Skip to main content
Erschienen in: Acta Neuropathologica 1/2013

01.01.2013 | Review

Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms

verfasst von: Kristen J. Nowak, Gianina Ravenscroft, Nigel G. Laing

Erschienen in: Acta Neuropathologica | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Abstract

Mutations in the skeletal muscle α-actin gene (ACTA1) cause a range of congenital myopathies characterised by muscle weakness and specific skeletal muscle structural lesions. Actin accumulations, nemaline and intranuclear bodies, fibre-type disproportion, cores, caps, dystrophic features and zebra bodies have all been seen in biopsies from patients with ACTA1 disease, with patients frequently presenting with multiple pathologies. Therefore increasingly it is considered that these entities may represent a continuum of structural abnormalities arising due to ACTA1 mutations. Recently an ACTA1 mutation has also been associated with a hypertonic clinical presentation with nemaline bodies. Whilst multiple genes are known to cause many of the pathologies associated with ACTA1 mutations, to date actin aggregates, intranuclear rods and zebra bodies have solely been attributed to ACTA1 mutations. Approximately 200 different ACTA1 mutations have been identified, with 90 % resulting in dominant disease and 10 % resulting in recessive disease. Despite extensive research into normal actin function and the functional consequences of ACTA1 mutations in cell culture, animal models and patient tissue, the mechanisms underlying muscle weakness and the formation of structural lesions remains largely unknown. Whilst precise mechanisms are being grappled with, headway is being made in terms of developing therapeutics for ACTA1 disease, with gene therapy (specifically reducing the proportion of mutant skeletal muscle α-actin protein) and pharmacological agents showing promising results in animal models and patient muscle. The use of small molecules to sensitise the contractile apparatus to Ca2+ is a promising therapeutic for patients with various neuromuscular disorders, including ACTA1 disease.
Literatur
1.
Zurück zum Zitat Agrawal PB, Strickland CD, Midgett C, Morales A, Newburger DE et al (2004) Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann Neurol 56(1):86–96PubMedCrossRef Agrawal PB, Strickland CD, Midgett C, Morales A, Newburger DE et al (2004) Heterogeneity of nemaline myopathy cases with skeletal muscle alpha-actin gene mutations. Ann Neurol 56(1):86–96PubMedCrossRef
2.
Zurück zum Zitat Bauer DE, Orkin SH (2011) Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr Opin Pediatr 23(1):1–8PubMedCrossRef Bauer DE, Orkin SH (2011) Update on fetal hemoglobin gene regulation in hemoglobinopathies. Curr Opin Pediatr 23(1):1–8PubMedCrossRef
3.
Zurück zum Zitat Beall CJ, Sepanski MA, Fyrberg EA (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Gene Dev 3(2):131–140PubMedCrossRef Beall CJ, Sepanski MA, Fyrberg EA (1989) Genetic dissection of Drosophila myofibril formation: effects of actin and myosin heavy chain null alleles. Gene Dev 3(2):131–140PubMedCrossRef
4.
Zurück zum Zitat Bing W, Razzaq A, Sparrow J, Marston S (1998) Tropomyosin and troponin regulation of wild type and E93K mutant actin filaments from Drosophila flight muscle. Charge reversal on actin changes actin-tropomyosin from on to off state. J Biol Chem 273(24):15016–15021PubMedCrossRef Bing W, Razzaq A, Sparrow J, Marston S (1998) Tropomyosin and troponin regulation of wild type and E93K mutant actin filaments from Drosophila flight muscle. Charge reversal on actin changes actin-tropomyosin from on to off state. J Biol Chem 273(24):15016–15021PubMedCrossRef
5.
Zurück zum Zitat Bornemann A, Petersen MB, Schmalbruch H (1996) Fatal congenital myopathy with actin filament deposits. Acta Neuropathol 92(1):104–108PubMedCrossRef Bornemann A, Petersen MB, Schmalbruch H (1996) Fatal congenital myopathy with actin filament deposits. Acta Neuropathol 92(1):104–108PubMedCrossRef
6.
Zurück zum Zitat Clarke NF, Ilkovski B, Cooper S, Valova VA, Robinson PJ et al (2007) The pathogenesis of ACTA1-related congenital fiber type disproportion. Ann Neurol 61(6):552–561PubMedCrossRef Clarke NF, Ilkovski B, Cooper S, Valova VA, Robinson PJ et al (2007) The pathogenesis of ACTA1-related congenital fiber type disproportion. Ann Neurol 61(6):552–561PubMedCrossRef
7.
Zurück zum Zitat Clarke NF, North KN (2003) Congenital fiber type disproportion-30 years on. J Neuropath Exp Neur 62(10):977–989PubMed Clarke NF, North KN (2003) Congenital fiber type disproportion-30 years on. J Neuropath Exp Neur 62(10):977–989PubMed
8.
Zurück zum Zitat Conen PE, Murphy EG, Donohue WL (1963) Light and electron microscopic studies of “myogranules” in a child with hypotonia and muscle weakness. Canad Med Assoc J 89:983–986PubMed Conen PE, Murphy EG, Donohue WL (1963) Light and electron microscopic studies of “myogranules” in a child with hypotonia and muscle weakness. Canad Med Assoc J 89:983–986PubMed
9.
Zurück zum Zitat Costa CF, Rommelaere H, Waterschoot D, Sethi KK, Nowak KJ et al (2004) Myopathy mutations in α-skeletal-muscle actin cause a range of molecular defects. J Cell Sci 117(15):3367–3377PubMedCrossRef Costa CF, Rommelaere H, Waterschoot D, Sethi KK, Nowak KJ et al (2004) Myopathy mutations in α-skeletal-muscle actin cause a range of molecular defects. J Cell Sci 117(15):3367–3377PubMedCrossRef
10.
Zurück zum Zitat Crawford K, Flick R, Close L, Shelly D, Paul R et al (2002) Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol Cell Biol 22(16):5887–5896PubMedCrossRef Crawford K, Flick R, Close L, Shelly D, Paul R et al (2002) Mice lacking skeletal muscle actin show reduced muscle strength and growth deficits and die during the neonatal period. Mol Cell Biol 22(16):5887–5896PubMedCrossRef
11.
Zurück zum Zitat Cripps RM, Ball E, Stark M, Lawn A, Sparrow JC (1994) Recovery of dominant, autosomal flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics 137(1):151–164PubMed Cripps RM, Ball E, Stark M, Lawn A, Sparrow JC (1994) Recovery of dominant, autosomal flightless mutants of Drosophila melanogaster and identification of a new gene required for normal muscle structure and function. Genetics 137(1):151–164PubMed
12.
Zurück zum Zitat D’Amico A, Graziano C, Pacileo G, Petrini S, Nowak KJ et al (2006) Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscular Disord 16(9–10):548–552CrossRef D’Amico A, Graziano C, Pacileo G, Petrini S, Nowak KJ et al (2006) Fatal hypertrophic cardiomyopathy and nemaline myopathy associated with ACTA1 K336E mutation. Neuromuscular Disord 16(9–10):548–552CrossRef
13.
Zurück zum Zitat De Paula AM, Franques J, Fernandez C, Monnier N, Lunardi J et al (2009) A TPM3 mutation causing cap myopathy. Neuromuscular Disord 19(10):685–688CrossRef De Paula AM, Franques J, Fernandez C, Monnier N, Lunardi J et al (2009) A TPM3 mutation causing cap myopathy. Neuromuscular Disord 19(10):685–688CrossRef
14.
Zurück zum Zitat Domazetovska A, Ilkovski B, Cooper ST, Ghoddusi M, Hardeman EC et al (2007) Mechanisms underlying intranuclear rod formation. Brain 130(12):3275–3284PubMedCrossRef Domazetovska A, Ilkovski B, Cooper ST, Ghoddusi M, Hardeman EC et al (2007) Mechanisms underlying intranuclear rod formation. Brain 130(12):3275–3284PubMedCrossRef
15.
Zurück zum Zitat Domazetovska A, Ilkovski B, Kumar V, Valova VA, Vandebrouck A et al (2007) Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness. Ann Neurol 62(6):597–608PubMedCrossRef Domazetovska A, Ilkovski B, Kumar V, Valova VA, Vandebrouck A et al (2007) Intranuclear rod myopathy: molecular pathogenesis and mechanisms of weakness. Ann Neurol 62(6):597–608PubMedCrossRef
16.
Zurück zum Zitat dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M et al (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473PubMed dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M et al (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83(2):433–473PubMed
17.
Zurück zum Zitat Drummond DR, Hennessey ES, Sparrow JC (1991) Characterisation of missense mutations in the Act88F gene of Drosophila melanogaster. Mol Gen Genet 226(1–2):70–80PubMedCrossRef Drummond DR, Hennessey ES, Sparrow JC (1991) Characterisation of missense mutations in the Act88F gene of Drosophila melanogaster. Mol Gen Genet 226(1–2):70–80PubMedCrossRef
18.
Zurück zum Zitat Dubowitz V, Sewry CA (2007) Muscle biopsy: a practical approach, 3rd edn. Saunders Elsevier, Philadelphia Dubowitz V, Sewry CA (2007) Muscle biopsy: a practical approach, 3rd edn. Saunders Elsevier, Philadelphia
19.
Zurück zum Zitat Feng JJ, Marston S (2009) Genotype-phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscular Disord 19(1):6–16CrossRef Feng JJ, Marston S (2009) Genotype-phenotype correlations in ACTA1 mutations that cause congenital myopathies. Neuromuscular Disord 19(1):6–16CrossRef
20.
Zurück zum Zitat Fidzianska A, Badurska B, Ryniewicz B, Dembek I (1981) “Cap disease”: new congenital myopathy. Neurol 31(9):1113–1120CrossRef Fidzianska A, Badurska B, Ryniewicz B, Dembek I (1981) “Cap disease”: new congenital myopathy. Neurol 31(9):1113–1120CrossRef
21.
Zurück zum Zitat Goebel HH, Anderson JR, Hubner C, Oexle K, Warlo I (1997) Congenital myopathy with excess of thin myofilaments. Neuromuscular Disord 7:160–168CrossRef Goebel HH, Anderson JR, Hubner C, Oexle K, Warlo I (1997) Congenital myopathy with excess of thin myofilaments. Neuromuscular Disord 7:160–168CrossRef
22.
23.
Zurück zum Zitat Goebel HH, Lenard HG (1992) Congenital myopathies. In: Rowland LP, DiMauro S (eds) Myopathies—handbook of clinical neurology, vol 18(62). Elsevier Science, Amsterdam, pp 331–367 Goebel HH, Lenard HG (1992) Congenital myopathies. In: Rowland LP, DiMauro S (eds) Myopathies—handbook of clinical neurology, vol 18(62). Elsevier Science, Amsterdam, pp 331–367
24.
Zurück zum Zitat Goebel HH, Piirso A, Warlo I, Schofer O, Kehr S et al (1997) Infantile intranuclear rod myopathy. J Child Neurol 12:22–30PubMedCrossRef Goebel HH, Piirso A, Warlo I, Schofer O, Kehr S et al (1997) Infantile intranuclear rod myopathy. J Child Neurol 12:22–30PubMedCrossRef
25.
Zurück zum Zitat Goebel HH, Warlo I (1997) Nemaline myopathy with intranuclear rods—intranuclear rod myopathy. Neuromuscular Disord 7:13–19CrossRef Goebel HH, Warlo I (1997) Nemaline myopathy with intranuclear rods—intranuclear rod myopathy. Neuromuscular Disord 7:13–19CrossRef
26.
Zurück zum Zitat Haigh SE, Salvi SS, Sevdali M, Stark M, Goulding D et al (2010) Drosophila indirect flight muscle specific Act88F actin mutants as a model system for studying congenital myopathies of the human ACTA1 skeletal muscle actin gene. Neuromuscular Disord 20(6):363–374CrossRef Haigh SE, Salvi SS, Sevdali M, Stark M, Goulding D et al (2010) Drosophila indirect flight muscle specific Act88F actin mutants as a model system for studying congenital myopathies of the human ACTA1 skeletal muscle actin gene. Neuromuscular Disord 20(6):363–374CrossRef
27.
Zurück zum Zitat Hennessey ES, Harrison A, Drummond DR, Sparrow JC (1992) Mutant actin: a dead end? J Musc Res Cell Motil 13:127–131CrossRef Hennessey ES, Harrison A, Drummond DR, Sparrow JC (1992) Mutant actin: a dead end? J Musc Res Cell Motil 13:127–131CrossRef
28.
Zurück zum Zitat Hung RM, Yoon G, Hawkins CE, Halliday W, Biggar D et al (2010) Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1. Neuromuscular Disord 20(4):238–240CrossRef Hung RM, Yoon G, Hawkins CE, Halliday W, Biggar D et al (2010) Cap myopathy caused by a mutation of the skeletal alpha-actin gene ACTA1. Neuromuscular Disord 20(4):238–240CrossRef
29.
Zurück zum Zitat Hutchinson DO, Charlton A, Laing NG, Ilkovski B, North KN (2006) Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: clinical and pathological variability within a kindred. Neuromuscular Disord 16(2):113–121CrossRef Hutchinson DO, Charlton A, Laing NG, Ilkovski B, North KN (2006) Autosomal dominant nemaline myopathy with intranuclear rods due to mutation of the skeletal muscle ACTA1 gene: clinical and pathological variability within a kindred. Neuromuscular Disord 16(2):113–121CrossRef
30.
Zurück zum Zitat Huxley AF, Niedergerke R (1954) Structural changes during contraction: interference microscopy of living muscle fibres. Nature 173:971–973PubMedCrossRef Huxley AF, Niedergerke R (1954) Structural changes during contraction: interference microscopy of living muscle fibres. Nature 173:971–973PubMedCrossRef
31.
Zurück zum Zitat Ilkovski B, Clement S, Sewry C, North KN, Cooper ST (2005) Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscular Disord 15(12):829–835CrossRef Ilkovski B, Clement S, Sewry C, North KN, Cooper ST (2005) Defining alpha-skeletal and alpha-cardiac actin expression in human heart and skeletal muscle explains the absence of cardiac involvement in ACTA1 nemaline myopathy. Neuromuscular Disord 15(12):829–835CrossRef
32.
Zurück zum Zitat Ilkovski B, Cooper ST, Nowak K, Ryan MM, Yang N et al (2001) Nemaline myopathy caused by mutations in the muscle α-skeletal-actin gene. Am J Hum Genet 68(6):1333–1343PubMedCrossRef Ilkovski B, Cooper ST, Nowak K, Ryan MM, Yang N et al (2001) Nemaline myopathy caused by mutations in the muscle α-skeletal-actin gene. Am J Hum Genet 68(6):1333–1343PubMedCrossRef
33.
Zurück zum Zitat Ilkovski B, Nowak KJ, Domazetovska A, Maxwell AL, Clement S et al (2004) Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum Mol Genet 13(16):1727–1743PubMedCrossRef Ilkovski B, Nowak KJ, Domazetovska A, Maxwell AL, Clement S et al (2004) Evidence for a dominant-negative effect in ACTA1 nemaline myopathy caused by abnormal folding, aggregation and altered polymerization of mutant actin isoforms. Hum Mol Genet 13(16):1727–1743PubMedCrossRef
34.
Zurück zum Zitat Jain RK, Jayawant S, Squier W, Muntoni F, Sewry CA et al (2012) Nemaline myopathy with stiffness and hypertonia associated with an ACTA1 mutation. Neurol 78(14):1100–1103CrossRef Jain RK, Jayawant S, Squier W, Muntoni F, Sewry CA et al (2012) Nemaline myopathy with stiffness and hypertonia associated with an ACTA1 mutation. Neurol 78(14):1100–1103CrossRef
35.
Zurück zum Zitat Jungbluth H, Sewry CA, Brown SC, Nowak KJ, Laing NG et al (2001) Mild phenotype of nemaline myopathy with sleep hypoventilation due to mutation in the skeletal muscle alpha-actin (ACTA1) gene. Neuromuscular Disord 11:35–40CrossRef Jungbluth H, Sewry CA, Brown SC, Nowak KJ, Laing NG et al (2001) Mild phenotype of nemaline myopathy with sleep hypoventilation due to mutation in the skeletal muscle alpha-actin (ACTA1) gene. Neuromuscular Disord 11:35–40CrossRef
36.
Zurück zum Zitat Kaindl AM, Ruschendorf F, Krause S, Goebel HH, Koehler K et al (2004) Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet 41(11):842–848PubMedCrossRef Kaindl AM, Ruschendorf F, Krause S, Goebel HH, Koehler K et al (2004) Missense mutations of ACTA1 cause dominant congenital myopathy with cores. J Med Genet 41(11):842–848PubMedCrossRef
37.
Zurück zum Zitat Kalita D (1989) Nonprogressive nemaline myopathy. J Orthomolec Med 4:70–74 Kalita D (1989) Nonprogressive nemaline myopathy. J Orthomolec Med 4:70–74
38.
Zurück zum Zitat Karpati G, Carpenter S (1992) Skeletal muscle in neuromuscular diseases. In: Rowland LP, DiMauro S (eds) Myopathies—handbook of clinical neurology, vol 18(62). Elsevier Science, Amsterdam, pp 1–48 Karpati G, Carpenter S (1992) Skeletal muscle in neuromuscular diseases. In: Rowland LP, DiMauro S (eds) Myopathies—handbook of clinical neurology, vol 18(62). Elsevier Science, Amsterdam, pp 1–48
39.
Zurück zum Zitat Laing NG (1995) Inherited disorders of contractile proteins in skeletal and cardiac muscle. Curr Opin Neurol 8:391–396PubMedCrossRef Laing NG (1995) Inherited disorders of contractile proteins in skeletal and cardiac muscle. Curr Opin Neurol 8:391–396PubMedCrossRef
40.
Zurück zum Zitat Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR et al (2004) Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol 56(5):689–694PubMedCrossRef Laing NG, Clarke NF, Dye DE, Liyanage K, Walker KR et al (2004) Actin mutations are one cause of congenital fibre type disproportion. Ann Neurol 56(5):689–694PubMedCrossRef
41.
Zurück zum Zitat Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N et al (2009) Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum Mutat 30(9):1267–1277PubMedCrossRef Laing NG, Dye DE, Wallgren-Pettersson C, Richard G, Monnier N et al (2009) Mutations and polymorphisms of the skeletal muscle alpha-actin gene (ACTA1). Hum Mutat 30(9):1267–1277PubMedCrossRef
42.
Zurück zum Zitat Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K et al (1995) A mutation in the α-tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat Genet 9:75–79PubMedCrossRef Laing NG, Wilton SD, Akkari PA, Dorosz S, Boundy K et al (1995) A mutation in the α-tropomyosin gene TPM3 associated with autosomal dominant nemaline myopathy. Nat Genet 9:75–79PubMedCrossRef
43.
Zurück zum Zitat Lake BD, Wilson J (1975) Zebra body myopathy. Clinical, histochemical and ultrastructural studies. J Neurol Sci 24(4):437–446PubMedCrossRef Lake BD, Wilson J (1975) Zebra body myopathy. Clinical, histochemical and ultrastructural studies. J Neurol Sci 24(4):437–446PubMedCrossRef
44.
Zurück zum Zitat Lehtokari VL, Ceuterick-de Groote C, de Jonghe P, Marttila M, Laing NG et al (2007) Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromuscular Disord 17:433–442CrossRef Lehtokari VL, Ceuterick-de Groote C, de Jonghe P, Marttila M, Laing NG et al (2007) Cap disease caused by heterozygous deletion of the beta-tropomyosin gene TPM2. Neuromuscular Disord 17:433–442CrossRef
45.
Zurück zum Zitat Lindqvist J, Penisson-Besnier I, Iwamoto H, Li M, Yagi N et al (2012) A myopathy-related actin mutation increases contractile function. Acta Neuropathol 123(5):739–746PubMedCrossRef Lindqvist J, Penisson-Besnier I, Iwamoto H, Li M, Yagi N et al (2012) A myopathy-related actin mutation increases contractile function. Acta Neuropathol 123(5):739–746PubMedCrossRef
46.
Zurück zum Zitat Nguyen MA, Joya JE, Kee AJ, Domazetovska A, Yang N et al (2011) Hypertrophy and dietary tyrosine ameliorate the phenotypes of a mouse model of severe nemaline myopathy. Brain 134(12):3516–3529PubMedCrossRef Nguyen MA, Joya JE, Kee AJ, Domazetovska A, Yang N et al (2011) Hypertrophy and dietary tyrosine ameliorate the phenotypes of a mouse model of severe nemaline myopathy. Brain 134(12):3516–3529PubMedCrossRef
47.
Zurück zum Zitat Nonaka I, Nakamura Y, Tojo M, Sugita H, Ishikawa T et al (1983) Congenital myopathy without specific features (minimal change myopathy). Neuropediatrics 14(4):237–241PubMedCrossRef Nonaka I, Nakamura Y, Tojo M, Sugita H, Ishikawa T et al (1983) Congenital myopathy without specific features (minimal change myopathy). Neuropediatrics 14(4):237–241PubMedCrossRef
48.
Zurück zum Zitat Nowak KJ, Ravenscroft G, Jackaman C, Filipovska A, Davies SM et al (2009) Rescue of skeletal muscle alpha-actin-null mice by cardiac (fetal) alpha-actin. J Cell Biol 185(5):903–915PubMedCrossRef Nowak KJ, Ravenscroft G, Jackaman C, Filipovska A, Davies SM et al (2009) Rescue of skeletal muscle alpha-actin-null mice by cardiac (fetal) alpha-actin. J Cell Biol 185(5):903–915PubMedCrossRef
49.
Zurück zum Zitat Nowak KJ, Sewry CA, Navarro C, Squier W, Reina C et al (2007) Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 61(2):175–184PubMedCrossRef Nowak KJ, Sewry CA, Navarro C, Squier W, Reina C et al (2007) Nemaline myopathy caused by absence of alpha-skeletal muscle actin. Ann Neurol 61(2):175–184PubMedCrossRef
50.
Zurück zum Zitat Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K et al (1999) Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 23(2):208–212PubMedCrossRef Nowak KJ, Wattanasirichaigoon D, Goebel HH, Wilce M, Pelin K et al (1999) Mutations in the skeletal muscle alpha-actin gene in patients with actin myopathy and nemaline myopathy. Nat Genet 23(2):208–212PubMedCrossRef
51.
Zurück zum Zitat Ohlsson M, Fidzianska A, Tajsharghi H, Oldfors A (2009) TPM3 mutation in one of the original cases of cap disease. Neurology 72(22):1961–1963PubMedCrossRef Ohlsson M, Fidzianska A, Tajsharghi H, Oldfors A (2009) TPM3 mutation in one of the original cases of cap disease. Neurology 72(22):1961–1963PubMedCrossRef
52.
Zurück zum Zitat Ravenscroft G, Colley SM, Walker KR, Clement S, Bringans S et al (2008) Expression of cardiac alpha-actin spares extraocular muscles in skeletal muscle alpha-actin diseases—quantification of striated alpha-actins by MRM-mass spectrometry. Neuromuscular Disord 18(12):953–958CrossRef Ravenscroft G, Colley SM, Walker KR, Clement S, Bringans S et al (2008) Expression of cardiac alpha-actin spares extraocular muscles in skeletal muscle alpha-actin diseases—quantification of striated alpha-actins by MRM-mass spectrometry. Neuromuscular Disord 18(12):953–958CrossRef
53.
Zurück zum Zitat Ravenscroft G, Jackaman C, Bringans S, Papadimitriou JM, Griffiths LM et al (2011) Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies. Brain 134(4):1101–1115PubMedCrossRef Ravenscroft G, Jackaman C, Bringans S, Papadimitriou JM, Griffiths LM et al (2011) Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies. Brain 134(4):1101–1115PubMedCrossRef
54.
Zurück zum Zitat Ravenscroft G, Jackaman C, Sewry CA, McNamara E, Squire SE et al (2011) Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression. PLoS One 6(12):e28699PubMedCrossRef Ravenscroft G, Jackaman C, Sewry CA, McNamara E, Squire SE et al (2011) Actin nemaline myopathy mouse reproduces disease, suggests other actin disease phenotypes and provides cautionary note on muscle transgene expression. PLoS One 6(12):e28699PubMedCrossRef
55.
Zurück zum Zitat Razzaq A, Schmitz S, Veigel C, Molloy JE, Geeves MA et al (1999) Actin residue glu(93) is identified as an amino acid affecting myosin binding. J Biol Chem 274(40):28321–28328PubMedCrossRef Razzaq A, Schmitz S, Veigel C, Molloy JE, Geeves MA et al (1999) Actin residue glu(93) is identified as an amino acid affecting myosin binding. J Biol Chem 274(40):28321–28328PubMedCrossRef
56.
Zurück zum Zitat Reyes MG, Goldbarg H, Fresco K, Bouffard A (1987) Zebra body myopathy: a second case of ultrastructurally distinct congenital myopathy. J Child Neurol 2(4):307–310PubMedCrossRef Reyes MG, Goldbarg H, Fresco K, Bouffard A (1987) Zebra body myopathy: a second case of ultrastructurally distinct congenital myopathy. J Child Neurol 2(4):307–310PubMedCrossRef
57.
Zurück zum Zitat Rubenstein PA, Martin DJ (1983) NH2-terminal processing of Drosophila melanogaster actin. Sequential removal of two amino acids. J Biol Chem 258(18):11354–11360PubMed Rubenstein PA, Martin DJ (1983) NH2-terminal processing of Drosophila melanogaster actin. Sequential removal of two amino acids. J Biol Chem 258(18):11354–11360PubMed
58.
Zurück zum Zitat Russell AJ, Hartman JJ, Hinken AC, Muci AR, Kawas R et al (2012) Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases. Nat Med 18(3):452–455PubMedCrossRef Russell AJ, Hartman JJ, Hinken AC, Muci AR, Kawas R et al (2012) Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases. Nat Med 18(3):452–455PubMedCrossRef
59.
Zurück zum Zitat Ryan MM, Sy C, Rudge S, Ellaway C, Ketteridge D et al (2008) Dietary l-tyrosine supplementation in nemaline myopathy. J Child Neurol 23(6):609–613PubMedCrossRef Ryan MM, Sy C, Rudge S, Ellaway C, Ketteridge D et al (2008) Dietary l-tyrosine supplementation in nemaline myopathy. J Child Neurol 23(6):609–613PubMedCrossRef
60.
Zurück zum Zitat Saito Y, Komaki H, Hattori A, Takeuchi F, Sasaki M et al (2011) Extramuscular manifestations in children with severe congenital myopathy due to ACTA1 gene mutations. Neuromuscular Disord 21(7):489–493CrossRef Saito Y, Komaki H, Hattori A, Takeuchi F, Sasaki M et al (2011) Extramuscular manifestations in children with severe congenital myopathy due to ACTA1 gene mutations. Neuromuscular Disord 21(7):489–493CrossRef
61.
Zurück zum Zitat Sanoudou D, Haslett JN, Kho AT, Guo S, Gazda HT et al (2003) Expression profiling reveals altered satellite cell numbers and glycolytic enzyme transcription in nemaline myopathy muscle. Proc Natl Acad Sci USA 100(8):4666–4671PubMedCrossRef Sanoudou D, Haslett JN, Kho AT, Guo S, Gazda HT et al (2003) Expression profiling reveals altered satellite cell numbers and glycolytic enzyme transcription in nemaline myopathy muscle. Proc Natl Acad Sci USA 100(8):4666–4671PubMedCrossRef
62.
Zurück zum Zitat Sarnat HB (1992) Vimentin and desmin in maturing skeletal muscle and developmental myopathies. Neurol 42(8):1616–1624CrossRef Sarnat HB (1992) Vimentin and desmin in maturing skeletal muscle and developmental myopathies. Neurol 42(8):1616–1624CrossRef
63.
Zurück zum Zitat Schnell C, Kan A, North KN (2000) ‘An artefact gone awry’: identification of the first case of nemaline myopathy by Dr R.D.K. Reye. Neuromuscular Disord 10(4–5):307–312CrossRef Schnell C, Kan A, North KN (2000) ‘An artefact gone awry’: identification of the first case of nemaline myopathy by Dr R.D.K. Reye. Neuromuscular Disord 10(4–5):307–312CrossRef
64.
Zurück zum Zitat Schroder JM, Durling H, Laing N (2004) Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn). Acta Neuropathol 108(3):250–256PubMedCrossRef Schroder JM, Durling H, Laing N (2004) Actin myopathy with nemaline bodies, intranuclear rods, and a heterozygous mutation in ACTA1 (Asp154Asn). Acta Neuropathol 108(3):250–256PubMedCrossRef
65.
Zurück zum Zitat Schroder R, Reimann J, Salmikangas P, Clemen CS, Hayashi YK et al (2003) Beyond LGMD1A: myotilin is a component of central core lesions and nemaline rods. Neuromuscular Disord 13(6):451–455CrossRef Schroder R, Reimann J, Salmikangas P, Clemen CS, Hayashi YK et al (2003) Beyond LGMD1A: myotilin is a component of central core lesions and nemaline rods. Neuromuscular Disord 13(6):451–455CrossRef
66.
Zurück zum Zitat Sewry CA, Holton J, Dick DJ, Jacques T, Muntoni F et al (2009) Zebra body myopathy resolved. Neuromuscular Disord 19:637–638CrossRef Sewry CA, Holton J, Dick DJ, Jacques T, Muntoni F et al (2009) Zebra body myopathy resolved. Neuromuscular Disord 19:637–638CrossRef
67.
Zurück zum Zitat Sewry CA, Jimenez-Mallebrera C, Muntoni F (2008) Congenital myopathies. Curr Opin Neurol 21(5):569–575PubMedCrossRef Sewry CA, Jimenez-Mallebrera C, Muntoni F (2008) Congenital myopathies. Curr Opin Neurol 21(5):569–575PubMedCrossRef
68.
Zurück zum Zitat Sewry CA, Muller C, Davis M, Dwyer JS, Dove J et al (2002) The spectrum of pathology in central core disease. Neuromuscular Disord 12(10):930–938CrossRef Sewry CA, Muller C, Davis M, Dwyer JS, Dove J et al (2002) The spectrum of pathology in central core disease. Neuromuscular Disord 12(10):930–938CrossRef
69.
Zurück zum Zitat Sheterline P, Clayton J, Sparrow JC (1998) Actin. In: Protein Profiles, vol 1. Oxford University Press, Oxford Sheterline P, Clayton J, Sparrow JC (1998) Actin. In: Protein Profiles, vol 1. Oxford University Press, Oxford
70.
Zurück zum Zitat Shy GM, Engel WK, Somers JE, Wanko T (1963) Nemaline myopathy: a new congenital myopathy. Brain 86:793–810PubMedCrossRef Shy GM, Engel WK, Somers JE, Wanko T (1963) Nemaline myopathy: a new congenital myopathy. Brain 86:793–810PubMedCrossRef
71.
Zurück zum Zitat Sparrow JC, Nowak KJ, Durling HJ, Beggs AH, Wallgren-Pettersson C et al (2003) Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscular Disord 13:519–531CrossRef Sparrow JC, Nowak KJ, Durling HJ, Beggs AH, Wallgren-Pettersson C et al (2003) Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscular Disord 13:519–531CrossRef
72.
Zurück zum Zitat Sugita H, Masaki T, Ebashi S (1974) Staining of myofibrils with fluorescent antibody against the 10S component of the original alpha-actinin preparation. J Biochem 75(3):671–673PubMed Sugita H, Masaki T, Ebashi S (1974) Staining of myofibrils with fluorescent antibody against the 10S component of the original alpha-actinin preparation. J Biochem 75(3):671–673PubMed
73.
Zurück zum Zitat Tajsharghi H, Ohlsson M, Lindberg C, Oldfors A (2007) Congenital myopathy with nemaline rods and cap structures caused by a mutation in the beta-tropomyosin gene (TPM2). Arch Neurol 64(9):1334–1338PubMedCrossRef Tajsharghi H, Ohlsson M, Lindberg C, Oldfors A (2007) Congenital myopathy with nemaline rods and cap structures caused by a mutation in the beta-tropomyosin gene (TPM2). Arch Neurol 64(9):1334–1338PubMedCrossRef
74.
Zurück zum Zitat Taylor A, Erba H, Muscat G, Kedes L (1988) Nucleotide sequence and expression of the human skeletal α-actin gene: evolution of functional regulatory domains. Genomics 3:323–336PubMedCrossRef Taylor A, Erba H, Muscat G, Kedes L (1988) Nucleotide sequence and expression of the human skeletal α-actin gene: evolution of functional regulatory domains. Genomics 3:323–336PubMedCrossRef
75.
Zurück zum Zitat Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126(4):783–802PubMedCrossRef Vandekerckhove J, Weber K (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J Mol Biol 126(4):783–802PubMedCrossRef
76.
Zurück zum Zitat Vandekerckhove J, Weber K (1984) Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins. J Mol Biol 179(3):391–413PubMedCrossRef Vandekerckhove J, Weber K (1984) Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins. J Mol Biol 179(3):391–413PubMedCrossRef
77.
Zurück zum Zitat Vilquin JT, Catelain C, Vauchez K (2011) Cell therapy for muscular dystrophies: advances and challenges. Curr Opin Organ Transplant 16(6):640–649PubMedCrossRef Vilquin JT, Catelain C, Vauchez K (2011) Cell therapy for muscular dystrophies: advances and challenges. Curr Opin Organ Transplant 16(6):640–649PubMedCrossRef
78.
Zurück zum Zitat Visegrady B, Machesky LM (2010) Myopathy-causing actin mutations promote defects in serum-response factor signalling. Biochem J 427(1):41–48PubMedCrossRef Visegrady B, Machesky LM (2010) Myopathy-causing actin mutations promote defects in serum-response factor signalling. Biochem J 427(1):41–48PubMedCrossRef
79.
Zurück zum Zitat Voit T, Krogmann O, Lenard HG, Neuen-Jacob E, Wechsler W et al (1988) Emery-Dreifuss muscular dystrophy: disease spectrum and differential diagnosis. Neuropediatrics 19(2):62–71PubMedCrossRef Voit T, Krogmann O, Lenard HG, Neuen-Jacob E, Wechsler W et al (1988) Emery-Dreifuss muscular dystrophy: disease spectrum and differential diagnosis. Neuropediatrics 19(2):62–71PubMedCrossRef
80.
Zurück zum Zitat Wallefeld W, Krause S, Nowak KJ, Dye D, Horvath R et al (2006) Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscular Disord 16(9–10):541–547CrossRef Wallefeld W, Krause S, Nowak KJ, Dye D, Horvath R et al (2006) Severe nemaline myopathy caused by mutations of the stop codon of the skeletal muscle alpha actin gene (ACTA1). Neuromuscular Disord 16(9–10):541–547CrossRef
81.
Zurück zum Zitat Wallgren-Pettersson C (1989) Congenital nemaline myopathy: a clinical follow-up study of twelve patients. J Neurol Sci 89:1–14PubMedCrossRef Wallgren-Pettersson C (1989) Congenital nemaline myopathy: a clinical follow-up study of twelve patients. J Neurol Sci 89:1–14PubMedCrossRef
82.
Zurück zum Zitat Wallgren-Pettersson C, Laing NG (2001) Report of the 83rd ENMC International Workshop: 4th Workshop on Nemaline Myopathy, 22–24 September 2000, Naarden, The Netherlands. Neuromuscular Disord 11(6–7):589–595CrossRef Wallgren-Pettersson C, Laing NG (2001) Report of the 83rd ENMC International Workshop: 4th Workshop on Nemaline Myopathy, 22–24 September 2000, Naarden, The Netherlands. Neuromuscular Disord 11(6–7):589–595CrossRef
83.
Zurück zum Zitat Wallgren-Pettersson C, Laing NG (2010) Congenital myopathies. In: Karpati G, Hilton-Jones D, Bushby K, Griggs RC (eds) Disorders of voluntary muscle, 8th edn. Cambridge University Press, Cambridge, pp 282–298 Wallgren-Pettersson C, Laing NG (2010) Congenital myopathies. In: Karpati G, Hilton-Jones D, Bushby K, Griggs RC (eds) Disorders of voluntary muscle, 8th edn. Cambridge University Press, Cambridge, pp 282–298
84.
Zurück zum Zitat Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG (2011) Nemaline myopathies. Semin Pediatr Neurol 18(4):230–238PubMedCrossRef Wallgren-Pettersson C, Sewry CA, Nowak KJ, Laing NG (2011) Nemaline myopathies. Semin Pediatr Neurol 18(4):230–238PubMedCrossRef
85.
Zurück zum Zitat Wang CH, Dowling JJ, North K, Schroth MK, Sejersen T et al (2012) Consensus statement on standard of care for congenital myopathies. J Child Neurol 27(3):363–382PubMedCrossRef Wang CH, Dowling JJ, North K, Schroth MK, Sejersen T et al (2012) Consensus statement on standard of care for congenital myopathies. J Child Neurol 27(3):363–382PubMedCrossRef
86.
Zurück zum Zitat Yamaguchi M, Robson RM, Stromer MH, Dahl DS, Oda T (1978) Actin filaments form the backbone of nemaline myopathy rods. Nature 271(5642):265–267PubMedCrossRef Yamaguchi M, Robson RM, Stromer MH, Dahl DS, Oda T (1978) Actin filaments form the backbone of nemaline myopathy rods. Nature 271(5642):265–267PubMedCrossRef
Metadaten
Titel
Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms
verfasst von
Kristen J. Nowak
Gianina Ravenscroft
Nigel G. Laing
Publikationsdatum
01.01.2013
Verlag
Springer-Verlag
Erschienen in
Acta Neuropathologica / Ausgabe 1/2013
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-012-1019-z

Weitere Artikel der Ausgabe 1/2013

Acta Neuropathologica 1/2013 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.