück zum Zitat Borgens RB, Blight AR, Murphy DJ (1986) Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Comp Neurol 250(2):168–180PubMedCrossRef Borgens RB, Blight AR, Murphy DJ (1986) Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J Comp Neurol 250(2):168–180PubMedCrossRef
10.
Zurück zum Zitat Borgens RB, Blight AR, McGinnis ME (1987) Behavioural recovery induced by applied electric fields after spinal cord hemisection in guinea pig. Science 238(4825):366–369PubMedCrossRef Borgens RB, Blight AR, McGinnis ME (1987) Behavioural recovery induced by applied electric fields after spinal cord hemisection in guinea pig. Science 238(4825):366–369PubMedCrossRef
11.
Zurück zum Zitat Borgens RB, Blight AR, McGinnis ME (1990) Functional recovery after spinal cord hemisection in guinea pigs: the effects of applied electric fields. J Comp Neurol 296(4):634–653PubMedCrossRef Borgens RB, Blight AR, McGinnis ME (1990) Functional recovery after spinal cord hemisection in guinea pigs: the effects of applied electric fields. J Comp Neurol 296(4):634–653PubMedCrossRef
12.
Zurück zum Zitat Borgens RB, Toombs JP, Blight AR et al (1993) Effects of applied electric fields on clinical cases of complete paraplegia in dogs. J Restor Neurol Neurosci 5:305–322 Borgens RB, Toombs JP, Blight AR et al (1993) Effects of applied electric fields on clinical cases of complete paraplegia in dogs. J Restor Neurol Neurosci 5:305–322
13.
Zurück zum Zitat Borgens RB, Toombs JP, Bauer G et al (1999) An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J Neurotrauma 16:639–657PubMed Borgens RB, Toombs JP, Bauer G et al (1999) An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J Neurotrauma 16:639–657PubMed
14.
Zurück zum Zitat Borgens RB, Shi R, Bohnert D (2002) Behavioural recovery from spinal cord injury following delayed application of polyethylene glycol. J Exp Biol 205:1–12PubMed Borgens RB, Shi R, Bohnert D (2002) Behavioural recovery from spinal cord injury following delayed application of polyethylene glycol. J Exp Biol 205:1–12PubMed
15.
Zurück zum Zitat Brindley G (1994) The first 500 patients with sacral anterior root stimulator implants:General description. Paraplegia 32:795–805PubMed Brindley G (1994) The first 500 patients with sacral anterior root stimulator implants:General description. Paraplegia 32:795–805PubMed
16.
Zurück zum Zitat Brissot R, Gallien P, Le Bot MP et al (2000) Clinical experience wit functional electrical stimulation-assisted gait with parastep in spinal cord injured patients. Spine 25(4):501–508PubMedCrossRef Brissot R, Gallien P, Le Bot MP et al (2000) Clinical experience wit functional electrical stimulation-assisted gait with parastep in spinal cord injured patients. Spine 25(4):501–508PubMedCrossRef
17.
Zurück zum Zitat Creasey GH, Grill JH, Hoi SU et al (2001) An Implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: a multicenter trial. Arch Phys Med Rehabil 82:1512–1519PubMedCrossRef Creasey GH, Grill JH, Hoi SU et al (2001) An Implantable neuroprosthesis for restoring bladder and bowel control to patients with spinal cord injuries: a multicenter trial. Arch Phys Med Rehabil 82:1512–1519PubMedCrossRef
18.
Zurück zum Zitat Cripps RA (2004) Spinal cord injury, Australia, 2002–03. Injury research and statistics series no 22. AIHW (AIHW Cat no INJCAT64), Adelaide Cripps RA (2004) Spinal cord injury, Australia, 2002–03. Injury research and statistics series no 22. AIHW (AIHW Cat no INJCAT64), Adelaide
19.
Zurück zum Zitat Davis R, Eckhouse J, Patrick J et al (1987) Computerised 22 channel stimulator for limb movement. Appl Neurophysiol 50:444–448PubMedCrossRef Davis R, Eckhouse J, Patrick J et al (1987) Computerised 22 channel stimulator for limb movement. Appl Neurophysiol 50:444–448PubMedCrossRef
20.
Zurück zum Zitat Davis R, Patrick J, Barriskill A (2001) Development of functional electrical stimulators utilizing cochlear implant technology. Med Eng Phys 23:61–68PubMedCrossRef Davis R, Patrick J, Barriskill A (2001) Development of functional electrical stimulators utilizing cochlear implant technology. Med Eng Phys 23:61–68PubMedCrossRef
21.
Zurück zum Zitat DeForge D, Nymark J, Lemaire E et al (2004) Effects of 4-aminopyridine on gait in ambulatory spinal cord injuries: a double-blind, placebo-controlled, crossover trial. Spinal Cord 42(12):674–685PubMedCrossRef DeForge D, Nymark J, Lemaire E et al (2004) Effects of 4-aminopyridine on gait in ambulatory spinal cord injuries: a double-blind, placebo-controlled, crossover trial. Spinal Cord 42(12):674–685PubMedCrossRef
22.
Zurück zum Zitat Donaldson J, Shi R, Borgens R (2002) Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves of guinea pigs. Neurosurgery 50:147–157PubMedCrossRef Donaldson J, Shi R, Borgens R (2002) Polyethylene glycol rapidly restores physiological functions in damaged sciatic nerves of guinea pigs. Neurosurgery 50:147–157PubMedCrossRef
23.
Zurück zum Zitat DiMarco AF, Onders RP, Ignagni A et al (2005) Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects. Chest 127(2):671–678PubMedCrossRef DiMarco AF, Onders RP, Ignagni A et al (2005) Phrenic nerve pacing via intramuscular diaphragm electrodes in tetraplegic subjects. Chest 127(2):671–678PubMedCrossRef
24.
Zurück zum Zitat Egon G, Barat M, Colombel P et al (1998) Implantation of anterior sacral root stimulators combined with posterior sacral rhizotomy in spinal injury patients. World J Urol 16:342–349PubMedCrossRef Egon G, Barat M, Colombel P et al (1998) Implantation of anterior sacral root stimulators combined with posterior sacral rhizotomy in spinal injury patients. World J Urol 16:342–349PubMedCrossRef
26.
27.
Zurück zum Zitat Fehlings MG, Tator CH (1992) The effect of direct current field polarity on recovery after acute experimental spinal cord injury. Brain Res 579:32–42PubMedCrossRef Fehlings MG, Tator CH (1992) The effect of direct current field polarity on recovery after acute experimental spinal cord injury. Brain Res 579:32–42PubMedCrossRef
28.
Zurück zum Zitat Fehlings MG, Sekhon LHS (2000) Cellular, ionic and biomolecular mechanisms of the injury process. In: Tator CH, Benzel EC (eds) Contemporary management of spinal cord injury: from impact to rehabilitation. American Association of Neurological Surgeons, New York, pp 33–50 Fehlings MG, Sekhon LHS (2000) Cellular, ionic and biomolecular mechanisms of the injury process. In: Tator CH, Benzel EC (eds) Contemporary management of spinal cord injury: from impact to rehabilitation. American Association of Neurological Surgeons, New York, pp 33–50
29.
Zurück zum Zitat Fehlings MG, Tator CH, Linden RD (1988) The effect of an applied direct current field on recovery from acute experimental spinal cord injury. J Neurosurg 68:781–792PubMed Fehlings MG, Tator CH, Linden RD (1988) The effect of an applied direct current field on recovery from acute experimental spinal cord injury. J Neurosurg 68:781–792PubMed
30.
Zurück zum Zitat Galvani L (1791) Commentary on the effect of electricity on muscular motion translated by Green RM. Elizabeth Litcht Publishing co 1953, Cambridge Galvani L (1791) Commentary on the effect of electricity on muscular motion translated by Green RM. Elizabeth Litcht Publishing co 1953, Cambridge
31.
Zurück zum Zitat Gallien P, Brissot R, Eyssette M et al (1995) Restoration of gait by functional electrical stimulation for spinal cord injured patients. Paraplegia 33(11):660–664PubMed Gallien P, Brissot R, Eyssette M et al (1995) Restoration of gait by functional electrical stimulation for spinal cord injured patients. Paraplegia 33(11):660–664PubMed
32.
Zurück zum Zitat Gazula VR, Roberts M, Luzzio C et al (2004) Effects of limb exercise after spinal cord injury on motor neuron dendrite structure. J Comp Neurol 476(2):130–145PubMedCrossRef Gazula VR, Roberts M, Luzzio C et al (2004) Effects of limb exercise after spinal cord injury on motor neuron dendrite structure. J Comp Neurol 476(2):130–145PubMedCrossRef
34.
Zurück zum Zitat Gorman PH (2000) An update on functional electrical stimulation after spinal cord injury. Neurorehabil Neural Repair 14:251–263PubMed Gorman PH (2000) An update on functional electrical stimulation after spinal cord injury. Neurorehabil Neural Repair 14:251–263PubMed
35.
Zurück zum Zitat Grados- Munro EM, Fournier AE (2003) Myelin-associated inhibitors of axon regeneration. J Neurosci Res 74:479–485PubMedCrossRef Grados- Munro EM, Fournier AE (2003) Myelin-associated inhibitors of axon regeneration. J Neurosci Res 74:479–485PubMedCrossRef
36.
Zurück zum Zitat Graupe D (2002) An overview of the state of the art of noninvasive FES for independent ambulation by thoracic level paraplegics. Neurol Res 24(5):431–442PubMedCrossRef Graupe D (2002) An overview of the state of the art of noninvasive FES for independent ambulation by thoracic level paraplegics. Neurol Res 24(5):431–442PubMedCrossRef
37.
Zurück zum Zitat Graupe D, Kohn KH (1998) Functional neuromuscular stimulator for short distance ambulation by certain thoracic level spinal cord injured paraplegics. Surg Neurol 50(3):202–207PubMedCrossRef Graupe D, Kohn KH (1998) Functional neuromuscular stimulator for short distance ambulation by certain thoracic level spinal cord injured paraplegics. Surg Neurol 50(3):202–207PubMedCrossRef
38.
Zurück zum Zitat Grijalva I, Guizar-Sahagun G, Castaneda-Hernandez G et al (2003) Efficacy and safety of 4-aminopyridine in patients with long term spinal cord injury: a randomized, double-blind, placebo-controlled trial. Pharmacotherapy 23(7):823–834PubMedCrossRef Grijalva I, Guizar-Sahagun G, Castaneda-Hernandez G et al (2003) Efficacy and safety of 4-aminopyridine in patients with long term spinal cord injury: a randomized, double-blind, placebo-controlled trial. Pharmacotherapy 23(7):823–834PubMedCrossRef
39.
Zurück zum Zitat Heruti RJ, Katz H, Menashe Y et al (2001) Treatment of male infertility due to spinal cord injury using rectal probe electroejaculation: the Israeli experience. Spinal Cord 39(3):168–175PubMedCrossRef Heruti RJ, Katz H, Menashe Y et al (2001) Treatment of male infertility due to spinal cord injury using rectal probe electroejaculation: the Israeli experience. Spinal Cord 39(3):168–175PubMedCrossRef
40.
Zurück zum Zitat Hinkle L, McCaig CD, Robinson KR (1981) The direction of growth of differentiating neurons and myeloblasts from frog embryos in an applied electric field. J Physiol 314:121–135PubMed Hinkle L, McCaig CD, Robinson KR (1981) The direction of growth of differentiating neurons and myeloblasts from frog embryos in an applied electric field. J Physiol 314:121–135PubMed
41.
Zurück zum Zitat Hobby J, Taylor PN, Esnouf J (2001) restoration of tetraplegics hand function by the use of the neurocontrol freehand system. J Hand Surg Br 26(5):459–464PubMedCrossRef Hobby J, Taylor PN, Esnouf J (2001) restoration of tetraplegics hand function by the use of the neurocontrol freehand system. J Hand Surg Br 26(5):459–464PubMedCrossRef
42.
Zurück zum Zitat Hotary KB, Robinson KR (1990) Endogenous electric currents and the resultant voltage gradients in the chick embryo. Dev Biol 140(1):149–160PubMedCrossRef Hotary KB, Robinson KR (1990) Endogenous electric currents and the resultant voltage gradients in the chick embryo. Dev Biol 140(1):149–160PubMedCrossRef
43.
Zurück zum Zitat Hotary KB, Robinson KR (1994) Endogenous electric currents and voltage gradients in xenopus embryos and the consequences of their disruption. Dev Biol 166(2):789–800PubMedCrossRef Hotary KB, Robinson KR (1994) Endogenous electric currents and voltage gradients in xenopus embryos and the consequences of their disruption. Dev Biol 166(2):789–800PubMedCrossRef
44.
Zurück zum Zitat Hulbert RJ (2000) Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg (Spine 1) 93:1–7 Hulbert RJ (2000) Methylprednisolone for acute spinal cord injury: an inappropriate standard of care. J Neurosurg (Spine 1) 93:1–7
45.
Zurück zum Zitat Jacobs PL, Johnson B, Mahoney ET (2003) Physiologic responses to electrically assisted and frame-supported standing in persons with paraplegia. J Spinal Cord Med 26(4):384–389PubMed Jacobs PL, Johnson B, Mahoney ET (2003) Physiologic responses to electrically assisted and frame-supported standing in persons with paraplegia. J Spinal Cord Med 26(4):384–389PubMed
46.
Zurück zum Zitat Jaffe LF, Poo M-M (1979) Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool 209:115–127PubMedCrossRef Jaffe LF, Poo M-M (1979) Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool 209:115–127PubMedCrossRef
47.
Zurück zum Zitat Kralj AR, Bajd T (1989) Functional electrical stimulation: standing and walking after spinal cord injury. CRC Press, Florida Kralj AR, Bajd T (1989) Functional electrical stimulation: standing and walking after spinal cord injury. CRC Press, Florida
48.
Zurück zum Zitat Kralj A, Bajd T, Turk R (1989) Use of functional electrical stimulation in the rehabilitation of patients with incomplete spinal injury. J Biomed Eng 11(2):96–102PubMedCrossRef Kralj A, Bajd T, Turk R (1989) Use of functional electrical stimulation in the rehabilitation of patients with incomplete spinal injury. J Biomed Eng 11(2):96–102PubMedCrossRef
49.
Zurück zum Zitat Kwon BK, Borisoff JF, Tetzlaff W (2002) Molecular targets for therapeutic intervention after spinal cord injury. Mol Interv 2:244–258PubMedCrossRef Kwon BK, Borisoff JF, Tetzlaff W (2002) Molecular targets for therapeutic intervention after spinal cord injury. Mol Interv 2:244–258PubMedCrossRef
50.
Zurück zum Zitat Liberson WT, Holmquest HJ, Scott D et al (1961) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil 42:101PubMed Liberson WT, Holmquest HJ, Scott D et al (1961) Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil 42:101PubMed
51.
Zurück zum Zitat Liu Y, Himes BT, Murray M et al (2002) Grafts of BDNF-producing fibroblasts rescue axotomised rubrospinal neurons and prevent their atrophy. Exp Neurol 178:150–164PubMedCrossRef Liu Y, Himes BT, Murray M et al (2002) Grafts of BDNF-producing fibroblasts rescue axotomised rubrospinal neurons and prevent their atrophy. Exp Neurol 178:150–164PubMedCrossRef
53.
Zurück zum Zitat Lu P, Yang H, Jones LL et al (2004) Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 24:6402–6409PubMedCrossRef Lu P, Yang H, Jones LL et al (2004) Combinatorial therapy with neurotrophins and cAMP promotes axonal regeneration beyond sites of spinal cord injury. J Neurosci 24:6402–6409PubMedCrossRef
54.
Zurück zum Zitat Mackay-Sim A (2005) Olfactory ensheathing cells and spinal cord repair. Keio J Med 54(1):8–14PubMedCrossRef Mackay-Sim A (2005) Olfactory ensheathing cells and spinal cord repair. Keio J Med 54(1):8–14PubMedCrossRef
55.
Zurück zum Zitat McCaig CD (1986) Dynamic aspects of amphibian neurite growth and the effects of an applied electric field. J Physiol 375:55–69PubMed McCaig CD (1986) Dynamic aspects of amphibian neurite growth and the effects of an applied electric field. J Physiol 375:55–69PubMed
56.
Zurück zum Zitat McCaig CD, Erskine L (1996) Nerve growth and nerve guidance in a physiological electrical field. In: McCaig CD (ed) Nerve growth and guidance. Portland Press Ltd, London, pp 151–170 McCaig CD, Erskine L (1996) Nerve growth and nerve guidance in a physiological electrical field. In: McCaig CD (ed) Nerve growth and guidance. Portland Press Ltd, London, pp 151–170
57.
Zurück zum Zitat McCaig CD, Sangster L, Stewart R (2000) Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching. Dev Dyn 217:299–308PubMedCrossRef McCaig CD, Sangster L, Stewart R (2000) Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching. Dev Dyn 217:299–308PubMedCrossRef
58.
Zurück zum Zitat Moriarty LJ, Borgens RB (2001) An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord. J Neurocytol 30(1):45–57PubMedCrossRef Moriarty LJ, Borgens RB (2001) An oscillating extracellular voltage gradient reduces the density and influences the orientation of astrocytes in injured mammalian spinal cord. J Neurocytol 30(1):45–57PubMedCrossRef
59.
Zurück zum Zitat Mulcahey MJ, Betz RR, Kozin SH et al (2004) Implantation of the Freehand system during initial rehabilitation using minimally invasive technique. Spinal Cord 42(3):146–155PubMedCrossRef Mulcahey MJ, Betz RR, Kozin SH et al (2004) Implantation of the Freehand system during initial rehabilitation using minimally invasive technique. Spinal Cord 42(3):146–155PubMedCrossRef
60.
Zurück zum Zitat Muller-Putz GR, SchererR Pfurtscheller G et al (2005) EEG based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 381:169–174CrossRef Muller-Putz GR, SchererR Pfurtscheller G et al (2005) EEG based neuroprosthesis control: a step towards clinical practice. Neurosci Lett 381:169–174CrossRef
61.
Zurück zum Zitat Musallam S, Corneil BD, Scherberger H et al (2004) Cognitive control signals for neural prosthetics. Science 305:258–262PubMedCrossRef Musallam S, Corneil BD, Scherberger H et al (2004) Cognitive control signals for neural prosthetics. Science 305:258–262PubMedCrossRef
62.
Zurück zum Zitat Nashmi R, Fehlings MG (2001) Mechanism of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage gated potassium channels. Brain Res 38(1–2):165–191 Nashmi R, Fehlings MG (2001) Mechanism of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage gated potassium channels. Brain Res 38(1–2):165–191
64.
Zurück zum Zitat Patel M, Poo M-M (1982) Orientation of neurite growth by extracellular electric fields. J Neuro Sci 2:483–496 Patel M, Poo M-M (1982) Orientation of neurite growth by extracellular electric fields. J Neuro Sci 2:483–496
65.
Zurück zum Zitat Pfurtscheller G, Muller GR, Pfurtscheller J et al (2003) ‘Thought’ control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351(1):33–36PubMedCrossRef Pfurtscheller G, Muller GR, Pfurtscheller J et al (2003) ‘Thought’ control of functional electrical stimulation to restore hand grasp in a patient with tetraplegia. Neurosci Lett 351(1):33–36PubMedCrossRef
66.
Zurück zum Zitat Politis MJ, Zanakis MF (1989) The short term effects of delayed application of electric fields in the damaged rodent spinal cord. Neurosurgery 25(1):71–75PubMedCrossRef Politis MJ, Zanakis MF (1989) The short term effects of delayed application of electric fields in the damaged rodent spinal cord. Neurosurgery 25(1):71–75PubMedCrossRef
67.
Zurück zum Zitat Popovic MR, Popovic DB, Keller T (2002) Neuroprostheses for grasping. Neurol Res 24:443–452PubMedCrossRef Popovic MR, Popovic DB, Keller T (2002) Neuroprostheses for grasping. Neurol Res 24:443–452PubMedCrossRef
68.
Zurück zum Zitat Qian T, Guo X, Levi AD et al (2005) High dose methylprednisolone may cause myopathy in acute spinal cord injury patients. Spinal Cord 43:199–203PubMedCrossRef Qian T, Guo X, Levi AD et al (2005) High dose methylprednisolone may cause myopathy in acute spinal cord injury patients. Spinal Cord 43:199–203PubMedCrossRef
69.
Zurück zum Zitat Ragnarsson KT, Pollack S, WJr O’Daniel (1988) Clinical evaluation of computerized functional electrical stimulation after spinal cord injury:a multicenter pilot study. Arch Phys Med Rehabil 69(9):672–677PubMed Ragnarsson KT, Pollack S, WJr O’Daniel (1988) Clinical evaluation of computerized functional electrical stimulation after spinal cord injury:a multicenter pilot study. Arch Phys Med Rehabil 69(9):672–677PubMed
70.
Zurück zum Zitat Ragnarsson KT, Pollack SF, Twist D (1991) Lower limb endurance exercise after spinal cord injury: implications for health and functional ambulation. J Neurol Rehabil 5:37–48 Ragnarsson KT, Pollack SF, Twist D (1991) Lower limb endurance exercise after spinal cord injury: implications for health and functional ambulation. J Neurol Rehabil 5:37–48
71.
Zurück zum Zitat Ramon Y, Cajal S (1928) Degeneration and regeneration of the nervous system. In: May RM (ed) Oxford University Press, London Ramon Y, Cajal S (1928) Degeneration and regeneration of the nervous system. In: May RM (ed) Oxford University Press, London
72.
Zurück zum Zitat Rattay F, Resatz S, Dimitrijevic MR et al (2003) Mechanisms of electrical stimulations with neural prosthesis. Neuromodulation 6(1):42–56CrossRef Rattay F, Resatz S, Dimitrijevic MR et al (2003) Mechanisms of electrical stimulations with neural prosthesis. Neuromodulation 6(1):42–56CrossRef
73.
Zurück zum Zitat Rovainen CM (1976) Regeneration of Muller and Mauthner axons after spinal transaction in larval lampreys. J Comp Neurol 168(4):545–554PubMedCrossRef Rovainen CM (1976) Regeneration of Muller and Mauthner axons after spinal transaction in larval lampreys. J Comp Neurol 168(4):545–554PubMedCrossRef
74.
Zurück zum Zitat Sadowsky CL (2001) Electrical stimulation in spinal cord injury. Neurorehabilitation 16:165–169PubMed Sadowsky CL (2001) Electrical stimulation in spinal cord injury. Neurorehabilitation 16:165–169PubMed
75.
Zurück zum Zitat Saigal R, Renzi C, Mushahwar VK (2004) Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng 12(4):430–440PubMedCrossRef Saigal R, Renzi C, Mushahwar VK (2004) Intraspinal microstimulation generates functional movements after spinal-cord injury. IEEE Trans Neural Syst Rehabil Eng 12(4):430–440PubMedCrossRef
76.
Zurück zum Zitat Schnell L, Schneider R, Kolbeck R et al (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after spinal cord lesion. Nature 367:170–173PubMedCrossRef Schnell L, Schneider R, Kolbeck R et al (1994) Neurotrophin-3 enhances sprouting of corticospinal tract during development and after spinal cord lesion. Nature 367:170–173PubMedCrossRef
77.
Zurück zum Zitat Schwab ME, Kapfhammer JP, Bandtlow CE (1993) Inhibitors of neurite growth. Annu Rev Neurosci 16:565–595PubMedCrossRef Schwab ME, Kapfhammer JP, Bandtlow CE (1993) Inhibitors of neurite growth. Annu Rev Neurosci 16:565–595PubMedCrossRef
78.
Zurück zum Zitat Shapiro S, Borgens RB, Pascuzzi R et al (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2:3–10PubMedCrossRef Shapiro S, Borgens RB, Pascuzzi R et al (2005) Oscillating field stimulation for complete spinal cord injury in humans: a phase 1 trial. J Neurosurg Spine 2:3–10PubMedCrossRef
79.
Zurück zum Zitat Shen NJ, Wang YT, Lin QB et al (2005) Using methylprednisolone to supplement direct current electrical field in promoting spinal cord regeneration. J Reconstr Microsurg 21:251–255PubMedCrossRef Shen NJ, Wang YT, Lin QB et al (2005) Using methylprednisolone to supplement direct current electrical field in promoting spinal cord regeneration. J Reconstr Microsurg 21:251–255PubMedCrossRef
80.
Zurück zum Zitat Shi R, Borgens RB (2000) Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J Neurocytol 29:633–643PubMedCrossRef Shi R, Borgens RB (2000) Anatomical repair of nerve membranes in crushed mammalian spinal cord with polyethylene glycol. J Neurocytol 29:633–643PubMedCrossRef
81.
Zurück zum Zitat Shi R, Asano T, Wining NC et al (2000) Control of membrane sealing in injured mammalian spinal cord axons. J Neurophysiol 84:1762–1769 Shi R, Asano T, Wining NC et al (2000) Control of membrane sealing in injured mammalian spinal cord axons. J Neurophysiol 84:1762–1769
82.
Zurück zum Zitat Shi R, Borgens RB (1995) Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic patterns. Dev Dyn 202:101–114PubMed Shi R, Borgens RB (1995) Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic patterns. Dev Dyn 202:101–114PubMed
83.
Zurück zum Zitat Short DJ, Masry El WS, Jones PW (2000) High dose methylprednisolone in the management of acute spinal cord injury––a systematic review from a clinical perspective. Spinal Cord 38:273–286PubMedCrossRef Short DJ, Masry El WS, Jones PW (2000) High dose methylprednisolone in the management of acute spinal cord injury––a systematic review from a clinical perspective. Spinal Cord 38:273–286PubMedCrossRef
84.
85.
Zurück zum Zitat Simcox S, Davis G, Barriskill A et al (2004) A portable, 8-channel transcutaneous stimulator for paraplegic muscle training and mobility–a technical note. JRRD 41(1):41–52CrossRef Simcox S, Davis G, Barriskill A et al (2004) A portable, 8-channel transcutaneous stimulator for paraplegic muscle training and mobility–a technical note. JRRD 41(1):41–52CrossRef
86.
Zurück zum Zitat Snoek GJ, IJzerman MJ, in’t Groen FA et al (2000) Uses of the NESS Handmaster to restore handfunction in tetraplegia: clinical experience in ten patients. Spinal Cord 38(4):244–249PubMedCrossRef Snoek GJ, IJzerman MJ, in’t Groen FA et al (2000) Uses of the NESS Handmaster to restore handfunction in tetraplegia: clinical experience in ten patients. Spinal Cord 38(4):244–249PubMedCrossRef
87.
Zurück zum Zitat Strautman AF, Cook RJ, Robinson KR (1990) The distribution of free calcium in transected spinal axons and its modulation by applied electric fields. J Neurol Sci 10:3564–3575 Strautman AF, Cook RJ, Robinson KR (1990) The distribution of free calcium in transected spinal axons and its modulation by applied electric fields. J Neurol Sci 10:3564–3575
88.
Zurück zum Zitat Tatagiba M, Brosamle C, Schwab ME (1997) Regeneration of injured axons in the adult mammalian central nervous system. Neurosurgery 40(3):541–547PubMedCrossRef Tatagiba M, Brosamle C, Schwab ME (1997) Regeneration of injured axons in the adult mammalian central nervous system. Neurosurgery 40(3):541–547PubMedCrossRef
89.
Zurück zum Zitat Taylor PN, Esnouf J, Hobby J (2002) The functional impact of the freehand system on tetraplegics hand function. Spinal Cord 40(11):560–566PubMedCrossRef Taylor PN, Esnouf J, Hobby J (2002) The functional impact of the freehand system on tetraplegics hand function. Spinal Cord 40(11):560–566PubMedCrossRef
90.
Zurück zum Zitat Uzman BG, Snyder DS, Villegas GM (1989) Status of peripheral nerve regeneration. In: Seil F (ed) Neural regeneration and transplantation. Alan R LissInc, New York, pp 15–28 Uzman BG, Snyder DS, Villegas GM (1989) Status of peripheral nerve regeneration. In: Seil F (ed) Neural regeneration and transplantation. Alan R LissInc, New York, pp 15–28
91.
Zurück zum Zitat Wallace MC, Tator CH, Gentles WM (1987) Effect of alternating current stimulation of the spinal cord on recovery from acute spinal cord injury in rats. Surg Neurol 28(4):269–276PubMedCrossRef Wallace MC, Tator CH, Gentles WM (1987) Effect of alternating current stimulation of the spinal cord on recovery from acute spinal cord injury in rats. Surg Neurol 28(4):269–276PubMedCrossRef
92.
Zurück zum Zitat Wallace MC, Tator CH, Piper I (1987) Recovery of spinal cord function induced by direct current stimulation of the injured rat spinal cord. Neurosurg 20(6):878–884CrossRef Wallace MC, Tator CH, Piper I (1987) Recovery of spinal cord function induced by direct current stimulation of the injured rat spinal cord. Neurosurg 20(6):878–884CrossRef
93.
Zurück zum Zitat Wood MR, Cohen MJ (1979) Synaptic regeneration in identified neurons of the lamprey spinal cords. Science 206(4416):344–347PubMedCrossRef Wood MR, Cohen MJ (1979) Synaptic regeneration in identified neurons of the lamprey spinal cords. Science 206(4416):344–347PubMedCrossRef
94.
Zurück zum Zitat Wood MR, Cohen MJ (1981) Synaptic regeneration and glial reactions in the transected spinal cord of the lamprey. J Neurocytol 10(1):57–79PubMedCrossRef Wood MR, Cohen MJ (1981) Synaptic regeneration and glial reactions in the transected spinal cord of the lamprey. J Neurocytol 10(1):57–79PubMedCrossRef
95.
Zurück zum Zitat Young W (1993) Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 11:13–22PubMedCrossRef Young W (1993) Secondary injury mechanisms in acute spinal cord injury. J Emerg Med 11:13–22PubMedCrossRef
Metadaten
Titel
Role of electrical stimulation for rehabilitation and regeneration after spinal cord injury: an overview
verfasst von
Samar Hamid
Ray Hayek
Publikationsdatum
01.09.2008
Verlag
Springer-Verlag
Erschienen in
European Spine Journal / Ausgabe 9/2008
Print ISSN: 0940-6719
Elektronische ISSN: 1432-0932
DOI
https://doi.org/10.1007/s00586-008-0729-3

Weitere Artikel der Ausgabe 9/2008

European Spine Journal 9/2008 Zur Ausgabe

Announcements

Announcements

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.