Skip to main content
Erschienen in: BMC Proceedings 9/2018

Open Access 01.09.2018 | Proceedings

Simulation of a medication and methylation effects on triglycerides in the Genetic Analysis Workshop 20

verfasst von: Aldi T. Kraja, Ping An, Petra Lenzini, Shiou J. Lin, Christine Williams, James E. Hicks, E. Warwick Daw, Michael A. Province

Erschienen in: BMC Proceedings | Sonderheft 9/2018

Abstract

The GAW20 simulation data set is based upon the companion Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study fenofibrate clinical trial data set that forms the real data example for GAW20. The simulated data problem consists of 200 simulated replications of what might happen if we were to repeat the GOLDN clinical trial 200 independent times, for these exact same subjects, but using a new fictitious drug (called “genomethate”) that has a pharmaco-epigenetic effect on triglyceride response. For each replication, the pre-genomethate values at visits 1 and 2 are constant (ie, pedigree structures, age, sex, all phenotypes, covariates, genome-wide association study (GWAS) genotypes, and visit 2 methylation values), the same as the real GOLDN data across all 200 replications. Only the post-genomethate treatment data (ie, methylation and triglyceride levels for visits 3 and 4) change across the 200 replications. We postulate a growth curve pharmaco-epigenetic response model, in which each patient’s response to genomethate treatment is individualized, and is dependent upon their genotype as well as the methylation state for key genes.

Background

The companion Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study fenofibrate clinical trial data set [13] was the foundation of our Genetic Analysis Workshop 20 (GAW20) simulation. The general simulation strategy was to first simulate visit 4 methylation array data for each subject (which measures the individual epigenetic responses to genomethate treatment), and then use this plus the genome-wide association study (GWAS) genotypes to produce the simulated triglycerides for visits 3 and 4 post-treatment values. The main simulated effect of genomethate is on the phenotype of the individual subject’s triglyceride (TG) values measured as slope in response to treatment (change in mg/dL per unit time of treatment).

Methods, results and discussion

Figure 1 illustrates the graphical design of the simulations.
The j index in the figure represents the subject (j = 1, 2, …, N = 717). The i index is noting the single-nucleotide polymorphisms (SNPs) chosen to be causal in the simulating model (i = 1, 2, …, G = 105), where i = 1, 2, 3, 4, 5 also indexes the 5 main effects of the corresponding nearby cytosine-phosphate-guanine (CpG) sites, while beyond main effects, the sites from 6 to 105 are 100 SNPs with background genetic effects. The k index indicates replications (k = 1, 2, …, R = 200).
The first 5 causal SNPs are “major” effects (summarized in Table 1), and the last 100 SNPs are polygenic background effects (Table 2). Note that only the first 5 CpG sites are relevant to the model, the polygenic background effects do not depend upon CpG states.
Table 1
Five major effect causal SNPs and corresponding nearby CpG markers affecting triglycerides at visits 3 and 4
Methylvar
chrom
cgposition
cggene
CpG
CpG
Cp
CpG
markname
chrom
rsposition
rsgene
role
hg2
diffpos
mean
Sd
Gmean
Sd
V2
V2
V4
V4
cg00000363
1
230560793
 
0.488
0.0589
0.492
0.3273
rs9661059
1
230556033
  
0.125
− 4760
cg10480950
6
5067127
 
0.578
0.0571
0.56
0.3247
rs736004
6
5067728
LYRM4
intron
0.075
601
cg18772399
8
89478349
 
0.575
0.0743
0.556
0.3265
rs1012116
8
89466383
  
0.100
−11966
cg00045910
10
23466070
 
0.474
0.0896
0.482
0.3295
rs10828412
10
23476515
  
0.025
10445
cg01242676
17
13413600
HS3ST3A1
0.456
0.0837
0.464
0.328
rs4399565
17
13407619
HS3ST3A1
intron
0.050
− 5981
Abbreviations: methylvar, CpG marker name; chrom, CpG marker’s chromosome; cgposition, CpG marker position in base pairs; cggene, CpG marker’s gene; CpGmeanV2, mean of methylation at visit 2; CpGSdV2, standard deviation of the same methylation marker at visit 2; CpGmeanV4, mean of methylation at visit 4; CpGSdV4, standard deviation of the same methylation marker at visit 4; markname, SNP name; chrom, SNP’s chromosome; rsposition, SNP’s position in base pairs; rsgene, SNP’s gene name; role, SNP’s role; hg2, simulated expected heritability for each causative SNP; diffpos, difference in base pair positions between corresponding SNP and CpG markers
Table 2
Background polygenic SNPs. All markers are simulated with the same heritability (hg2 = 0.001) affecting triglycerides at visits 3 and 4
markname
chrom
position
Gene
role
strand_affy
allele_affy
coded_all
noncoded_all
coded_af
P_HWE
Callrate
SNPID
rs12037545
1
14875400
KIAA1026
intron
A/G
G
A
0.51764
0.378
1
SNP_A_2245928
rs11102122
1
1.11E + 08
  
+
G/T
T
G
0.534672
0.5963
0.997625
SNP_A_8451677
rs2004659
1
1.44E + 08
NUDT17
intron
A/G
A
G
0.629111
0.2478
0.995249
SNP_A_2211220
rs3806218
1
1.45E + 08
BCL9
near-g
+
C/T
C
T
0.655718
0.1067
0.998812
SNP_A_8575283
rs2352866
1
1.46E + 08
  
+
C/T
T
C
0.980535
1
0.998812
SNP_A_8635861
rs4637157
2
19443
  
+
C/T
T
C
0.906326
1
1
SNP_A_8500963
rs11903036
2
584324
  
G/T
G
T
0.53163
0.7181
1
SNP_A_8639506
rs4549126
2
714368
  
C/T
T
C
0.614964
0.448
1
SNP_A_8430739
rs6758300
2
75483393
  
A/G
G
A
0.568735
0.8567
1
SNP_A_2284162
rs4667937
2
1.67E + 08
  
A/T
A
T
0.739659
1
1
SNP_A_1851057
rs6785370
3
3933764
  
+
A/G
A
G
0.874696
0.4383
0.996437
SNP_A_4202617
rs7628979
3
4321347
SETMAR
intron
+
G/T
T
G
0.529197
0.07716
1
SNP_A_4290525
rs711664
3
4437544
SUMF1
intron
+
C/T
C
T
0.706204
0.6558
1
SNP_A_2098242
rs35489229
3
5088187
  
A/G
A
G
0.892336
1
1
SNP_A_2299978
rs1524557
3
81974721
  
A/G
A
G
0.639903
0.4311
1
SNP_A_2123904
rs1466475
4
80175727
  
C/T
T
C
0.81691
0.01551
1
SNP_A_2063157
rs2615479
4
88797334
DMP1
intron
C/T
C
T
0.71837
1
1
SNP_A_1862590
rs6849123
4
91684534
MGC48628
intron
A/G
G
A
0.894769
1
1
SNP_A_8414444
rs4267808
4
1.1E + 08
COL25A1
intron
G/T
T
G
0.871655
1
1
SNP_A_2063127
rs9992755
4
1.11E + 08
EGF
intron
+
A/G
A
G
0.686131
0.5216
1
SNP_A_1873873
rs11951861
5
84715767
  
A/G
A
G
0.827251
0.5626
1
SNP_A_8538997
rs1428900
5
84909967
  
C/T
C
T
0.731144
0.2558
1
SNP_A_2241509
rs17207011
5
85486010
  
+
A/C
C
A
0.886861
1
1
SNP_A_8651237
rs372106
5
1.23E + 08
  
+
A/G
G
A
0.619221
0.8545
1
SNP_A_1850833
rs7730187
5
1.68E + 08
SLIT3
intron
+
C/T
C
T
0.518248
0.1095
1
SNP_A_4282886
rs1482570
6
72738670
RIMS1
intron
C/G
C
G
0.867397
0.4147
1
SNP_A_2147869
rs1281958
6
1.53E + 08
  
G/T
G
T
0.587591
0.8568
1
SNP_A_4222639
rs9479769
6
1.55E + 08
OPRM1
intron
A/C
A
C
0.546837
0.5862
1
SNP_A_2252195
rs9322560
6
1.56E + 08
  
+
A/G
A
G
0.857664
0.7365
1
SNP_A_2204739
rs9457675
6
1.6E + 08
  
G/T
G
T
0.641728
0.8483
1
SNP_A_2109851
rs4721428
7
2137132
MAD1L1
intron
+
A/G
A
G
0.678832
0.03313
1
SNP_A_8644552
rs6461984
7
3314009
SDK1
intron
+
A/G
A
G
0.703771
1
0.997625
SNP_A_8500870
rs17186478
7
5779274
RNF216
intron
A/C
C
A
0.603406
0.8521
1
SNP_A_2276119
rs2110333
7
8151614
ICA1
intron
+
C/T
T
C
0.708029
0.09075
1
SNP_A_8699267
rs1352090
7
46160368
  
C/G
G
C
0.615572
0.364
1
SNP_A_8478994
rs4733163
8
33653826
  
A/G
G
A
0.625304
0.09864
1
SNP_A_8357393
rs2981182
8
40010613
  
A/C
C
A
0.53528
0.03005
1
SNP_A_8501882
rs2923408
8
42570683
  
+
A/G
A
G
0.542579
0.7232
1
SNP_A_2264082
rs16921991
8
58386566
  
+
C/T
T
C
0.796837
0.2484
1
SNP_A_4212967
rs10955119
8
98468181
  
C/G
G
C
0.58455
0.01847
1
SNP_A_1873431
rs7036143
9
90615114
  
C/T
T
C
0.827859
1
1
SNP_A_8332992
rs2196921
9
91748045
  
C/T
C
T
0.81691
0.4025
1
SNP_A_8714258
rs12238738
9
95433628
PHF2
intron
C/T
T
C
0.622263
0.02467
1
SNP_A_2103415
rs10984103
9
99679096
  
G/T
G
T
0.652068
1
1
SNP_A_8701456
rs1989773
9
1.17E + 08
  
+
A/G
G
A
0.990876
1
1
SNP_A_8526939
rs10887185
10
85670555
  
+
C/G
C
G
0.914234
0.09797
1
SNP_A_1799218
rs481179
10
1.08E + 08
  
+
C/T
T
C
0.576642
0.7135
1
SNP_A_8706770
rs17586536
10
1.2E + 08
C10orf46
intron
+
C/T
T
C
0.639903
1
1
SNP_A_8582485
rs10788015
10
1.22E + 08
  
C/T
T
C
0.569343
0.7223
1
SNP_A_8527983
rs4339955
10
1.22E + 08
  
+
C/T
T
C
0.78528
0.8055
1
SNP_A_8334121
rs11030861
11
29853551
  
A/G
G
A
0.937956
1
1
SNP_A_1788514
rs7947279
11
82018398
  
+
C/T
T
C
0.893552
0.1277
1
SNP_A_8345915
rs10895219
11
1.01E + 08
ANGPTL5
intron
C/T
T
C
0.965937
1
1
SNP_A_8703545
rs9888281
11
1.26E + 08
KIRREL3
intron
G/T
T
G
0.799878
0.5658
1
SNP_A_2206833
rs10790956
11
1.28E + 08
ETS1
intron
C/T
C
T
0.565085
1
1
SNP_A_2253706
rs7138234
12
21569984
C12orf39
near-g
+
C/T
T
C
0.994526
1
1
SNP_A_4277693
rs12426560
12
41977227
  
C/T
C
T
0.814477
0.2236
1
SNP_A_8404603
rs11183911
12
46055518
  
+
A/G
A
G
0.818735
0.7645
1
SNP_A_1956756
rs11113259
12
1.06E + 08
  
+
C/T
C
T
0.999392
1
0.998812
SNP_A_2030476
rs10219441
12
1.15E + 08
  
C/T
T
C
0.692214
0.5258
1
SNP_A_4223101
rs4427687
13
73781335
  
G/T
G
T
0.757299
0.1453
0.998812
SNP_A_2003390
rs9318328
13
74726372
  
+
A/T
T
A
0.541971
0.8591
0.998812
SNP_A_1854478
rs9573791
13
75607873
  
A/G
A
G
0.902068
1
1
SNP_A_2160026
rs2329072
13
77858815
  
+
C/T
T
C
0.594282
0.6994
1
SNP_A_2162287
rs2633019
13
82465113
  
A/G
A
G
0.530414
1
1
SNP_A_2024048
rs12897163
14
59385513
RTN1
intron
+
A/C
A
C
0.751217
0.3606
1
SNP_A_2233795
rs2121063
14
75798908
  
+
C/G
G
C
0.893552
0.2988
1
SNP_A_4298064
rs1676295
14
76103995
  
C/G
C
G
0.789538
1
1
SNP_A_2003847
rs1430569
14
86878849
  
C/T
C
T
0.53528
0.374
1
SNP_A_2185553
rs6575695
14
98363450
  
C/T
C
T
0.973236
1
1
SNP_A_2133926
rs1390876
15
45433081
  
C/T
C
T
0.595499
0.06189
1
SNP_A_2277486
rs13313462
15
45534066
  
C/T
T
C
0.620438
0.8445
1
SNP_A_8421063
rs7180426
15
60558330
  
C/T
C
T
0.859489
1
1
SNP_A_8713038
rs17477813
15
76147746
TBC1D2B
intron
C/T
T
C
0.692214
0.831
1
SNP_A_8395279
rs2072986
16
1631107
CRAMP1L
intron
A/G
A
G
0.847324
1
1
SNP_A_8348939
rs1077836
16
10248642
  
G/T
T
G
0.66545
0.7045
1
SNP_A_2287848
rs8052975
16
10856764
  
+
C/T
C
T
0.711679
1
1
SNP_A_8486961
rs6497651
16
23040046
USP31
intron
+
C/T
C
T
0.975669
1
1
SNP_A_8525616
rs27817
16
48013792
  
+
A/G
G
A
0.97202
1
0.997625
SNP_A_8365337
rs9897174
17
49611224
  
+
G/T
G
T
0.948905
1
1
SNP_A_2309201
rs345168
17
55565566
  
A/G
G
A
0.959854
1
1
SNP_A_1796579
rs9908999
17
56215981
BCAS3
intron
+
A/G
A
G
0.909367
0.5936
1
SNP_A_1848643
rs1112364
17
57597131
  
+
C/T
C
T
0.905718
0.4362
1
SNP_A_8550334
rs12936559
17
57680004
  
+
A/G
G
A
0.935523
1
1
SNP_A_8410067
rs1318841
18
17138521
  
C/T
C
T
0.967153
1
1
SNP_A_2087816
rs17202807
18
19434594
ANKRD29
utr-3
+
G/T
T
G
0.955596
1
0.998812
SNP_A_2132404
rs339869
18
20461587
  
+
A/G
A
G
0.55292
0.4779
1
SNP_A_8437981
rs11083025
18
49698325
  
A/G
G
A
0.930657
1
1
SNP_A_1888265
rs4325666
18
65460176
DOK6
intron
C/T
C
T
0.933698
1
1
SNP_A_1924329
rs8111862
19
12420713
  
C/T
C
T
0.51399
0.5942
1
SNP_A_2179593
rs2453888
19
22423985
  
C/G
G
C
0.849757
0.03764
1
SNP_A_8549134
rs16999009
19
22701498
  
+
A/G
G
A
0.877129
0.2534
1
SNP_A_2094893
rs7252281
19
35965262
  
+
G/T
T
G
0.65204
0.1049
0.98337
SNP_A_1867428
rs7254832
19
43637691
RYR1
intron
+
C/T
C
T
0.871046
0.7148
1
SNP_A_1791707
rs1974821
19
56609547
LOC10012
coding
C/T
C
T
0.852798
1
1
SNP_A_8587419
rs6056690
20
9475353
PAK7
intron
C/T
T
C
0.850365
0.1277
1
SNP_A_2250060
rs1415774
20
33229277
PROCR
near-g
C/T
C
T
0.566302
0.4777
1
SNP_A_2130084
rs6093657
20
40549705
PTPRT
intron
+
A/G
A
G
0.877737
1
1
SNP_A_8463206
rs7260668
20
42919440
  
A/G
A
G
0.694039
0.8358
1
SNP_A_1875543
rs13042657
20
44356316
  
C/T
C
T
0.784063
0.7955
1
SNP_A_8623899
Abbreviations: markname, SNP name; chrom, SNP’s chromosome; position, SNP’s position in base pairs; Gene, SNP’s gene name; role, SNP’s role; strand_affy, +/− strand of the SNP; allele_affy, the SNP’s Affymetrix array alleles; coded_all, coded allele; noncoded_all, noncoded allele; coded_af, coded allele frequency; P_HWE, p-value for testing Hardy Weinberg Equilibrium; Callrate, call rate for the SNP; SNPID, Affymetrix array SNP ID
We first defined a series of subjects’ triglyceride values from the original (real) Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) data [1], which was used to generate the simulations. Because triglycerides were approximately log-normally distributed, we worked with log-transformed triglyceride values in all calculations, only transforming back to the measured triglyceride scale at the end of the simulations. In particular, for the jth subject, the average log triglycerides pre-treatment (average of visits 1 and 2, which are 1 day apart) and post-treatment (average of visits 3 and 4, which are also 1 day apart) in the original (real) GOLDN data are:
$$ \boldsymbol{O}\_\boldsymbol{preRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}}=\boldsymbol{mean}\left(\mathbf{\log}\left(\boldsymbol{TG}{\mathbf{1}}_{\boldsymbol{j}}\right),\mathbf{\log}\left(\boldsymbol{TG}{\mathbf{2}}_{\boldsymbol{j}}\right)\right) $$
$$ \boldsymbol{O}\_\boldsymbol{postRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}}=\boldsymbol{mean}\left(\mathbf{\log}\left(\boldsymbol{TG}{\mathbf{3}}_{\boldsymbol{j}}\right),\mathbf{\log}\left(\boldsymbol{TG}{\mathbf{4}}_{\boldsymbol{j}}\right)\right) $$
where O –stands for “Observed / Original”, preRx stands for “pre-medication treatment,” postRx stands for “after medication treatment,” and TG labels “triglycerides” which were log transformed to ensure a normal distribution of the trait. The TG of person j is measured in visits 1, 2, 3 and 4 and averaged as above for each individual as preRx and postRx. The corresponding change in log triglycerides pre-treatment to post-treatment for subject j is given by:
$$ \boldsymbol{O}\_\boldsymbol{delta}\_{\boldsymbol{TG}}_{\boldsymbol{j}}=\left[\boldsymbol{O}\_\boldsymbol{postRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}}-\boldsymbol{O}\_\boldsymbol{preRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}}\right] $$
where delta is the “change”. The individual time on treatment (less than 30 days) for each subject (in days), is given by the following formula:
$$ \boldsymbol{O}\_{\boldsymbol{daysRx}}_{\boldsymbol{j}}=\boldsymbol{mean}\left(\boldsymbol{draw}\_\boldsymbol{date}\_\boldsymbol{v}{\mathbf{3}}_{\boldsymbol{j}},\boldsymbol{draw}\_\boldsymbol{date}\_\boldsymbol{v}{\mathbf{4}}_{\boldsymbol{j}}\right)-\boldsymbol{draw}\_\boldsymbol{date}\_\boldsymbol{v}{\mathbf{2}}_{\boldsymbol{j}} $$
where daysRx is “days after medication treatment,” draw_date is “blood draw date” at a particular v- “visit.” Thus, the observed slope (change in log triglycerides over the treatment period) is:
$$ \boldsymbol{O}\_\boldsymbol{slope}\_{\boldsymbol{TG}}_{\boldsymbol{j}}=\boldsymbol{O}\_\boldsymbol{delta}\_{\boldsymbol{TG}}_{\boldsymbol{j}}/\boldsymbol{O}\_{\boldsymbol{daysRx}}_{\boldsymbol{j}} $$
If mean_O_PreRx_TG and sd_O_preRx_TG are the mean and standard deviations, respectively, of all the O_preRx_TGj across the j = 1, …, N individuals, then the standardized original preRx of TGj are given by:
$$ \boldsymbol{O}\_{\boldsymbol{preZ}}_{\boldsymbol{j}}=\left(\boldsymbol{O}\_\boldsymbol{preRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}}-\boldsymbol{mean}\_\boldsymbol{O}\_\boldsymbol{PreRx}\_\boldsymbol{TG}\right)/\boldsymbol{sd}\_\boldsymbol{O}\_\boldsymbol{preRx}\_\boldsymbol{TG} $$
where O_preZ -is a standardized normally distributed variable with N(0,1).
Tables 1 and 2 summarize the epigenetic model in our simulation. We chose 5 “major gene” causal variants (ranging from modest to small effect sizes corresponding to expected “heritabilities” of 0.125, 0.10, 0.075, 0.05, and 0.025), which, in the absence of any epigenetic effects, should govern individual genomethate treatment response along with 100 polygene variants (each of tiny effect size corresponding to “heritabilities” of 0.001 each). These were chosen randomly from chromosomes 1–20 of the GWAS Affymetrix Genome-wide Human SNP Array 6.0, which had 718,544 autosomal SNPs.
For the epigenetic component, we choose 5 CpG sites on the Illumina Infinium HumanMethylation450 BeadChip array (which had 463,995 CpG sites) that are physically closest to the 5 “major gene” causal SNPs, while the methylation sites near the 100 polygenes have no effect. The genomethate response model is based upon the idea that these CpG sites need to be sufficiently unmethylated for the corresponding causal SNPs to express their influence on each individual’s phenotype. If the nearby CpG site is totally methylated (=1), then the corresponding causal SNP actually has no effect on the phenotype. If the CpG site is totally unmethylated (=0), then the corresponding causal SNP carries its full effect size impact on the phenotype. If the CpG site is partially methylated (between 0 and 1), then the effect size of the causal SNP is proportionally attenuated.
Specifically, for the kth simulation, we first generated the simulated visit 4 methylation array results for all subjects, based upon their corresponding visit 2 and/ or visit 4 methylation values. For each subject j = 1, …, 717, and each CpG methylation site i = 1, 2, 3, 4, 5 (corresponding to 5 major effect CpGs)
$$ \boldsymbol{sim}\_\boldsymbol{meth}\_\boldsymbol{v}{\mathbf{4}}_{\boldsymbol{ji}\boldsymbol{k}}=\boldsymbol{real}\_\boldsymbol{meth}\_\boldsymbol{v}{\mathbf{2}}_{\boldsymbol{ji}}+{\boldsymbol{sd}}_{\boldsymbol{i}}\ast \boldsymbol{Z}{\mathbf{1}}_{\boldsymbol{ji}\boldsymbol{k}} $$
where sim_meth stands for “simulated methylation” at visit 4, real_meth is the jth subject’s “real methylation” array data at visit 2 for the ith CpG site, sdi = 0.4 represents the standard deviation of individual subject methylation responses to treatment, and Z1jik ~ N(0, 1) is a pseudo-random standard normal variable drawn independently for each jik.
For the remaining, non-causal CpG sites, if the subject j had real visit 4 methylation array data then
$$ \boldsymbol{sim}\_\boldsymbol{meth}\_\boldsymbol{v}{\mathbf{4}}_{\boldsymbol{ji}\boldsymbol{k}}=\boldsymbol{real}\_\boldsymbol{meth}\_\boldsymbol{v}{\mathbf{4}}_{\boldsymbol{ji}}+{\boldsymbol{sd}}_{\boldsymbol{i}}\ast \boldsymbol{Z}{\mathbf{1}}_{\boldsymbol{ji}\boldsymbol{k}} $$
Otherwise, if the subject j only had visit 2 methylation array data, then
$$ \boldsymbol{sim}\_\boldsymbol{meth}\_\boldsymbol{v}{\mathbf{4}}_{\boldsymbol{ji}\boldsymbol{k}}=\boldsymbol{real}\_\boldsymbol{meth}\_\boldsymbol{v}{\mathbf{2}}_{\boldsymbol{ji}}+{\boldsymbol{sd}}_{\boldsymbol{i}}\ast \boldsymbol{Z}{\mathbf{1}}_{\boldsymbol{ji}\boldsymbol{k}} $$
where real_meth_v2ji and real_meth_v4ji are the real visit 2 and visit 4 methylation array data, respectively, for subject j and CpG site i, sdi represents the standard deviation of individual subject methylation responses to treatment for the ith CpG site, and again, Z1jik ~ N(0,1) is a pseudo-random variable drawn independently for each jik.
We selected five random non-causal (red-herrings) CpG sites also (shown in Table 3). We set for them the sdi = 0.4, to be similar to the simulated causal CpG sites. For the remaining non-causal CpG sites, we set the corresponding sdi = 0.03, which is closer to that seen in the real visit 4 methylation data CpG sites, essentially at the measurement error level.
Table 3
Five non-causal (red-herrings) CpG markers chosen to have N(0,0.4) random variability, imitating the distribution of the 5 real causative CpG markers
Methylvar
chrom
cgposition
cggene
CpGdata Partition
rsid
rsposition
rsRole
rsGene
strand_affy
allele_affy
coded_allele
noncoded_all
coded_all_freq
p_HWE
callrate
snpid
cg00703276
3
1.3E + 08
NA
3
rs2953763
131243312
 
NA
A/G
G
A
0.987211
1
0.99881
SNP_A_8675856
cg01971676
7
4.3E + 07
HECW1
8
rs6960763
43150741
intron
HECW1
+
C/T
C
T
0.550983
0.017
0.98931
SNP_A_2264336
cg11736230
14
1E + 08
PPP1R13B
43
rs2494731
104308725
intron
AKT1
+
C/G
G
C
0.677045
0.6804
0.99406
SNP_A_2232252
cg00001261
16
3463964
NA
1
rs4786421
3462304
intron
FLJ14154
+
A/G
G
A
0.690389
0.0168
1
SNP_A_4291807
cg12598270
18
3.3E + 07
ZNF396
46
rs323312
32996624
intron
KIAA1328
A/G
G
A
0.858364
0.154
0.99525
SNP_A_4288135
Abbreviations: Methylvar, CpG marker name; chrom, CpG marker’s chromosome; cgposition, CpG marker position in base pairs; cggene, CpG marker’s gene; CpGdata Partition, a number that refers to a simulated data partition distributed; rsid, SNP name; rsposition, SNP’s position in base pairs; rsRole, SNP’s role; rsGene, SNP’s gene name; strand_affy, +/− strand on which the SNP is located; allele_affy – the SNP’s Affymetrix array alleles; coded_allele – coded allele; noncoded_all – noncoded allele; coded_all_freq – coded allele frequency; p_HWE – p-value for testing Hardy Weinberg Equilibrium; callrate – call rate for the SNP; snpid – Affymetrix array SNP ID
In all cases, all simulated visit 4 methylation values were then truncated to be strictly in the [0,1] interval, that is,
if (sim_meth_v4jik>1) then sim_meth_v4jik=1
if (sim_meth_v4jik<0) then sim_meth_v4jik=0
for all subjects j, CpG sites i, and simulation replications k.
Note that the model is such that, on average, the genomethate treatment has no effect on the amount of methylation increase/decrease from visit 2 to visit 4, however, there is variability across subjects. To reiterate, the variability is quite high (sdi = 0.4) for the five CpG regions controlling the expression of the major causal variants and 5 other non-causal CpG (red-herrings) sites. The variability is low (sdi = 0.03) for all other CpGs, at the level of measurement error.
Using these simulated visit 4 methylation data, we then generated the simulated slope change in triglyceride response for each individual j in each replication k as follows:
$$ {\boldsymbol{slope}}_{\boldsymbol{jk}}={\sum}_{\boldsymbol{i}=\mathbf{1}}^{\mathbf{5}}\left(\mathbf{1}-\boldsymbol{sim}\_\boldsymbol{meth}\_\boldsymbol{v}{\mathbf{4}}_{\boldsymbol{ji}\boldsymbol{k}}\right)\ast \boldsymbol{sqrt}\left(\boldsymbol{hg}{\mathbf{2}}_{\boldsymbol{i}}\right)\ast {\boldsymbol{SSNP}}_{\boldsymbol{ji}}+{\sum}_{\boldsymbol{i}=\mathbf{6}}^{\mathbf{105}}\boldsymbol{sqrt}\left(\boldsymbol{hg}{\mathbf{2}}_{\boldsymbol{i}}\right)\ast {\boldsymbol{SSNP}}_{\boldsymbol{ji}}+{\boldsymbol{zenv}}_{\boldsymbol{jk}}\ast \boldsymbol{sqrt}\left(\mathbf{1}-\sum \limits_{\boldsymbol{i}=\mathbf{1}}^{\mathbf{105}}\boldsymbol{hg}{\mathbf{2}}_{\boldsymbol{i}}\right) $$
(1)
In the above formula, zenvjk is an independently drawn pseudo-random normal deviate distributed N(0,1) for each subject j and each replication k, and it represents unexplained residual variation in the phenotype. SSNPji is the standardized ith SNP additive genotype-dosage (i.e., coded such that mean = 0 and sdi = 1 in the sample), and the i = 1, 2, …, 105 regression coefficients in this linear model are given in terms of constants sqrt(hg2i), in Tables 1 and 3. Note that if the five causal CpG sites were completely unmethylated for all subjects (i.e., no epigenetic effects), then (1 – sim_meth_v4 jik) would be = 1 for all j = 1,…, N and i = 1,…, 5, and k = 1,…, 200, so that the regression coefficients would be interpreted as the square root of the locus specific heritability of the associated SNPs. Conversely, when the causal CpG site is totally methylated for that subject, (1 - sim_meth_v4 jik) = 0, so that the corresponding major effect SNPi will not express its effect on the phenotype. Similarly, if the CpG site is partially methylated (between 0 and 1), the effect size of the causal SNP is proportionally attenuated.
To carry forward these simulated relationships in eq. (1), we must address the fact that the observed slope responses for each subject are correlated to their baseline values of triglyceride (i.e., lower baseline values should produce less dramatic declines with treatment, whereas higher baseline values can experience greater slope change with treatment). In the real GOLDN data, the correlation between slope change in response to fenofibrate treatment and baseline log triglycerides is − 0.41881, and we used this constant value in our genomethate simulation to introduce a correlation between slope change and baseline values:
$$ {\boldsymbol{corrz}}_{\boldsymbol{j}\boldsymbol{k}}=\left(-\mathbf{0.41881}\right)\ast \boldsymbol{O}\_{\boldsymbol{preZ}}_{\boldsymbol{j}}+\boldsymbol{sqrt}\left(\mathbf{1}-{\left(\mathbf{0.41881}\right)}^{\mathbf{2}}\right)\ast {\boldsymbol{slope}}_{\boldsymbol{j}\boldsymbol{k}} $$
Because the simulated individual slopes are generated on the standardized scale, we needed to rescale to that of the original scale of triglyceride changes per day of treatment, by working backwards. The mean and standard deviation of O_slope_TGj over all subjects j, are denoted by mean_O_slope_TG and sd_O_slope_TG, respectively. We used the above observed mean and standard deviation of slopes seen in the original GOLDN data, to rescale as follows:
$$ \boldsymbol{sim}\_{\boldsymbol{slope}}_{\boldsymbol{jk}}={\boldsymbol{corrz}}_{\boldsymbol{jk}}\ast \boldsymbol{sd}\_\boldsymbol{O}\_\boldsymbol{slope}\_\boldsymbol{TG}+\boldsymbol{mean}\_\boldsymbol{O}\_\boldsymbol{slope}\_\boldsymbol{TG} $$
Then the expected response to genomethate treatment of the jth subject, after O_DaysRxj original days of treatment, is given by:
$$ \boldsymbol{sim}\_\boldsymbol{postRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}\boldsymbol{k}}=\left(\boldsymbol{sim}\_{\boldsymbol{slope}}_{\boldsymbol{j}\boldsymbol{k}}\ast \boldsymbol{O}\_{\boldsymbol{DaysRx}}_{\boldsymbol{j}}\right)+\boldsymbol{O}\_\boldsymbol{preRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}} $$
Finally, we used the simulated individual responses to produce the simulated values of triglyceride at visits 3 and 4, based upon the variability we see between those visits in the real GOLDN fenofibrate data:
$$ \boldsymbol{sim}\_\boldsymbol{TG}{\mathbf{3}}_{\boldsymbol{j}\boldsymbol{k}}=\boldsymbol{\exp}\left[\boldsymbol{sim}\_\boldsymbol{postRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}\boldsymbol{k}}+\left(\mathbf{\log}\Big(\boldsymbol{TG}{\mathbf{3}}_{\boldsymbol{j}}\right)-\boldsymbol{O}\_\boldsymbol{postRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}}\Big)\right] $$
(2)
$$ \boldsymbol{sim}\_\boldsymbol{TG}{\mathbf{4}}_{\boldsymbol{j}\boldsymbol{k}}=\boldsymbol{\exp}\left[\boldsymbol{sim}\_\boldsymbol{postRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}\boldsymbol{k}}+\left(\mathbf{\log}\Big(\boldsymbol{TG}{\mathbf{4}}_{\boldsymbol{j}}\right)-\boldsymbol{O}\_\boldsymbol{postRx}\_{\boldsymbol{TG}}_{\boldsymbol{j}}\Big)\right] $$
(3)
If only 1 replicate of the GAW20 simulated data was to be analyzed, we recommend the 84th replication, which was provided in a separate directory, as a “representative” of the 200 replicated simulations. Chromosomes 21 and 22 datasets were not used in the simulation, so an analyst can use the corresponding data for building a NULL hypothesis. The simulated GAW20 data are accompanied by README and Data Dictionary files.

Acknowledgements

This study was supported in part by the NHLBI grant R01HL117078

Funding

Publication of this article was supported by NIH R01 GM031575.

Availability of data and materials

The data that support the findings of this study are available from the Genetic Analysis Workshop (GAW), but restrictions apply to the availability of these data, which were used under license for the current study. Qualified researchers’ may request these data directly from GAW.

About this supplement

This article has been published as part of BMC Proceedings Volume 12 Supplement 9, 2018: Genetic Analysis Workshop 20: envisioning the future of statistical genetics by exploring methods for epigenetic and pharmacogenomic data. The full contents of the supplement are available online at https://​bmcproc.​biomedcentral.​com/​articles/​supplements/​volume-12-supplement-9.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Tintle NL, Fardo DW, deAndrade M, Aslibekyan S, Bailey JN, Bermejo JL, Cantor RM, Ghosh S, Melton P, Wang X, MacCluer JW, Almasy L. GAW20: methods and strategies for the new frontiers of epigenetics and pharmacogenomics. BMC Proc. 2018;12(Suppl 9) https://doi.org/10.1186/s12919-018-0113-1. Tintle NL, Fardo DW, deAndrade M, Aslibekyan S, Bailey JN, Bermejo JL, Cantor RM, Ghosh S, Melton P, Wang X, MacCluer JW, Almasy L. GAW20: methods and strategies for the new frontiers of epigenetics and pharmacogenomics. BMC Proc. 2018;12(Suppl 9) https://​doi.​org/​10.​1186/​s12919-018-0113-1.
2.
Zurück zum Zitat Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, Thibeault KS, Patel N, Day K, Jones LW, et al. Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation. 2014;130(7):565–72.CrossRef Irvin MR, Zhi D, Joehanes R, Mendelson M, Aslibekyan S, Claas SA, Thibeault KS, Patel N, Day K, Jones LW, et al. Epigenome-wide association study of fasting blood lipids in the genetics of lipid-lowering drugs and diet network study. Circulation. 2014;130(7):565–72.CrossRef
3.
Zurück zum Zitat Aslibekyan S, Almasy L, Province MA, Absher DM, Arnett DK. Data for GAW20: genome-wide DNA sequence variation and epigenome-wide DNA methylation before and after fenofibrate treatment in a family study of metabolic phenotypes. BMC Proc. 2018;12(Suppl 9) https://doi.org/10.1186/s12919-018-0114-0. Aslibekyan S, Almasy L, Province MA, Absher DM, Arnett DK. Data for GAW20: genome-wide DNA sequence variation and epigenome-wide DNA methylation before and after fenofibrate treatment in a family study of metabolic phenotypes. BMC Proc. 2018;12(Suppl 9) https://​doi.​org/​10.​1186/​s12919-018-0114-0.
Metadaten
Titel
Simulation of a medication and methylation effects on triglycerides in the Genetic Analysis Workshop 20
verfasst von
Aldi T. Kraja
Ping An
Petra Lenzini
Shiou J. Lin
Christine Williams
James E. Hicks
E. Warwick Daw
Michael A. Province
Publikationsdatum
01.09.2018
Verlag
BioMed Central
Erschienen in
BMC Proceedings / Ausgabe Sonderheft 9/2018
Elektronische ISSN: 1753-6561
DOI
https://doi.org/10.1186/s12919-018-0115-z

Weitere Artikel der Sonderheft 9/2018

BMC Proceedings 9/2018 Zur Ausgabe