Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 9/2020

24.01.2020 | Original Article

Slice-selective learning for Alzheimer’s disease classification using a generative adversarial network: a feasibility study of external validation

verfasst von: Han Woong Kim, Ha Eun Lee, Sangwon Lee, Kyeong Taek Oh, Mijin Yun, Sun Kook Yoo

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The aim of this feasibility study was to use slice selective learning using a Generative Adversarial Network for external validation. We aimed to build a model less sensitive to PET imaging acquisition environment, since differences in environments negatively influence network performance. To investigate the slice performance, each slice evaluation was performed.

Methods

We trained our model using a 18F-fluorodeoxyglucose ([18F]FDG) PET/CT dataset obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database and tested the model with a Severance Hospital dataset. We applied slice selective learning to reduce computational cost and to extract unbiased features. We extracted features of Alzheimer’s disease (AD) and normal cognitive (NC) condition using a Boundary Equilibrium Generative Adversarial Network (BEGAN) for stable convergence. Then, we utilized these features to train a support vector machine (SVM) classifier to distinguish AD from NC.

Results

The slice range that covered the posterior cingulate cortex (PCC) using double slices showed the best performance. The accuracy, sensitivity, and specificity of our proposed network was 94.33%, 91.78%, and 97.06% using the Severance dataset and 94.82%, 92.11%, and 97.45% using the ADNI dataset. The performance on the two independent datasets showed no statistical difference (p > 0.05). Moreover, there was a statistical difference in the performance between using two slices and one slice as input (p < 0.05).

Conclusions

Our model learned the generalized features of AD and NC for external validation when appropriate slices were selected. This study showed the feasibility of this model with consistent performance when tested using datasets acquired from a variety of image-acquisition environments.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3:186–91.CrossRef Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM. Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement. 2007;3:186–91.CrossRef
2.
Zurück zum Zitat Mosconi L, Berti V, Glodzik L, Pupi A, De Santi S, De Leon MJ. Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. J Alzheimers Dis. 2010;20:843–54.CrossRef Mosconi L, Berti V, Glodzik L, Pupi A, De Santi S, De Leon MJ. Pre-clinical detection of Alzheimer’s disease using FDG-PET, with or without amyloid imaging. J Alzheimers Dis. 2010;20:843–54.CrossRef
5.
Zurück zum Zitat Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng. 2015;62:1132–40.CrossRef Liu S, Liu S, Cai W, Che H, Pujol S, Kikinis R, et al. Multimodal neuroimaging feature learning for multiclass diagnosis of Alzheimer’s disease. IEEE Trans Biomed Eng. 2015;62:1132–40.CrossRef
6.
Zurück zum Zitat Suk HI, Shen D. Deep learning-based feature representation for AD/MCI classification. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 8150 LNCS:583–90, 2013. Suk HI, Shen D. Deep learning-based feature representation for AD/MCI classification. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 8150 LNCS:583–90, 2013.
7.
Zurück zum Zitat Glozman T, Liba O. Hidden cues: deep learning for Alzheimer’s disease classification CS331B project final report. 2016. Glozman T, Liba O. Hidden cues: deep learning for Alzheimer’s disease classification CS331B project final report. 2016.
8.
Zurück zum Zitat Farooq A, Anwar S, Awais M, Rehman S. A deep CNN based multi-class classification of Alzheimer’s disease using MRI. IST 2017 - IEEE Int Conf Imaging Syst Tech Proc. 2018-Janua:1–6, 2018. Farooq A, Anwar S, Awais M, Rehman S. A deep CNN based multi-class classification of Alzheimer’s disease using MRI. IST 2017 - IEEE Int Conf Imaging Syst Tech Proc. 2018-Janua:1–6, 2018.
9.
Zurück zum Zitat Hosseini-asl E, Keynton R, El-baz A, Drzezga A, Lautenschlager N, Siebner H, et al. Alzheimer ’ s disease diagnostics by adaptation of 3D convolutional network electrical and computer engineering department , University of Louisville , Louisville , KY , USA. Eur J Nucl Med Mol Imaging. 2016;30:1104–13. Hosseini-asl E, Keynton R, El-baz A, Drzezga A, Lautenschlager N, Siebner H, et al. Alzheimer ’ s disease diagnostics by adaptation of 3D convolutional network electrical and computer engineering department , University of Louisville , Louisville , KY , USA. Eur J Nucl Med Mol Imaging. 2016;30:1104–13.
10.
Zurück zum Zitat Liu M, Cheng D, Wang K, Wang Y. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics. 2018;16:295–308.CrossRef Liu M, Cheng D, Wang K, Wang Y. Multi-modality cascaded convolutional neural networks for Alzheimer’s disease diagnosis. Neuroinformatics. 2018;16:295–308.CrossRef
11.
Zurück zum Zitat Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRef Soret M, Bacharach SL, Buvat I. Partial-volume effect in PET tumor imaging. J Nucl Med. 2007;48:932–45.CrossRef
12.
Zurück zum Zitat Jagust WJ, Landau SM, Koeppe RA, Reiman EM, Chen K, Mathis CA, et al. The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core. Alzheimer’s Dement. 2015:2015. Jagust WJ, Landau SM, Koeppe RA, Reiman EM, Chen K, Mathis CA, et al. The Alzheimer’s Disease Neuroimaging Initiative 2 PET Core. Alzheimer’s Dement. 2015:2015.
13.
Zurück zum Zitat Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Mapp. 1999. Ashburner J, Friston KJ. Nonlinear spatial normalization using basis functions. Hum Brain Mapp. 1999.
14.
Zurück zum Zitat Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36:811–22.CrossRef Mosconi L, Mistur R, Switalski R, Tsui WH, Glodzik L, Li Y, et al. FDG-PET changes in brain glucose metabolism from normal cognition to pathologically verified Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2009;36:811–22.CrossRef
15.
Zurück zum Zitat De Santi S, De Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging. 2001;22:529–39.CrossRef De Santi S, De Leon MJ, Rusinek H, Convit A, Tarshish CY, Roche A, et al. Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiol Aging. 2001;22:529–39.CrossRef
16.
Zurück zum Zitat Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003. Drzezga A, Lautenschlager N, Siebner H, Riemenschneider M, Willoch F, Minoshima S, et al. Cerebral metabolic changes accompanying conversion of mild cognitive impairment into Alzheimer’s disease: a PET follow-up study. Eur J Nucl Med Mol Imaging. 2003.
17.
Zurück zum Zitat Powers JM. Practice guidelines for autopsy pathology. Autopsy procedures for brain, spinal cord, and neuromuscular system. Autopsy Committee of the College of American pathologists. Arch Pathol Lab Med. 119:777, 1995–83. Powers JM. Practice guidelines for autopsy pathology. Autopsy procedures for brain, spinal cord, and neuromuscular system. Autopsy Committee of the College of American pathologists. Arch Pathol Lab Med. 119:777, 1995–83.
19.
Zurück zum Zitat Berthelot D, Schumm T, Metz L. BEGAN: Boundary Equilibrium Generative Adversarial Networks. arXiv. 2017. Berthelot D, Schumm T, Metz L. BEGAN: Boundary Equilibrium Generative Adversarial Networks. arXiv. 2017.
22.
Zurück zum Zitat Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50:11S–20S.CrossRef Boellaard R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009;50:11S–20S.CrossRef
Metadaten
Titel
Slice-selective learning for Alzheimer’s disease classification using a generative adversarial network: a feasibility study of external validation
verfasst von
Han Woong Kim
Ha Eun Lee
Sangwon Lee
Kyeong Taek Oh
Mijin Yun
Sun Kook Yoo
Publikationsdatum
24.01.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 9/2020
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-019-04676-y

Weitere Artikel der Ausgabe 9/2020

European Journal of Nuclear Medicine and Molecular Imaging 9/2020 Zur Ausgabe