Skip to main content
Erschienen in: Archives of Orthopaedic and Trauma Surgery 8/2023

Open Access 13.01.2023 | Orthopaedic Surgery

Smokers have increased risk of soft-tissue complications following primary elective TKA

verfasst von: Moritz Starzer, Maria Anna Smolle, Ines Vielgut, Georg Hauer, Lukas Leitner, Roman Radl, Reinhard Ehall, Andreas Leithner, Patrick Sadoghi

Erschienen in: Archives of Orthopaedic and Trauma Surgery | Ausgabe 8/2023

Abstract

Introduction

Smoking has been associated with numerous adverse outcomes following surgical procedures. The purpose of this study was to investigate, whether smoking status at time of surgery influences the outcome of primary TKA.

Materials and methods

Six hundred and eighty-one patients who underwent primary TKA between 2003 and 2006 were included in the study. Smoking status was defined as current, former, and never smoker. Complications leading to revisions were assessed until 17 years of follow-up. Functional outcome was evaluated using clinical scores: Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), Visual Analogue Scale (VAS) for pain, Short Form-12 Physical and Mental Component Summaries (SF-12PCS/MCS), and Knee Society Function and Knee Score (KSFS and KSKS).

Results

At a mean follow-up of 95 months (± 47 months), 124 complications led to revision surgery. Soft-tissue complications (OR, 2.35 [95% CI 1.08–5.11]; p = 0.032), hematoma formation (OR, 5.37 [95% CI 1.01–28.49]; p = 0.048), and restricted movement (OR, 3.51 [95% CI 1.25–9.84]; p = 0.017) were more likely to occur in current smokers than never smokers. Current smokers were more likely to score higher at KSFS (p < 0.001) and SF-12PCS (p = 0.0197) compared to never smokers. For overall revision, differences were noted.

Conclusion

Current smoking increases risk of soft-tissue complications and revision after primary TKA, especially due to hematoma and restricted movement. Smoking cessation programs could reduce the risk of revision surgery.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Tobacco smoking has been identified as a risk factor for adverse postoperative outcomes, including wound-related complications, surgical-site infection, and cardiopulmonary complications [1, 2]. Hawn et al. revealed an increased risk of postoperative complications for smokers regardless of surgical specialty and case complexity [1]. Total knee arthroplasty (TKA) is a frequently performed procedure with approximately 700.000 implanted in the USA yearly, with estimations suggesting a continuing increase [35]. Previous studies have confirmed the hypothesis that tobacco smoking increases the risk of overall postoperative complications after elective orthopedic surgery and TKA [68]. Regarding prosthesis-related complications, Singh et al. discovered smoking as a risk factor for deep infection and implant revision after primary TKA and THA [9]. Lim et al. have concluded a higher risk of earlier revision in smokers [10]. However, Matharu et al. did not find an increase in long-term revision rates [11]. Despite Matharu et al. revealing no clinically significant differences in postoperative patient-reported outcome measures (PROMs) between smokers, former smokers, and never smokers, literature on PROMs after TKA is scarce [11].
The literature describes a decrease in smoking and alcohol consumption in the initial 12-month post-THA and TKA [12]. The cited literature has a follow-up of 30 days up to 10 years, whereas long-term follow-up over 15 years is missing [611].
The aim of this study was to identify whether smoking status (active, former, never smoker) at time of surgery influences the outcome of TKA in terms of prosthesis-related complications and postoperative PROMs. The hypothesis was that current smokers have a higher risk of complications, revision surgery, and decreased outcome.

Materials and methods

Patient population

For this retrospective analysis, an adjusted preexisting study cohort was evaluated, consisting of patients having received primary TKA [13]. Regular follow-ups were performed by clinical examination at two supra-regional departments. Primary surgery had been performed between 2003 and 2006 by experienced orthopedic surgeons, resulting in an observation period of up to 17 years. Seven hundred and eight (708) patients were initially included. Exclusion criteria were primary TKA before 2003, patients having received revision TKA during the study period, no smoking status at primary surgery available, and death. After checking for exclusion criteria, data of 681 patients were attained for statistical analysis regarding postoperative complication risk (illustrated in Fig. 1). Due to the retrospective study design and pre-selected study cohort, not all patients have been evaluated regarding PROMs before gathering the data, resulting in 466 cases with WOMAC, SF-12PCS, SF-12MCS, 467 with KSFS, 469 with KSKS, and 470 with VAS.
The smoking status is based on the smoking behavior within the year prior to assessment. Having smoked regularly counted as current smoker, having stopped smoking within the year prior to assessment or before was defined as former smoker, and never having smoked regularly counted as never smoker. Pack history, i.e., cigarette smoking exposure rate was not available.
Primary outcome was any implant-specific complication for which revision surgery became necessary. Complications were divided into soft-tissue complications (wound dehiscence, restricted movement, defined as full extension or flexion of at least 90 degrees 6 weeks after implantation, hematoma, and infection) and mechanical complications (aseptic loosening, periprosthetic fracture, wear, and dislocation) [14]. The secondary outcome was assessment of the Knee Society Function Score (KSFS) and Knee (KSKS) Score, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), and Short Form 12 Physical and Mental Health Composite Scores (SF-12PCS and SF-12MCS) at last follow-up. Pain Visual Analogue Scale (VAS) pre- and postoperatively facilitated pain evaluation and improvement [1519]. Additionally, the mean reduction in VAS pre- to postoperatively was calculated.
Further variables were age at time of surgery, time from primary TKA to revision for implant-related causes, and gender differences regarding revision risk.
This study was conducted in compliance with recognized international and accepted ethical, scientific and medical standards and approved by the local ethics committee (26-527 ex 13/14).

Statistical analysis

Clinical and demographic characteristics are described by summary statistics. Discrete variables are presented as proportions and percentages. Means and medians with corresponding standard deviations and interquartile ranges (IQRs) are presented. For the comparison of discrete variables, the Chi-squared test for proportions was used. For analysis and comparison of mean values of binominal data and continuous data, a two-sample, unpaired t test was used. Logistic regression was performed to assess the odds ratios (ORs) of risk factors for complications. A p value of less than 0.05 was considered statistically significant.

Results

Patient characteristics

For the 681 patients, mean follow-up was 95 months (± 47 months). Table 1 gives an overview of the demographic characteristics. Of 681 patients, 478 (70.2%) were female and 203 (29.8%) were male. Current smokers, former smokers, and never smokers had shares of 46 (6.8%), 39 (5.7%), and 596 (87.5%), respectively. In relation to gender, 56.5% (26) of current smokers were female and 43.5% (20) were male. Analysis showed a higher likelihood of current smokers to be male than female (p = 0.010).
Table 1
Average age at time of surgery in relation to smoking status
 
Active smoker (n = 46) SD ( ±)
Never smoker (n = 596) SD ( ±)
p
Former smoker (n = 39) SD ( ±)
Never smoker (n = 596) SD ( ±)
p
Active smoker (n = 46) SD ( ±)
Former smoker (n = 39) SD ( ±)
p
Age surgery
57.0 (± 9.7)
69.6 (± 8.2)
 < 0.001b
63.3 (± 7.7)
69.6 (± 8.2)
 < 0.001b
57.0 (± 9.7)
63.3 (± 7.7)
0.015b
aChi-squared test
bTwo-sample t test with equal variances, age surgery mean age at time of surgery, bold statistically significant p value (< 0.05)
Mean age at time of surgery was 68.4 (± 8.9) years. In active smokers and former smokers, the mean age at time of surgery with 57.0 years (p < 0.001) and 63.3 years (p < 0.001) was significantly lower compared to never smokers with 69.6 years.
In total, 126 (18.5%) complications were observed, of which 57 (45.2%) were mechanical and 69 (54.8%) were soft-tissue complications, leading to 124 (18.2%) revisions. Median time from primary TKA to revision was 25 months (IQR: 12–51 months). A revision was necessary less than 12 months after surgery for 32 (25.8%) patients, and after greater or equal than 12 months for 92 (74.2%) patients. For overall revision likelihood (i.e., mechanical and soft-tissue complications combined), no statistically significant difference between the different smoking status groups was found. However, current smokers (13/46, 28.3%) were per tendency at higher risk for revision surgery than never smokers (103/596, 17.3%; p = NS). For former smokers compared to never smokers, no significant difference could be shown (8/31, 20.5% vs. 103/596, 17.3%; p = NS).
Soft-tissue complications were significantly more common in current smokers (19.6% vs. 9.4%; p = 0.028) than never smokers (OR 2.35 [95% CI 1.08–5.11]; p = 0.032; Table 2). In terms of individual soft-tissue complication risk, active smokers had a higher likelihood of developing hematoma (4.4% vs. 0.8%; p = 0.027; OR, 5.37 [95% CI 1.01–28.49]; p = 0.048) and restricted movement (10.9% vs. 3.4%; p = 0.011; OR 3.51 [95% CI 1.25–9.84]; p = 0.017) than never smokers. The smoking status groups shared a similar revision risk regarding mechanical complications. Former smokers neither had an increased nor decreased revision risk compared to never and current smokers.
Table 2
Odds ratios of smoking status regarding complications at a mean follow-up of 95 months (± 47 months) after implantation of primary total knee arthroplasty (TKA)
 
Never smokers (n = 596) vs. active smokers (n = 46)
Never smokers (n = 596) vs. former smokers (n = 39)
Active smokers (n = 46) vs. former smokers (n = 39)
OR (95% CI)
pa
OR (95% CI)
pa
OR (95% CI)
pa
ST comp
2.35 (1.08–5.11)
0.032
1.10 (0.38–3.21)
ns
0.47 (0.13–1.67)
ns
Mech. comp
1.06 (0.37–3.10)
ns
1.28 (0.44–3.84)
ns
1.2 (0.28–5.15)
ns
AL
0.96 (0.22–4.2)
ns
2.41 (0.8–7.2)
ns
2.51 (0.43–14.5)
ns
Infection
1.19 (0.27–5.21)
ns
2.17 (0.62–7.61)
ns
1.83 (0.29–11.6)
ns
RM
3.51 (1.25–9.84)
0.017
0.76 (0.1–5.8)
ns
0.22 (0.02–1.93)
ns
PF
1.01 (0.13–7.8)
ns
b
b
b
b
Wear
1.36 (0.2–13.35)
ns
b
b
b
b
WD
b
b
b
b
b
b
Hematoma
5.37 (1.01–28.49)
0.048
b
b
b
b
Luxation
b
b
b
b
b
b
OR odds ratio, CI confidence Interval, ST compl. soft-tissue complication, mech. compl. mechanical complication, AL aseptic loosening, RM restricted movement, PF periprosthetic fracture, WD wound dehiscence; ns not significant p value
aLogistic regression, bold statistically significant p value (< 0.05)
bOdds ratios not calculable due to too less category samples
PROMs postoperatively and VAS pre- and postoperatively were gathered for 466 (WOMAC, SF-12PCS, SF-12MCS), 467 (KSFS), 469 (KSKS), and 470 (VAS) patients. Statistical analyses and different absolutes among the scores are shown in Table 3. Current smokers were more likely to score higher at KSFS (p < 0.001) and SF-12PCS (p = 0.0197) compared to never smokers. Additionally, they reported higher pain ratings preoperatively (p = 0.0031) than never smokers. The remaining scores were similar irrespective of smoking status.
Table 3
Mean clinical scores in relation to smoking status at a mean follow-up of 95 months {± 47 months) after implantation of primary total knee arthroplasty {TKA)
 
Active smoker nb SD ( ±)
Never smoker na SD ( ±)
pc
Former smoker (n = 30) SD ( ±)
Never smoker na SD ( ±)
pc
Active smoker nb SD ( ±)
Former smoker (n = 30) SD ( ±)
pc
WOMAC
84.0 (± 16.5)
80.1 (± 15.5)
ns
86.2 (± 13.4)
80.1 (± 15.5)
ns
84.0 (± 16.5)
86.2 (± 13.4)
ns
KSKS
84.8 (± 14.2)
82.8 (± 15.8)
ns
87.4 (± 15.7)
82.8 (± 15.8)
ns
84.8 (± 14.2)
87.4 (± 15.7)
ns
KSFS
79.4 (± 24.2)
64.1 (± 26.0)
 < 0.001
72.1 (± 22.2)
64.1 (± 26.0)
ns
79.4 (± 24.2)
72.1 (± 22.2)
ns
VAS pre
8.3 (± 1.2)
7.6 (± 1.4)
0.0031
7.6 (± 1.1)
7.6 (± 1.4)
ns
8.3
(± 1.2)
7.6 (± 1.1)
ns
VAS post
2.2 (± 2.0)
1.9 (± 2.0)
ns
1.3 (± 1.7)
1.9 (± 2.0)
ns
2.2
(± 2.0)
1.3 (± 1.7)
ns
VAS diff
6.0 (± 1.8)
5.6 (± 2.3)
ns
6.3 (± 2.1)
5.6 (± 2.3)
ns
6.0 (± 1.8)
5.6 (± 2.3)
ns
SF-12PCS
41.2 (± 10.9)
36.8 (± 10.4)
0.0197
40.4 (± 10.5)
36.8 (± 10.4)
ns
41.2 (± 10.9)
40.4 (± 10.5)
ns
SF-12MCS
53.2 (± 10.5)
52.8 (± 10.9)
ns
54.8 (± 10.3)
52.8 (± 10.9)
ns
53.2 (± 10.5)
54.8 (± 10.3)
ns
an = 400 WOMAC; n = 401 KSS function; n = 402 SF-12PCS, SF-12MCS; n = 403 KSS knee; n = 404 VAS pre., VAS post., VAS diff
bn = 34 SF12PCS, SF12MCS; n = 36 WOMAC, KSS knee, KSS function, VAS pre. VAS post., VAS diff.; ns not significant p value
cTwo-sample t test with equal variances, bold statistically significant p value (< 0.05)

Discussion

The most important findings of this study were a significantly higher soft-tissue complication rate for current smokers in comparison with never smokers. Current smokers were more likely to undergo revision surgery due to restricted movement and hematoma as compared with never smokers.
Earlier findings were an increased overall revision risk for active smokers against never smokers after primary elective TKA [1, 710]. In contrast to the existing evidence [7, 8, 20], we observed the risk of infection not significantly increased in active smokers compared to never smokers. Furthermore, former smokers did not have an overall increased revision likelihood compared to never smokers, as supported by other investigations [10]. We found current smokers (57 ± 9.7 years) and former smokers (63.3 ± 7.7 years) to undergo primary TKA surgery 12.6 years (± 8.2; p < 0.001) and 6.3 years (± 7.7; p < 0.001) earlier than never smokers (69.6 ± 8.2 years), which might be due to faster biological aging of smokers in contrast to non-smokers [21] or due to smokers reporting higher musculoskeletal pain ratings, therefore needing an earlier definitive surgical treatment [22].
Some studies have demonstrated a beneficial effect of smoking cessation prior to surgical interventions in general [23, 24]. The results of this study are supported by earlier findings, that smoking is major contributor to delayed wound healing and consecutively also infection [25, 26]. Smoking seems to have an all-or-nothing effect, with several studies suggesting to quit smoking rather than reduce the number of cigarettes per day [27, 28]. Studies have found cessation to be tremendously beneficial before the age of 40, almost eliminating the risk of losing a life-decade, and to be beneficial after the age of 70 [29, 30]. This evidence supports our finding that former smokers have similar complication risks than never smokers and emphasizes the beneficial effects of smoking cessation.
Apart from smoking status, the ASA status, the surgeon’s expertise, case complexity, the hospital environment, and other patient factors (comorbidities) may be important confounding variables, for which we were not able to do adjusted analyses due to a small sample size. Regarding comorbidities, the authors were unable to gather enough precise information to adequately include an analysis. A differentiation in preexisting disease and disease having developed postoperatively was not possible, wherefore proper interpretation would not have been meaningful. The importance of ruling out confounding bias should be emphasized, but the similar results of previous papers support our findings although not having been able to adequately rule out confounding bias.
This study has revealed higher revision rates (18.2%) than mentioned in the previous literature with 6.45% at 5 years and 3–12.9% at 10 years [31, 32]. This could be attributed to a longer follow-up of up to 17 years, a combination of short- and long-term complication-based revisions or an inclusion of complications as defined by Goslings and Gouma and Sokol and Wilson [14, 33]. The higher rate of soft-tissue complications than reported in previous investigations [31, 32] could be explained by smoking being a major cause of soft-tissue complications and a smoking prevalence of 25% in Austria [25, 26].
Previous investigations have reported an age difference between smokers and never smokers regarding primary TKA [7, 9, 20, 34], indicating a particular need to investigate whether smoking should be defined as an independent risk factor of knee osteoarthritis. We did not collect information about the Kellgren-Lawrence classification of individual patients. Therefore, we cannot say whether active smokers had minor or more severe grades of osteoarthritis possibly leading to TKA.
Interestingly, our secondary outcomes resulted in current smokers scoring significantly better at KSFS and SF-12PCS and reporting higher pain ratings prior to surgery. Active smokers score 15.3 points higher than never smokers for KSFS and 4.4 points higher for SF-12PCS. The minimally clinically important difference (MCID) for primary TKA was found to be 9 points for KSKS and 10 points for KSFS [35]. For the SF-12PCS, it was 4.5 and 4.8 points for the pain relief and function sections, respectively [36], rendering these findings as not clinically important. However, active smokers seem to have a clinically better functional outcome than never smokers. Previous research by Matharu et al. found no clinically important differences in patient-reported outcome measures between active smokers, former smokers, and never smokers [11]. Smokers tend to have an unhealthier lifestyle than never smokers and are more satisfied with a lower functional level, possibly distorting the test results [37]. Furthermore, smokers tend to receive primary TKA at a younger age than never smokers. As smokers generally tend to report higher pain scores than never smokers, the younger, actively smoking patients may achieve—owing to their better health status than older never smokers requiring TKA—higher functional ratings before TKA as well as during follow-up [22, 38].
The findings of this study indicate an overall beneficial effect of TKA on functional outcome regardless of smoking status, represented in a nearly even distribution of PROMs across all smoking status groups. However, as PROMs prior to surgery were not available, the authors could not evaluate whether smoking status groups respond differently to TKA.
The following limitations must be underlined: The retrospective design of the study produces a low level of evidence, as does the limited number of smoking patients, thus eventually reducing the generalization and reproducibility of results obtained. A risk analysis regarding the number of cigarettes smoked per day was not possible due to the algorithm during initial assessment only revealing smoking status. The percentage of smokers could have been underestimated, as patients could have defined themselves as a non-smoker either due to having stopped smoking or smoking cigarettes occasionally. It is possible that the percentage of patients who had to be revised and were smokers is overestimated as patients tend to start smoking in adolescence, but more likely stop smoking with growing age rather than starting it [39, 40]. The limited patient number impairs the comparability of the SSI rate obtained in comparison with the literature. Yet, an advantage of information obtained from the present cohort can be seen in its uniformity. As a benefit we want to mention that all complications had to be recorded due to the authors’ healthcare system, which allows reimbursement after adequate classification of the diagnosis-related groups only.

Conclusion

Although the overall revision risk was not significantly higher in active smokers, soft-tissue complications were significantly more common in active smokers than never smokers. The slightly better results observed for smokers regarding functional outcome after primary elective TKA warrant further research to define the significance. We strongly recommend surgeons to advise their patients toward quitting smoking to maximize the success of primary TKA and minimize complication risks. The present findings underline the detrimental effects of smoking on postoperative complications, and ongoing research on the effects of nicotine abuse in orthopedic patients further strengthens the stance against smoking.

Declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. It has been approved by the Institutional Review Board (IRB-No. 26-527 ex 13/14).
Informed consent was obtained from all individual participants included in the study. The authors affirm that human research participants provided informed consent for publication of data used in statistical analyses after appropriate anonymization.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Orthopädie & Unfallchirurgie

Kombi-Abonnement

Mit e.Med Orthopädie & Unfallchirurgie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Literatur
13.
Zurück zum Zitat Hauer G, Leitner L, Ackerl MC, Klim S, Vielgut I, Ehall R et al (2020) Titanium-nitride coating does not result in a better clinical outcome compared to conventional cobalt-chromium total knee arthroplasty after a long-term follow-up: a propensity score matching analysis. Coatings 10(5):442CrossRef Hauer G, Leitner L, Ackerl MC, Klim S, Vielgut I, Ehall R et al (2020) Titanium-nitride coating does not result in a better clinical outcome compared to conventional cobalt-chromium total knee arthroplasty after a long-term follow-up: a propensity score matching analysis. Coatings 10(5):442CrossRef
17.
Zurück zum Zitat Harris K, Dawson J, Gibbons E, Lim CR, Beard DJ, Fitzpatrick R et al (2016) Systematic review of measurement properties of patient-reported outcome measures used in patients undergoing hip and knee arthroplasty. Patient Relat Outcomes Meas 7:101–108. https://doi.org/10.2147/prom.S97774CrossRef Harris K, Dawson J, Gibbons E, Lim CR, Beard DJ, Fitzpatrick R et al (2016) Systematic review of measurement properties of patient-reported outcome measures used in patients undergoing hip and knee arthroplasty. Patient Relat Outcomes Meas 7:101–108. https://​doi.​org/​10.​2147/​prom.​S97774CrossRef
18.
Zurück zum Zitat Hawker GA, Mian S, Kendzerska T, French M (2011) Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res 63(S11):S240–S252. https://doi.org/10.1002/acr.20543CrossRef Hawker GA, Mian S, Kendzerska T, French M (2011) Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res 63(S11):S240–S252. https://​doi.​org/​10.​1002/​acr.​20543CrossRef
39.
Zurück zum Zitat National Center for Chronic Disease P, Health Promotion Office on S Health (2012) Reports of the surgeon general. Preventing tobacco use among youth and young adults: a report of the surgeon general. Centers for Disease Control and Prevention (US), Atlanta National Center for Chronic Disease P, Health Promotion Office on S Health (2012) Reports of the surgeon general. Preventing tobacco use among youth and young adults: a report of the surgeon general. Centers for Disease Control and Prevention (US), Atlanta
Metadaten
Titel
Smokers have increased risk of soft-tissue complications following primary elective TKA
verfasst von
Moritz Starzer
Maria Anna Smolle
Ines Vielgut
Georg Hauer
Lukas Leitner
Roman Radl
Reinhard Ehall
Andreas Leithner
Patrick Sadoghi
Publikationsdatum
13.01.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Archives of Orthopaedic and Trauma Surgery / Ausgabe 8/2023
Print ISSN: 0936-8051
Elektronische ISSN: 1434-3916
DOI
https://doi.org/10.1007/s00402-023-04771-8

Weitere Artikel der Ausgabe 8/2023

Archives of Orthopaedic and Trauma Surgery 8/2023 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Klinik aktuell Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Endlich: Zi zeigt, mit welchen PVS Praxen zufrieden sind

IT für Ärzte Nachrichten

Darauf haben viele Praxen gewartet: Das Zi hat eine Liste von Praxisverwaltungssystemen veröffentlicht, die von Nutzern positiv bewertet werden. Eine gute Grundlage für wechselwillige Ärztinnen und Psychotherapeuten.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.