Skip to main content
Erschienen in: Journal of Translational Medicine 1/2022

Open Access 01.12.2022 | Research

Serum trimethylamine-N-oxide is associated with incident type 2 diabetes in middle-aged and older adults: a prospective cohort study

verfasst von: Shu-yi Li, Si Chen, Xiao-ting Lu, Ai-ping Fang, Yu-ming Chen, Rong-zhu Huang, Xin-lei Lin, Zi-hui Huang, Jing-fei Ma, Bi-xia Huang, Hui-lian Zhu

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2022

Abstract

Background

The role of trimethylamine-N-oxide (TMAO) in the development of diabetes remains controversial, and prospective data are few. We aimed to investigate the association between serum TMAO and incident type 2 diabetes in middle-aged and older adults.

Methods

This study was based on the Guangzhou Nutrition and Health Study (GNHS), a community-based prospective cohort study in China. A total of 2088 diabetes-free participants aged 40–75 years were included from 2008 to 2010. Incident type 2 diabetes was ascertained during follow-up visits. Baseline serum TMAO was measured by high-performance liquid chromatography with online electrospray ionization tandem mass spectrometry. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) for diabetes across tertiles of serum TMAO were calculated using Cox proportional hazard models. Prospective associations of serum TMAO with changes in glycemic traits (fasting glucose, HbA1c, insulin, HOMA-IR) over time were estimated using linear mixed-effects models (LMEMs).

Results

We ascertained 254 incident type 2 diabetes cases during a median follow-up of 8.9 years. The median (interquartile range) of serum TMAO was 1.54 (0.86–2.91) μmol/L. From the first to the third tertile of serum TMAO, the multivariable-adjusted HRs for diabetes were 1.00 (reference), 1.17 (95% CI: 0.84–1.61), and 1.42 (95% CI: 1.03–1.96) (P-trend = 0.031). LMEMs showed that the estimated yearly change in fasting glucose was 0.011 (0.001–0.022) mmol/L/y in the highest tertile of serum TMAO, compared with the lowest tertile (P-interaction = 0.044). Serum TMAO was not associated with longitudinal changes in HbA1c, insulin or HOMA-IR.

Conclusions

Our findings suggested that higher serum TMAO was associated with a higher risk of type 2 diabetes and an increase in fasting glucose among middle-aged and older Chinese adults.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12967-022-03581-7.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
TMAO
Trimethylamine-N-oxide
GNHS
The Guangzhou Nutrition and Health Study
HR
Hazard ratio
CI
Confidence interval
IQR
Interquartile range
TMA
Trimethylamine
FMO3
Flavin-containing monooxygenase-3
HPLC–MS/MS
High-performance liquid chromatography with online electrospray ionization tandem mass spectrometry
TC
Total cholesterol
TG
Triacylglycerol
LDL-C
Low-density lipoprotein cholesterol
HDL-C
High-density lipoprotein cholesterol
BMI
Body mass index
WHR
Ratio of waist to hip circumference
SBP
Systolic blood pressure
DBP
Diastolic blood pressure
SD
Standard deviation
eGFR
Estimated glomerular filtration rate
PERK
Protein kinase R-like endoplasmic reticulum kinase
FoxO1
Forkhead box transcription factor O1
FXR
Farnesoid X receptor

Background

Diabetes has become a critical public health problem. The number of adults with diabetes had risen to 537 million globally in 2021 [1]. China is experiencing an unprecedented epidemic of diabetes, with a prevalence increased from 0.67% in 1980 to 12.4% in 2018 [2]. Patients with type 2 diabetes, the most common type of diabetes, have high cardiovascular risk [3]. Cardiovascular disease is the major complication in diabetes and the leading cause of mortality in patients with diabetes [47].
Lifestyle factors contribute to the onset and progression of type 2 diabetes, and studies have suggested that diet and gut microbiota may impact type 2 diabetes [8]. Trimethylamine-N-oxide (TMAO) is found naturally in marine fish, and TMAO is also generated from animal- or plant-source foods containing choline, betaine, or carnitine [9]. Dietary choline, betaine and carnitine are converted into trimethylamine (TMA) by gut microbiota. TMA is subsequently oxidized to TMAO by flavin-containing monooxygenase-3 (FMO3) in the liver [10]. Recent animal studies have suggested that TMAO plays a role in glucose and lipid homeostasis, which may cause impaired glucose tolerance, insulin resistance, oxidative stress in adipose tissue [11, 12]. TMAO may be a potential link between diet, gut microbiota, and lifestyle-related diseases [13]. Considerable evidence from epidemiology studies has demonstrated that higher circulating TMAO levels are associated with increased risks of obesity [14], non-alcoholic fatty liver [15], and cardiovascular disease [16] in adults. On one hand, obesity, inflammation and other cardiovascular risk factors play important roles in the development of type 2 diabetes [1720]; on the other hand, type 2 diabetes shares many common risk factors or underlying mechanisms with the above-mentioned lifestyle-related diseases, and thus elevated TMAO levels may also increase the risk of type 2 diabetes.
A recent meta-analysis suggests a positive dose-dependent association between circulating TMAO levels and increased type 2 diabetes risk [21]. Due to limited reports, most of studies included in the present meta-analysis examine the association between TMAO and cardiovascular disease or enrolled participants with a high cardiovascular risk, but few studies were designed for diabetes. Therefore, a series of cardiovascular-related indicators may lead to heterogeneity. Although cross-sectional studies and case–control studies have found higher circulating TMAO levels was associated with increased diabetes risk [22, 23], a prospective study of older US adults from the Cardiovascular Health Study did not suggest a positive association [24]. Longitudinal observational studies originally investigating the association between circulating TMAO and diabetes risk were scarce and have shown inconsistent results. A case-cohort study among elderly Mediterranean individuals reported an inverse association [25]; a prospective cohort study among Norwegian patients with suspected stable angina pectoris reported no association [26]. Differences in dietary pattern and genetic variation among study population from different regions may also be the underlying source of inconsistent result. In these studies, most of the participants were from the United States and Europe, while few studies were conducted in Asian [27, 28].
Therefore, in this community-based prospective cohort study with a median follow-up of 8.9 years, we aimed to examine the temporal relationship and the magnitude of association between serum TMAO and (1) the incidence of type 2 diabetes; (2) the yearly changes in glycemic traits, including fasting glucose, glycated hemoglobin (HbA1c), insulin, and homeostasis model assessment of insulin resistance (HOMA-IR) in southern China.

Methods

Study design

Data for this study were from the Guangzhou Nutrition and Health Study (GNHS), an ongoing community-based prospective cohort study. Between July 2008 and June 2010, we included 3169 participants, living in Guangzhou city (South China) for more than five years, aged 40–75 years. A questionnaire survey, anthropometric measurements, blood pressure measurement and fasting blood collection were conducted at baseline and every three years, and three follow-up visits were conducted up to March 2021. The study protocol of GNHS was registered in ClinicalTrials.gov as NCT03179657 and was approved by the Ethical Committee of the School of Public Health at Sun Yat-sen University. Written informed consent was obtained from each participant.
We excluded participants according to our prespecified criteria: (1) diabetes at baseline (n = 197); (2) self-report malignant tumor (n = 10), chronic renal failure (n = 6), stroke (n = 28) or myocardial infarction (n = 20) at baseline; (3) without measurements of TMAO (n = 196) or fasting glucose (n = 150); (4) those with extremely high or low energy intake (> 4000 kcal/d or < 800 kcal/d for men; > 3500 kcal/d or < 500 kcal/d for women) (n = 37); (5) missing data on diet variables or other variables (e.g., socio-demographics) (n = 75); (6) without any follow-up data regarding type 2 diabetes status (n = 362). Finally, 2088 participants were included in the present analyses (Additional file 1: Fig. S1).

Laboratory analyses

Venous blood samples were collected after 12-h overnight fasting, centrifuged at 3000r/min for 15 min, aliquoted and stored at -80 °C until analyses. We tested serum TMAO, choline and betaine at baseline by high-performance liquid chromatography with online electrospray ionization tandem mass spectrometry (HPLC–MS/MS) (Agilent 6400 Series Triple Quad LCMS; CA, USA) as described previously [15]. In brief, 60 µl of either serum sample or standards was mixed with 100 μl of acetonitrile containing 10 μM of internal standards of 9-TMAO (Toronto Research Chemicals Inc, Toronto, Canada) d9-choline and d9-betaine (Sigma-Aldrich, St. Louis, USA). Then, the samples were centrifuged at 13,000 × g for 10 min to precipitate the proteins. The remaining supernatants were injected into a SiO2 column (2.1 mm × 100 mm, 5 μm). 30% solution A (15 mmol/L ammonium formate, pH = 3.0) and 70% solution B (acetonitrile) were used for isocratic elution with the flow rate of 0.2 mL/min. The samples were detected with mass spectrometry after elution. The intra-assay coefficients of variation were 6.0% for TMAO, 4.91% for choline and 6.21% for betaine.
Fasting glucose and insulin were measured at baseline and follow-up visits using a Roche cobas 8000 c702 automated analyzer. HbA1c was measured using high-performance liquid chromatography with the Bole D-10 Hemoglobin A1c Program on a Bole D-10 Hemoglobin Testing System. The intra-assay coefficients of variation were 2.52% for fasting glucose and 0.75% for glycated hemoglobin. HOMA-IR was calculated as serum fasting glucose (mmol/L)*serum insulin (μIU/mL)/22.5 [29]. Serum levels of total cholesterol (TC), triacylglycerol (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) were measured at baseline using a Roche cobas 8000 c702 automated analyzer. The intra-assay coefficients of variation were 2.17% for TC, 2.86% for TG, 4.67% for LDL-C and 3.47% for HDL-C. Dyslipidemia was defined as TC ≥ 6.2 mmol/L; LDL-C ≥ 4.1 mmol/L; HDL-C < 1.03 mmol/L for men, < 1.29 mmol/L for women; TG ≥ 2.3 mmol/L; or self-reported medications [30]. Serum creatinine was measured at the first follow-up visit using the enzymatic colorimetric assay (Sekisui Chemical Co., Ltd., Tokyo, Japan) with a Hitachi 7180 automatic analyzer. The intra-assay coefficient of variation was 4.43%. Estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration equation [31]. According to the 2012 KDOQI Clinical Practice Guidelines, impaired renal function was defined as eGFR < 60 mL/min/1.73 m2, and normal or mildly decreased renal function was defined as eGFR ≥ 60 mL/min/1.73 m2 [32].

Assessment of type 2 diabetes cases

Type 2 diabetes cases were ascertained at baseline (for exclusion) and follow-up visits if participants met one of the following conditions: fasting glucose ≥ 7.0 mmol/L, glycated hemoglobin ≥ 6.5%, or self-reported diabetes medications, according to the American Diabetes Association for type 2 diabetes diagnosis [33]. We ascertained 254 incident cases during a median follow-up time of 8.9 years.

Covariate assessments

Trained investigators conducted the face-to-face interviews at baseline and each follow-up visit. We collected information on demographic characteristics (e.g., age, sex, household income and education level), lifestyles (e.g., smoking status, alcohol drinking and tea drinking), chronic disease history and medication use. Physical activity, including exercise, leisure-time activity, housework and occupation-related activity, and other daily activities, was estimated using a 19-item questionnaire and metabolic equivalent·h/d [34]. A validated 79-item food frequency questionnaire was used to estimate the habitual dietary intakes during the past year [35]. Energy intake was calculated according to the Chinese Food Composition Table 2004 [36].
Anthropometric measurements and blood pressure were measured by trained project members using the same method and equipment at baseline and each follow-up visit. When participants took off shoes and wore light clothing, height and weight were measured with an accuracy of 0.1 cm for height and 0.1 kg for weight. When participants stood erect, waist circumference and hip circumference were measured to the nearest 0.1 cm. Blood pressure was measured on the left arm with a mercury sphygmomanometer after participants had seated comfortably for at least 10 min. All indexes were measured twice, and the averages of all the readings were calculated for data analyses. Body mass index (BMI) was calculated as weight (kg) divided by the square of height (m2). The ratio of waist to hip circumference (WHR) was equal to waist circumference (cm) divided by hip circumference (cm). Abdominal obesity was defined as waist-hip ratio ≥ 0.90 cm for men or ≥ 0.85 cm for women [37]. Hypertension was defined as self-reported hypertension medications, systolic blood pressure (SBP) ≥ 140 mmHg or diastolic blood pressure (DBP) ≥ 90 mmHg [38].

Statistical analysis

Serum TMAO was divided into three groups according to sex-specific tertiles: 0.63, 1.42, 3.73 μmol/L for men; 0.67, 1.37, 4.30 μmol/L for women. The differences in baseline characteristics according to tertiles of serum TMAO were examined using one-way ANOVA or Kruskal–Wallis test for continuous variables, χ2 test for categorical variables. Quantitative variables were presented as mean ± standard deviation (SD) or median (interquartile range, IQR), and categorical variables were presented as percentage (%).
We used Cox proportional hazards model to estimate the association between tertiles of serum TMAO and incident type 2 diabetes, taking the lowest tertile group as reference. Model 1 was adjusted for age and sex. Model 2 was adjusted for model 1 plus household income, smoking status, alcohol drinking, tea drinking, hypertension, WHR, physical activity, and intakes of total energy, egg, red and processed meat, fish and shellfish, serum levels of TG, HDL-C and fasting glucose. Hazard ratios (HRs) and corresponding 95% confidence intervals (95% CIs) were presented. Linear trends were calculated by treating the median values of serum TMAO levels in tertiles as continuous variables in the Cox regression models. We also conducted sensitivity analyses based on the final model. We repeated analyses excluding incident type 2 diabetes cases which occurred within one year after baseline or excluding those not within the mean ± 3SD of ln-transformed serum TMAO. We additionally adjusted for eGFR and exclude those with eGFR < 60 mL/min/1.73m2. In addition, serum choline and serum betaine (TMAO-precursor) were adjusted in the multivariable-adjusted Cox regression models. The potential non-linearity association between serum TMAO and diabetes risk was estimated with the use of a restricted cubic spline model. However, we did not find any significant non-linear association.
We performed stratified analyses in subgroups defined by several pre-defined variables: age, sex, abdominal obesity, hypertension, dyslipidemia, fasting glucose, red and processed meat intake, fish and shellfish intake, serum choline and serum betaine, to test whether the associations between tertiles of serum TMAO and type 2 diabetes risk were different. We also explored the interactions between serum TMAO and pre-defined variables by adding multiplicative terms into the multivariable-adjusted model. Prospective associations between tertiles of serum TMAO and the yearly changes in glycemic traits (serum fasting glucose, HbA1c, insulin, HOMA-IR) across time were examined by the linear mixed-effects models (LMEMs) after adjustment for potential confounding variables.
Data were inputted by Epidata 3.0 software (The EpiData Association, Odense, Denmark) and performed by STATA statistical software version 15.0 (Stata Corp., TX). A two-sided P-value < 0.05 was considered statistically significant.

Results

During a median follow-up of 8.9 years (16,214 person-years), 254 incident cases of type 2 diabetes were ascertained among 2,088 participants. 72.7% of participants were women, the mean age of participants at baseline was 57.2 (SD 4.9) years, and the mean BMI was 23.0 (SD 3.0) kg/m2. The median (IQR) of serum TMAO was 1.54 (0.86–2.91) μmol/L. The baseline characteristics across tertiles of serum TMAO are presented in Table 1. Participants in the highest tertile of serum TMAO were more likely to be smokers, consumed more egg, fish and shellfish, had a higher prevalence of abdominal obesity and a higher level of HbA1c, compared with the lowest tertile. There were no significant differences in other baseline characteristics among the three groups of serum TMAO. Additional file 1: Table S1 presents the baseline characteristics for participants included and participants without follow-up information. Participants without follow-up information had higher BMI, SBP, DBP, serum fasting glucose and TG levels, lower income levels than participants included, but similar serum TMAO levels.
Table 1
Baseline characteristics according to tertiles (T) of serum TMAO
 
Tertiles of serum TMAO
P-value
 
T1 (n = 696)
T2 (n = 696)
T3 (n = 696)
Age, y
56.8 ± 4.7
57.5 ± 5.1
57.4 ± 4.9
0.176
Women, %
72.7
72.7
72.7
1.000
Household income, %
   
0.053
  ≤ 1500 Yuan/Month/Person
37.4
33.5
33.3
 
 1501–3000 Yuan/Month/Person
43.1
49.9
45.6
 
  > 3000 Yuan/Month/Person
19.5
16.7
21.1
 
Family history of diabetes, %
9.3
9.2
11.1
0.429
Smoker, %
12.5
11.8
16.4
0.026
Alcohol drinker, %
5.3
3.9
6.8
0.058
Tea drinker, %
48.9
48.0
50.1
0.721
Physical activity, MET-h/d
42.9 ± 16.1
42.5 ± 15.9
43.1 ± 15.5
0.904
Total energy intake, kcal/d
1858 ± 498
1822 ± 503
1817 ± 515
0.123
Red and processed meat intake, g/d
86.4 ± 45.0
85.0 ± 43.3
82.8 ± 43.3
0.371
Fish and shellfish intake, g/d
50.7 ± 52.8
51.4 ± 42.0
64.9 ± 75.0
 < 0.001
Egg intake, g/d
27.3 ± 21.2
29.7 ± 19.8
29.6 ± 18.0
0.004
Dairy products intake, g/d
119.3 ± 115.1
115.0 ± 117.5
122.9 ± 115.3
0.123
BMI, kg/m2
22.9 ± 3.1
23.0 ± 3.0
23.3 ± 3.0
0.067
WHR
0.87 ± 0.06
0.88 ± 0.06
0.88 ± 0.06
0.108
Abdominal obesity, %
55.0
57.6
61.5
0.048
SBP, mmHg
122 ± 17
123 ± 18
122 ± 16
0.986
DBP, mmHg
78 ± 11
78 ± 11
78 ± 10
0.452
Hypertension, %
27.6
27.4
26.4
0.871
eGFRa, ml/min/1.73 m2
82.8 ± 12.1
80.5 ± 12.6
81.4 ± 12.8
0.849
Serum TMAO, μmol/L
0.66 (0.41–0.99)
1.38 (1.08–2.14)
4.04 (2.40–6.70)
 < 0.001
Serum choline, μmol/L
19.1 (13.5–24.8)
18.7 (14.2–25.1)
19.1 (14.2–25.9)
0.719
Serum betaine, μmol/L
51.1 (41.5–61.1)
51.5 (42.5–63.0)
51.9 (41.1–62.0)
0.755
Serum fasting glucose, mmol/L
4.56 ± 0.61
4.61 ± 0.67
4.59 ± 0.65
0.346
Insulin, μIU/mL
8.46 ± 4.87
8.99 ± 5.32
8.87 ± 5.12
0.164
HOMA-IR
1.84 ± 1.17
1.92 ± 1.41
1.98 ± 1.44
0.503
HbA1c, %
5.52 ± 0.44
5.61 ± 0.46
5.64 ± 0.59
0.004
Serum TG, mmol/L
1.51 ± 1.06
1.53 ± 1.01
1.50 ± 0.96
0.849
Serum TC, mmol/L
5.44 ± 1.06
5.44 ± 1.04
5.41 ± 1.03
0.849
Serum HDL-C, mmol/L
1.39 ± 0.33
1.40 ± 0.34
1.37 ± 0.31
0.374
Serum LDL-C, mmol/L
3.61 ± 0.90
3.61 ± 0.92
3.62 ± 0.87
0.975
Dyslipidemia, %
56.3
57.2
55.6
0.838
TMAO trimethylamine-N-oxide, MET metabolic equivalent of task, BMI body mass index, WHR ratio of waist to hip circumference, SBP systolic blood pressure, DBP diastolic blood pressure, HbA1c glycated hemoglobin, HOMA-IR homeostatic model assessment of insulin resistance, TG triglycerides, TC total cholesterol, LDL-C low-density lipoprotein cholesterol, HDL-C high-density lipoprotein cholesterol
Mean ± SD or Median (IQR) for all continuous variables
aAvailable in 1,384 women and 525 men
The association between serum TMAO and type 2 diabetes risk is presented in Table 2. In the age- and sex-adjusted model, the HR for diabetes in the highest tertile of serum TMAO was 1.47 (95% CI: 1.08–2.01, P-trend = 0.033), compared with the lowest tertile. After further adjusting for baseline sociodemographic, lifestyle, dietary factors, serum TG, HDL-C and fasting glucose in the final model, a positive association between tertiles of serum TMAO and type 2 diabetes risk did not change with an HR of 1.42 (95% CI: 1.03–1.96, P-trend = 0.031), compared the highest tertile with the lowest tertile. The positive association between serum TMAO and risk of type 2 diabetes did not change after additional adjustment for eGFR in sensitivity analyses. Furthermore, there were no substantial difference after excluding those with eGFR < 60 mL/min/1.73m2, excluding incident type 2 diabetes cases that occurred within one year after baseline, or excluding those not within the mean ± 3SD of ln-transformed serum TMAO (Additional file 1: Table S2).
Table 2
Association of serum TMAO with type 2 diabetes risk
 
Tertiles of serum TMAO
P-trend
T1 (n = 696)
T2 (n = 696)
T3 (n = 696)
Median, μmol/L
0.66
1.39
4.05
 
Case, n
67
90
97
 
Person years
5474
5420
5319
 
Model 1a
1.00 (Ref)
1.32 (0.96–1.82)
1.47 (1.08–2.01)
0.033
Model 2b
1.00 (Ref)
1.17 (0.84–1.61)
1.42 (1.03–1.96)
0.031
TMAO trimethylamine-N-oxide; Ref, reference
P for trend was calculated by treating the median values of serum TMAO levels in tertiles as continuous values in Cox proportional hazard models
aModel 1: adjusted for age and sex
bModel 2: adjusted for model 1 plus household income, smoking status, alcohol drinking, tea drinking, hypertension, WHR, physical activity, intakes of total energy, egg, red and processed meat, fish and shellfish, serum levels of TG, HDL-C and fasting glucose
The stratified analyses in subgroups divided by age (< 56 [median], ≥ 56 y), sex (men, women), abdominal obesity (yes, no), hypertension (yes, no), dyslipidemia (yes, no), fasting glucose (< 4.5 [median], ≥ 4.5 mmol/L), intakes of red and processed meat (< 78.3 [median], ≥ 78.3 g/d), fish and shellfish (< 44.7 [median], ≥ 44.7 g/d), serum choline (< 18.9 [median], ≥ 18.9 μmol/L) and serum betaine (< 51.5 [median], ≥ 51.5 μmol/L), are shown in Fig. 1. There was a potential interaction between serum TMAO and baseline fasting glucose (P-interaction = 0.040). Compared with the first tertile of serum TMAO, HR for diabetes risk of the third tertile was 1.65 (95% CI: 1.15–2.36, P-trend = 0.006) among participants with a higher level of fasting glucose (≥ median), but this positive association was not observed among those with a lower level of fasting glucose (< median). There were no significant interactions between serum TMAO and other pre-defined variables.
In the LMEMs (Table 3), the estimated annual change in fasting glucose was 0.011 (0.001–0.022) mmol/L/y in the highest tertile of serum TMAO, compared with the lowest tertile (P-interaction = 0.044). However, no significant association was observed between serum TMAO with longitudinal changes in HbA1c, insulin or HOMA-IR.
Table 3
Linear mixed-effects models for association between serum TMAO and changes in glycemic traits
 
Serum TMAO
 
Coefficient (95% CI)
P-value
Serum fasting glucose
  
 Time, mmol/L/y
0.089 (0.081, 0.097)
 < 0.001
 Group (Ref. T1)
  
  T2
− 0.010 (− 0.072, 0.052)
0.753
  T3
− 0.022 (− 0.085, 0.040)
0.485
 Time × group
  
  Time × T2
0.007 (− 0.003, 0.018)
0.185
  Time × T3
0.011 (0.001, 0.022)
0.044
HbA1c
  
 Time, %/y
0.237 (0.180, 0.294)
 < 0.001
 Group (Ref. T1)
  
  T2
0.082 (− 0.565, 0.730)
0.803
  T3
0.212 (− 0.440, 0.863)
0.524
 Time × group
  
  Time × T2
0.059 (− 0.023, 0.142)
0.160
  Time × T3
0.020 (− 0.063, 0.103)
0.632
Insulin
  
 Time, μIU/mL/y
0.130 (0.067, 0.193)
 < 0.001
 Group (Ref. T1)
  
  T2
− 0.017 (− 0.697, 0.663)
0.961
  T3
− 0.149 (− 0.842, 0.543)
0.672
 Time × group
  
  Time × T2
0.022 (− 0.068, 0.112)
0.632
  Time × T3
0.073 (− 0.018, 0.165)
0.115
HOMA-IR
  
 Time,/y
0.076 (0.058, 0.093)
 < 0.001
 Group (Ref. T1)
  
  T2
− 0.020 (− 0.209, 0.169)
0.836
  T3
− 0.039 (− 0.232, 0.153)
0.687
 Time × group
  
  Time × T2
0.011 (− 0.015, 0.036)
0.412
  Time × T3
0.022 (− 0.004, 0.048)
0.101
TMAO trimethylamine-N-oxide, 95% CI 95% confidence interval, T tertile, Ref reference, HbA1c glycated hemoglobin, HOMA-IR homeostatic model assessment of insulin resistance
Linear mixed-effects models were used to estimate the association between tertile of serum TMAO and the yearly changes of glycemic traits (fasting glucose, HbA1c, insulin, HOMA-IR) overt time. All models were adjusted for baseline age, sex, household income, smoking status, alcohol drinking, tea drinking, hypertension, WHR, physical activity, intakes of total energy, egg, red meat and processed meat, fish and shellfish, serum levels of TG, HDL-C and fasting glucose

Discussion

In this 8.9-year prospective cohort study of 2,088 middle-aged and older Chinese adults, we found that higher serum TMAO was associated with a greater risk of type 2 diabetes and an increase in fasting glucose.
Previous studies have demonstrated the positive associations between circulating concentration of TMAO and cardiovascular disease risk [16] and have suggested the adverse effects on specific cardiometabolic biomarkers, such as homocysteine, insulin and glucose [39]. However, the association between TMAO and diabetes risk remains inconsistent. Our finding was consistent with several cross-sectional studies and case–control studies, which showed a positive association [22, 23, 27], whereas others observed an inverse [25] or null association [26, 28]. A meta-analysis (including twelve clinical studies), which reported a positive association between circulating TMAO levels and diabetes risk (OR: 1.89; 95% CI: 1.63–2.19) [21]. However, most of the included studies focused on the association of TMAO and cardiovascular diseases; only four studies addressed the relationship between TMAO and diabetes. Confounding by indicators related to cardiovascular disease may remain an issue in these studies. To our knowledge, few studies were designed to investigate the prospective association between circulating TMAO and type 2 diabetes risk with fully adjustment for important lifestyle factors. In a metabolomic analysis of type 2 diabetes risk with two cohorts of Chinese adults, positive associations were observed but did not reach statistical significance [28]. However, semiquantitative measurement was used to test plasma TMAO without standard curves in that study, which was different with our study. No significant association between TMAO and incident diabetes was observed among Norwegian patients with suspected stable angina pectoris [26] or among older US adults [24]. On the contrary, a case-cohort design study within the Prevención con Dieta Mediterránea study among the elderly population at high cardiovascular disease risk in Spanish suggested that higher baseline plasma TMAO was associated with a decreased risk of type 2 diabetes [25]. Differences in genetic predisposition and dietary habits may explain the discrepancies in studies from different locations [40]. An international pooled analysis and other population-based studies have found that the associations between specific animal foods and circulating TMAO levels vary among populations [39, 41].
Circulating concentration of TMAO is affected by various factors, including diet, gut microbiota and liver flavin monooxygenase activity [9], which may modify the association between circulating TMAO and chronic disease. Fish, red meat and egg are the dominant sources of TMAO or TMAO-precursors [42]. Serum TMAO was correlated with intakes of fish and shellfish, but not red meat in this study (Table 1), which was consistent with the results from some European and Asian populations [39, 43, 44], but association of red meat with TMAO was significant in US populations [42]. We adjusted intakes of TMAO-contributing foods, including fish, red meat and egg, in the final model to reduce the potential confounding effects, and the positive association between serum TMAO and diabetes did not change. This study lacks data on gut microbiota or the activity of FMO3, we cannot explore the interaction between diet, gut microbiota and host health. On the other hand, TMAO is excreted by the kidney and renal function is a major factor influencing circulating levels of TMAO [45, 46]. A meta-analysis, including 32 eligible clinical studies, showed a negative association between circulating TMAO and renal function [47]. To reduce residual confounding of renal function, we excluded subjects with chronic renal failure. Estimated glomerular filtration rate (eGFR) plays a critically important role in signifying renal function [48]. In this study, less than 5% participants (n = 84) with impaired renal function (eGFR < 60 mL/min/1.73m2) were found. Moreover, we excluded subjects with eGFR < 60 mL/min/1.73m2 and additionally adjusted for eGFR in the sensitivity analyses, but no substantial difference was found (Additional file 1: Table S2). Given that the association between TMAO and diabetes remains inconsistent and renal function may mediate the association, more studies are needed to include eGFR and determine the interaction between TMAO, renal function and incident diabetes.
Epidemiological evidence of the association between circulating TMAO and longitudinal changes in markers of diabetes is limited. In this study, we found that serum TMAO was positively associated with an increase in fasting glucose levels. However, a longitudinal cohort study showed the null association between TMAO levels with a 2-year change in fasting glucose among 300 diabetes-free adults [49]. This negative finding might account for small sample size and short-time follow-up, which compromised the statistic power. In the future, prospective studies with large-scale and long-time follow-up are required to determine the association between circulating TMAO concentration with incident diabetes and changes in glycemic traits.
There are several possible underlying mechanisms between TMAO and diabetes. Supplemental TMAO to a high-fat diet in mice exacerbated impaired glucose tolerance, suppressed the hepatic insulin signaling pathway and increased adipose tissue inflammation, leading to insulin resistance and diabetes [50]. The gut microbiota-initiated TMA-FMO3-TMAO pathway has been identified as a contributor in the occurrence and progression of cardiometabolic diseases [51, 52]. Sudha B.Biddinger et al. found that FMO3 induced forkhead box transcription factor O1 (FoxO1, a key driver of metabolic disease) by producing TMAO. TMAO bound and activated the endoplasmic reticulum stress kinase PERK (a key sensor of intracellular stress), and then PERK induced FoxO1, which promoted insulin resistance and metabolic dysfunction [11]. Furthermore, manipulation of gut microbiota or knockdown of FMO3 in insulin-resistant mice inhibited TMAO production, reduced PERK activation and suppressed FoxO1 in the liver, which may prevent the development of hyperglycemia [11, 51]. On the other hand, our previous study has reported that TMAO could modulate bile acid metabolism and suppress bile acids-mediated hepatic nuclear receptor farnesoid X receptor (FXR) signaling to aggravate hepatic steatosis [53]. Bile acids modulation and FXR pathway also regulate glucose metabolism to cause obesity and diabetes [54]. However, that TMAO may affect bile acids and FXR to induce diabetes has not been reported. Further studies are warranted to explore potential mechanisms of TMAO and diabetes pathogenesis.
The strengths of this study include its prospective and population-based design, over 8.9-year follow-up period and a high rate of follow-up (> 85%). Besides, we adjusted a variety of known diabetes risk factors in statistical models to reduce potential confounding effects. However, this study has several limitations. Firstly, participants were middle-aged and older adults in southern China, and our findings were limited to generalize to other age groups or populations. Secondly, we only measured serum TMAO at baseline. Changes in serum TMAO over time could not be included in data analyses. Thirdly, we did not conduct an oral glucose tolerance test to ascertain type 2 diabetes, which may lead to undiagnosed diabetes cases. Fourthly, our study lacked data regarding the activity of FMO3 and gut microbiota, which were determining circulating TMAO level.

Conclusions

Our study suggested that higher serum TMAO was associated with increased type 2 diabetes risk and an increase in fasting glucose among middle-aged and older adults. More studies are needed to identify the role of TMAO on the pathogenesis and progression of diabetes.

Acknowledgements

The authors are very grateful to all the participants who contributed to this study. We also thank the staff for their support in data and sample collection.

Declarations

The study was approved by the Ethical Committee of School of Public Health at Sun Yat-sen University. Written informed consent was obtained from each participant.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
2.
3.
Zurück zum Zitat Pylypchuk R, Wells S, Kerr A, Poppe K, Harwood M, Mehta S, et al. Cardiovascular risk prediction in type 2 diabetes before and after widespread screening: a derivation and validation study. Lancet. 2021;397(10291):2264–74.PubMedCrossRef Pylypchuk R, Wells S, Kerr A, Poppe K, Harwood M, Mehta S, et al. Cardiovascular risk prediction in type 2 diabetes before and after widespread screening: a derivation and validation study. Lancet. 2021;397(10291):2264–74.PubMedCrossRef
5.
Zurück zum Zitat Pofi R, Giannetta E, Galea N, Francone M, Campolo F, Barbagallo F, et al. Diabetic cardiomiopathy progression is triggered by mir122-5p and involves extracellular matrix: a 5-year prospective study. JACC Cardiovasc Imaging. 2021;14(6):1130–42.PubMedCrossRef Pofi R, Giannetta E, Galea N, Francone M, Campolo F, Barbagallo F, et al. Diabetic cardiomiopathy progression is triggered by mir122-5p and involves extracellular matrix: a 5-year prospective study. JACC Cardiovasc Imaging. 2021;14(6):1130–42.PubMedCrossRef
6.
Zurück zum Zitat Di Luigi L, Corinaldesi C, Colletti M, Scolletta S, Antinozzi C, Vannelli GB, et al. Phosphodiesterase type 5 inhibitor sildenafil decreases the proinflammatory chemokine CXCL10 in human cardiomyocytes and in subjects with diabetic cardiomyopathy. Inflammation. 2016;39(3):1238–52.PubMed Di Luigi L, Corinaldesi C, Colletti M, Scolletta S, Antinozzi C, Vannelli GB, et al. Phosphodiesterase type 5 inhibitor sildenafil decreases the proinflammatory chemokine CXCL10 in human cardiomyocytes and in subjects with diabetic cardiomyopathy. Inflammation. 2016;39(3):1238–52.PubMed
7.
Zurück zum Zitat Giannetta E, Isidori AM, Galea N, Carbone I, Mandosi E, Vizza CD, et al. Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation. 2012;125(19):2323–33.PubMedCrossRef Giannetta E, Isidori AM, Galea N, Carbone I, Mandosi E, Vizza CD, et al. Chronic Inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation. 2012;125(19):2323–33.PubMedCrossRef
9.
Zurück zum Zitat Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine N-Oxide: the good, the bad and the unknown. Toxins (Basel). 2016;8(11):326.CrossRef Velasquez MT, Ramezani A, Manal A, Raj DS. Trimethylamine N-Oxide: the good, the bad and the unknown. Toxins (Basel). 2016;8(11):326.CrossRef
10.
Zurück zum Zitat Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharmacol. 2018;175(8):1344–53.PubMedCrossRef Subramaniam S, Fletcher C. Trimethylamine N-oxide: breathe new life. Br J Pharmacol. 2018;175(8):1344–53.PubMedCrossRef
11.
Zurück zum Zitat Chen S, Henderson A, Petriello MC, Romano KA, Gearing M, Miao J, et al. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab. 2019;30(6):1141-51.e5.PubMedCrossRef Chen S, Henderson A, Petriello MC, Romano KA, Gearing M, Miao J, et al. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab. 2019;30(6):1141-51.e5.PubMedCrossRef
12.
Zurück zum Zitat Naghipour S, Cox AJ, Peart JN, Du Toit EF, Headrick JP. Trimethylamine N-oxide: heart of the microbiota-CVD nexus? Nutr Res Rev. 2020;34(1):125–46.PubMedCrossRef Naghipour S, Cox AJ, Peart JN, Du Toit EF, Headrick JP. Trimethylamine N-oxide: heart of the microbiota-CVD nexus? Nutr Res Rev. 2020;34(1):125–46.PubMedCrossRef
13.
Zurück zum Zitat Nowinski A, Ufnal M. Trimethylamine N-oxide: a harmful, protective or diagnostic marker in lifestyle diseases? Nutrition. 2018;46:7–12.PubMedCrossRef Nowinski A, Ufnal M. Trimethylamine N-oxide: a harmful, protective or diagnostic marker in lifestyle diseases? Nutrition. 2018;46:7–12.PubMedCrossRef
14.
Zurück zum Zitat Dehghan P, Farhangi MA, Nikniaz L, Nikniaz Z, Asghari-Jafarabadi M. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: an exploratory systematic review and dose-response meta- analysis. Obes Rev. 2020;21(5): e12993.PubMedCrossRef Dehghan P, Farhangi MA, Nikniaz L, Nikniaz Z, Asghari-Jafarabadi M. Gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) potentially increases the risk of obesity in adults: an exploratory systematic review and dose-response meta- analysis. Obes Rev. 2020;21(5): e12993.PubMedCrossRef
15.
Zurück zum Zitat Chen YM, Liu Y, Zhou RF, Chen XL, Wang C, Tan XY, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 2016;6:19076.PubMedPubMedCentralCrossRef Chen YM, Liu Y, Zhou RF, Chen XL, Wang C, Tan XY, et al. Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep. 2016;6:19076.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017;38(39):2948–56.PubMedCrossRef Schiattarella GG, Sannino A, Toscano E, Giugliano G, Gargiulo G, Franzone A, et al. Gut microbe-generated metabolite trimethylamine-N-oxide as cardiovascular risk biomarker: a systematic review and dose-response meta-analysis. Eur Heart J. 2017;38(39):2948–56.PubMedCrossRef
17.
Zurück zum Zitat Fiore D, Gianfrilli D, Giannetta E, Galea N, Panio G, di Dato C, et al. PDE5 inhibition ameliorates visceral adiposity targeting the miR-22/SIRT1 pathway: evidence from the CECSID trial. J Clin Endocrinol Metab. 2016;101(4):1525–34.PubMedCrossRef Fiore D, Gianfrilli D, Giannetta E, Galea N, Panio G, di Dato C, et al. PDE5 inhibition ameliorates visceral adiposity targeting the miR-22/SIRT1 pathway: evidence from the CECSID trial. J Clin Endocrinol Metab. 2016;101(4):1525–34.PubMedCrossRef
18.
Zurück zum Zitat Venneri MA, Barbagallo F, Fiore D, De Gaetano R, Giannetta E, Sbardella E, et al. PDE5 inhibition stimulates Tie2-expressing monocytes and angiopoietin-1 restoring angiogenic homeostasis in diabetes. J Clin Endocrinol Metab. 2019;104(7):2623–36.PubMedCrossRef Venneri MA, Barbagallo F, Fiore D, De Gaetano R, Giannetta E, Sbardella E, et al. PDE5 inhibition stimulates Tie2-expressing monocytes and angiopoietin-1 restoring angiogenic homeostasis in diabetes. J Clin Endocrinol Metab. 2019;104(7):2623–36.PubMedCrossRef
19.
Zurück zum Zitat Mandosi E, Giannetta E, Filardi T, Lococo M, Bertolini C, Fallarino M, et al. Endothelial dysfunction markers as a therapeutic target for Sildenafil treatment and effects on metabolic control in type 2 diabetes. Expert Opin Ther Targets. 2015;19(12):1617–22.PubMedCrossRef Mandosi E, Giannetta E, Filardi T, Lococo M, Bertolini C, Fallarino M, et al. Endothelial dysfunction markers as a therapeutic target for Sildenafil treatment and effects on metabolic control in type 2 diabetes. Expert Opin Ther Targets. 2015;19(12):1617–22.PubMedCrossRef
20.
Zurück zum Zitat Venneri MA, Giannetta E, Panio G, De Gaetano R, Gianfrilli D, Pofi R, et al. Chronic inhibition of PDE5 limits pro-inflammatory monocyte-macrophage polarization in streptozotocin-induced diabetic mice. PLoS ONE. 2015;10(5): e0126580.PubMedPubMedCentralCrossRef Venneri MA, Giannetta E, Panio G, De Gaetano R, Gianfrilli D, Pofi R, et al. Chronic inhibition of PDE5 limits pro-inflammatory monocyte-macrophage polarization in streptozotocin-induced diabetic mice. PLoS ONE. 2015;10(5): e0126580.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Zhuang RL, Ge XY, Han L, Yu P, Gong X, Meng QS, et al. Gut microbe-generated metabolite trimethylamine N-oxide and the risk of diabetes: a systematic review and dose-response meta-analysis. Obes Rev. 2019;20(6):883–94.PubMedCrossRef Zhuang RL, Ge XY, Han L, Yu P, Gong X, Meng QS, et al. Gut microbe-generated metabolite trimethylamine N-oxide and the risk of diabetes: a systematic review and dose-response meta-analysis. Obes Rev. 2019;20(6):883–94.PubMedCrossRef
22.
Zurück zum Zitat Kalagi NA, Thota RN, Stojanovski E, Alburikan KA, Garg ML. Association between plasma trimethylamine N-oxide levels and type 2 diabetes: a case control study. Nutrients. 2022;14(10):2093.PubMedPubMedCentralCrossRef Kalagi NA, Thota RN, Stojanovski E, Alburikan KA, Garg ML. Association between plasma trimethylamine N-oxide levels and type 2 diabetes: a case control study. Nutrients. 2022;14(10):2093.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.PubMedPubMedCentralCrossRef Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–84.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Lemaitre RN, Jensen PN, Wang Z, Fretts AM, McKnight B, Nemet I, et al. Association of trimethylamine N-oxide and related metabolites in plasma and incident type 2 diabetes. JAMA Netw Open. 2021;4(8): e2122844.PubMedPubMedCentralCrossRef Lemaitre RN, Jensen PN, Wang Z, Fretts AM, McKnight B, Nemet I, et al. Association of trimethylamine N-oxide and related metabolites in plasma and incident type 2 diabetes. JAMA Netw Open. 2021;4(8): e2122844.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Papandreou C, Bullo M, Zheng Y, Ruiz-Canela M, Yu E, Guasch-Ferre M, et al. Plasma trimethylamine-N-oxide and related metabolites are associated with type 2 diabetes risk in the Prevencion con Dieta Mediterranea (PREDIMED) trial. Am J Clin Nutr. 2018;108(1):163–73.PubMedPubMedCentralCrossRef Papandreou C, Bullo M, Zheng Y, Ruiz-Canela M, Yu E, Guasch-Ferre M, et al. Plasma trimethylamine-N-oxide and related metabolites are associated with type 2 diabetes risk in the Prevencion con Dieta Mediterranea (PREDIMED) trial. Am J Clin Nutr. 2018;108(1):163–73.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Svingen GF, Schartum-Hansen H, Pedersen ER, Ueland PM, Tell GS, Mellgren G, et al. Prospective associations of systemic and urinary choline metabolites with incident type 2 diabetes. Clin Chem. 2016;62(5):755–65.PubMedCrossRef Svingen GF, Schartum-Hansen H, Pedersen ER, Ueland PM, Tell GS, Mellgren G, et al. Prospective associations of systemic and urinary choline metabolites with incident type 2 diabetes. Clin Chem. 2016;62(5):755–65.PubMedCrossRef
27.
Zurück zum Zitat Shan ZL, Sun TP, Huang H, Chen SJ, Chen LK, Luo C, et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr. 2017;106(3):888–94.PubMed Shan ZL, Sun TP, Huang H, Chen SJ, Chen LK, Luo C, et al. Association between microbiota-dependent metabolite trimethylamine-N-oxide and type 2 diabetes. Am J Clin Nutr. 2017;106(3):888–94.PubMed
28.
Zurück zum Zitat Qiu G, Zheng Y, Wang H, Sun J, Ma H, Xiao Y, et al. Plasma metabolomics identified novel metabolites associated with risk of type 2 diabetes in two prospective cohorts of Chinese adults. Int J Epidemiol. 2016;45(5):1507–16.PubMedCrossRef Qiu G, Zheng Y, Wang H, Sun J, Ma H, Xiao Y, et al. Plasma metabolomics identified novel metabolites associated with risk of type 2 diabetes in two prospective cohorts of Chinese adults. Int J Epidemiol. 2016;45(5):1507–16.PubMedCrossRef
29.
Zurück zum Zitat Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.PubMedCrossRef Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412–9.PubMedCrossRef
30.
Zurück zum Zitat Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.CrossRef Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the national cholesterol education program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486–97.CrossRef
31.
Zurück zum Zitat Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.PubMedPubMedCentralCrossRef Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–12.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Stevens PE, Levin A. Kidney disease: improving global outcomes chronic kidney disease guideline development work group members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30.PubMedCrossRef Stevens PE, Levin A. Kidney disease: improving global outcomes chronic kidney disease guideline development work group members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825–30.PubMedCrossRef
33.
Zurück zum Zitat American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):S81-90.CrossRef American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2014;37(Suppl 1):S81-90.CrossRef
34.
Zurück zum Zitat Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sport Exer. 2011;43(8):1575–81.CrossRef Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011 compendium of physical activities: a second update of codes and MET values. Med Sci Sport Exer. 2011;43(8):1575–81.CrossRef
35.
Zurück zum Zitat Zhang CX, Ho SC. Validity and reproducibility of a food frequency questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr. 2009;18(2):240–50.PubMed Zhang CX, Ho SC. Validity and reproducibility of a food frequency questionnaire among Chinese women in Guangdong province. Asia Pac J Clin Nutr. 2009;18(2):240–50.PubMed
36.
Zurück zum Zitat Yang YZ. Chinese Food Composition Table 2004. Beijing: Peking University Medical Press; 2005. Yang YZ. Chinese Food Composition Table 2004. Beijing: Peking University Medical Press; 2005.
38.
Zurück zum Zitat Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2018;71(19):e127–248.PubMedCrossRef Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2018;71(19):e127–248.PubMedCrossRef
39.
Zurück zum Zitat Yang JJ, Shu XO, Herrington DM, Moore SC, Meyer KA, Ose J, et al. Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: an international pooled analysis. Am J Clin Nutr. 2021;113(5):1145–56.PubMedPubMedCentralCrossRef Yang JJ, Shu XO, Herrington DM, Moore SC, Meyer KA, Ose J, et al. Circulating trimethylamine N-oxide in association with diet and cardiometabolic biomarkers: an international pooled analysis. Am J Clin Nutr. 2021;113(5):1145–56.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Bennett BJ, Vallim TQD, Wang ZN, Shih DM, Meng YH, Gregory J, et al. Trimethylamine-N-Oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60.PubMedPubMedCentralCrossRef Bennett BJ, Vallim TQD, Wang ZN, Shih DM, Meng YH, Gregory J, et al. Trimethylamine-N-Oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 2013;17(1):49–60.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Gibson R, Lau CHE, Loo RL, Ebbels TMD, Chekmeneva E, Dyer AR, et al. The association of fish consumption and its urinary metabolites with cardiovascular risk factors: the International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). Am J Clin Nutr. 2020;111(2):280–90.PubMedCrossRef Gibson R, Lau CHE, Loo RL, Ebbels TMD, Chekmeneva E, Dyer AR, et al. The association of fish consumption and its urinary metabolites with cardiovascular risk factors: the International Study of Macro-/Micronutrients and Blood Pressure (INTERMAP). Am J Clin Nutr. 2020;111(2):280–90.PubMedCrossRef
42.
Zurück zum Zitat Wang ZN, Bergeron N, Levison BS, Li XMS, Chiu S, Jia X, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019;40(7):583–94.PubMedCrossRef Wang ZN, Bergeron N, Levison BS, Li XMS, Chiu S, Jia X, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019;40(7):583–94.PubMedCrossRef
43.
Zurück zum Zitat Gessner A, di Giuseppe R, Koch M, Fromm MF, Lieb W, Maas R. Trimethylamine-N-oxide (TMAO) determined by LC-MS/MS: distribution and correlates in the population-based PopGen cohort. Clin Chem Lab Med. 2020;58(5):733–40.PubMedCrossRef Gessner A, di Giuseppe R, Koch M, Fromm MF, Lieb W, Maas R. Trimethylamine-N-oxide (TMAO) determined by LC-MS/MS: distribution and correlates in the population-based PopGen cohort. Clin Chem Lab Med. 2020;58(5):733–40.PubMedCrossRef
44.
Zurück zum Zitat Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, et al. A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr. 2017;105(3):600–8.PubMedCrossRef Cheung W, Keski-Rahkonen P, Assi N, Ferrari P, Freisling H, Rinaldi S, et al. A metabolomic study of biomarkers of meat and fish intake. Am J Clin Nutr. 2017;105(3):600–8.PubMedCrossRef
45.
Zurück zum Zitat Pelletier CC, Croyal M, Ene L, Aguesse A, Billon-Crossouard S, Krempf M, et al. Elevation of trimethylamine-N-oxide in chronic kidney disease: contribution of decreased glomerular filtration rate. Toxins (Basel). 2019;11(11):635.CrossRef Pelletier CC, Croyal M, Ene L, Aguesse A, Billon-Crossouard S, Krempf M, et al. Elevation of trimethylamine-N-oxide in chronic kidney disease: contribution of decreased glomerular filtration rate. Toxins (Basel). 2019;11(11):635.CrossRef
46.
Zurück zum Zitat Gruppen EG, Garcia E, Connelly MA, Jeyarajah EJ, Otvos JD, Bakker SJL, et al. TMAO is associated with mortality: impact of modestly impaired renal function. Sci Rep. 2017;7(1):13781.PubMedPubMedCentralCrossRef Gruppen EG, Garcia E, Connelly MA, Jeyarajah EJ, Otvos JD, Bakker SJL, et al. TMAO is associated with mortality: impact of modestly impaired renal function. Sci Rep. 2017;7(1):13781.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Zeng Y, Guo M, Fang X, Teng F, Tan X, Li X, et al. Gut microbiota-derived trimethylamine N-oxide and kidney function: a systematic review and meta-analysis. Adv Nutr. 2021;12(4):1286–304.PubMedPubMedCentralCrossRef Zeng Y, Guo M, Fang X, Teng F, Tan X, Li X, et al. Gut microbiota-derived trimethylamine N-oxide and kidney function: a systematic review and meta-analysis. Adv Nutr. 2021;12(4):1286–304.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Roy S, Yuzefpolskaya M, Nandakumar R, Colombo PC, Demmer RT. Plasma trimethylamine-N-oxide and impaired glucose regulation: results from the oral infections, glucose intolerance and insulin resistance study (ORIGINS). PLoS ONE. 2020;15(1): e0227482.PubMedPubMedCentralCrossRef Roy S, Yuzefpolskaya M, Nandakumar R, Colombo PC, Demmer RT. Plasma trimethylamine-N-oxide and impaired glucose regulation: results from the oral infections, glucose intolerance and insulin resistance study (ORIGINS). PLoS ONE. 2020;15(1): e0227482.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Gao X, Liu X, Xu J, Xue C, Xue Y, Wang Y. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng. 2014;118(4):476–81.PubMedCrossRef Gao X, Liu X, Xu J, Xue C, Xue Y, Wang Y. Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng. 2014;118(4):476–81.PubMedCrossRef
51.
Zurück zum Zitat Miao J, Ling AV, Manthena PV, Gearing ME, Graham MJ, Crooke RM, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun. 2015;6:6498.PubMedCrossRef Miao J, Ling AV, Manthena PV, Gearing ME, Graham MJ, Crooke RM, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun. 2015;6:6498.PubMedCrossRef
52.
Zurück zum Zitat Schugar RC, Shih DM, Warrier M, Helsley RN, Burrows A, Ferguson D, et al. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep. 2017;19(12):2451–61.PubMedPubMedCentralCrossRef Schugar RC, Shih DM, Warrier M, Helsley RN, Burrows A, Ferguson D, et al. The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep. 2017;19(12):2451–61.PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Tan X, Liu Y, Long J, Chen S, Liao G, Wu S, et al. Trimethylamine N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid x receptor signaling in nonalcoholic fatty liver disease. Mol Nutr Food Res. 2019;63(17): e1900257.PubMedCrossRef Tan X, Liu Y, Long J, Chen S, Liao G, Wu S, et al. Trimethylamine N-oxide aggravates liver steatosis through modulation of bile acid metabolism and inhibition of farnesoid x receptor signaling in nonalcoholic fatty liver disease. Mol Nutr Food Res. 2019;63(17): e1900257.PubMedCrossRef
54.
Zurück zum Zitat Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152(7):1679-94.e3.PubMedCrossRef Chavez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology. 2017;152(7):1679-94.e3.PubMedCrossRef
Metadaten
Titel
Serum trimethylamine-N-oxide is associated with incident type 2 diabetes in middle-aged and older adults: a prospective cohort study
verfasst von
Shu-yi Li
Si Chen
Xiao-ting Lu
Ai-ping Fang
Yu-ming Chen
Rong-zhu Huang
Xin-lei Lin
Zi-hui Huang
Jing-fei Ma
Bi-xia Huang
Hui-lian Zhu
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2022
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03581-7

Weitere Artikel der Ausgabe 1/2022

Journal of Translational Medicine 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.