Skip to main content
Erschienen in: Systematic Reviews 1/2021

Open Access 01.12.2021 | Protocol

Social marketing-based interventions to promote healthy nutrition behaviors: a systematic review protocol

verfasst von: Azam Doustmohammadian, Marjan Bazhan

Erschienen in: Systematic Reviews | Ausgabe 1/2021

Abstract

Background

Diet-related non-communicable diseases (NCDs) are rapidly increasing worldwide and constitute one of the leading causes of mortality and morbidity. Improving population diets can play an important role in preventing and managing the diseases. Effective and efficient interventions are needed to promote healthy eating behaviors among people. The objective of this review will be to evaluate the effectiveness of social marketing-based interventions to promote healthy nutrition behaviors.

Method

The following electronic databases will be searched from January 1990 onwards: PubMed/MEDLINE, EMBASE, Web of Science, and CENTRAL. We will include randomized and non-randomized trials, quasi-experimental studies, observational studies (e.g., cohort, cross-sectional, and before and after studies) evaluating the social marketing-based intervention.
The primary outcomes will be nutritional behaviors. Secondary outcomes will include the quality of life, nutritional status, and weight status. Two reviewers will independently screen all citations, full-text articles, and abstract data. The study methodological quality (or bias) will be appraised using an appropriate tool. If feasible, we will conduct random-effects meta-analysis. Additional analyses will be conducted to explore the potential sources of heterogeneity (e.g., age, sex, and socio-economic condition).

Discussion

This study will summarize the evidence regarding the interventions’ components, implementation methods, and effectiveness of interventions based on the social marketing framework to promote healthy nutrition behaviors. This review can provide policymakers with the information needed to make decisions and plan to promote healthy eating behaviors and understand the factors influencing the implementation of these programs.

Systematic review registration

Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13643-021-01625-5.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
NCDs
Non-communicable diseases
WHO
World Health Organization
ISMA
International Social Marketing Association
ESMA
European Social Marketing Association
AASM
Australian Association of Social Marketing
PRISMA-P
Preferred Reporting Items for Systematic Review and Meta-Analysis Statement-Protocol Extension
RCT
Randomized controlled trial
DDS
Dietary Diversity Score
GRADE
Grades of Recommendation, Assessment, Development, and Evaluation
SMD
Standard mean difference
MD
Mean difference

Background

The growing burden of non-communicable diseases (NCDs) is one of the biggest challenges facing healthcare systems worldwide in the twentyfirst century [1]. NCDs have been identified as major causes of disability and mortality globally. During 2016, about 71.3% of all deaths worldwide were claimed to be due to these diseases [2]. It has been projected that by 2030, NCDs will cause over 75% of all deaths worldwide [3]. Evidence suggests that NCDs are among the main leading causes of death in Iran. According to the latest statistics provided by the World Health Organization, NCDs are responsible for more than 76% of all deaths in Iran. Among these, coronary heart diseases make the most considerable contribution to NCD deaths (by 46%) [4]. The four modifiable behavioral risk factors for NCDs are physical inactivity, unhealthy diet, harmful alcohol use, and tobacco use. It is noteworthy that the NCD-related morbidity and mortality burden due to an unhealthy diet is much more significant than the other three risk factors [5].
During the last four decades, significant changes have taken place in global nutrition patterns. People’s diets have shifted to higher consumption of processed and ultra-processed foods low in nutrients and high in calories [6, 7]. The percentage of foods consumed outside the home, such as fast food, has increased, leading to excessive calorie intake [8]. Besides, there have been significant increases in the consumption of animal-source foods, oils, and caloric sweeteners [9]. In many countries, intakes of sodium, unhealthy fats, and added sugar in the general population are much higher than the recommended amounts [10]. It is important to note that increased consumption of unhealthy foods and beverages has been associated with a lower intake of healthy diet components, including foods with low-energy density and a high content of nutrients such as vegetables, legumes, and whole grains [9]. These dietary shifts have important implications for public health. Unhealthy eating patterns, including high consumption of added sugar, trans fats, and sodium, have been associated with obesity, cardiovascular disease, type 2 diabetes, cancer, high blood pressure, and stroke [1113]. Also, such eating patterns have been reported to kill more than 14 million people worldwide each year, equivalent to 40% of deaths due to NCDs [14].
According to the World Health Organization, a healthy diet includes achieving energy balance, limiting energy intake from total fats, replacing saturated fats with unsaturated fats, eliminating trans fatty acids, limiting the intake of free sugars, limiting salt (sodium) consumption from all sources, and increasing consumption of fruits and vegetables, and legumes, whole grains, and nuts [15]. Many efforts have been made to develop nutritional interventions around the world. These primary prevention programs focus on asymptomatic individuals in the general population before an adverse health event occurs [16]. The goal of interventions at this stage is to reduce non-communicable disease risk factors by promoting healthy diets. There are powerful potential interventions that target the factors mentioned above and the cost, access to healthy foods, and individuals’ knowledge. It should be noted that such population interventions, by their nature, should be theoretically useful for all members of society, including those with a history of non-communicable diseases such as cardiovascular disease [17]. However, given the poor quality of the average diet, it is clear that current approaches to improve public nutrition have not been successful and that effective strategies are urgently needed [18].
Health-related behaviors, including nutritional behaviors, are influenced by a wide variety of factors. Understanding the multifactorial nature of these behaviors and the contexts in which they occur is essential for developing effective behavior change interventions. Having a clear theoretical underpinning has been suggested to maximize behavior change interventions [1921]. Evidence shows that theory-based interventions effectively influence health-related behaviors than non-theory-based ones [2224]. These types of studies provide a framework for developing and evaluating interventions [25]. They also facilitate understanding the factors influencing behavior change and the reasons for an intervention’s success or failure [26, 27]. One of the behavioral theories that is widely used to influence health behavior is social marketing.
There are many definitions of social marketing, but one of the most useful ones describes social marketing as follows: “Social marketing is the application of commercial marketing technologies to analyze, plan, implement, and evaluate programs designed to influence the voluntary behavior of the target audiences to improve their personal and social well-being” [28]. The unique feature of social marketing is that it takes learning from the commercial sector and applies it to induce, encourage, and promote social change entirely, rather than to provide ideas or information [29]. The strengths of social marketing over alternative techniques applied to behavior change include (1) focusing on the consumer—this means that interventions are designed based on the consumers’ wants and needs, not only the priorities of society as a whole [30]; (2) proposing attractive exchanges for the consumer, which makes it possible to change voluntary behavior; in other words, it focuses on convincing not on coercion [31], (3) identifying and appropriately addressing competition to make the recommended products or health behaviors more advantageous than the unhealthy ones [32], and (4) using all the marketing mix components (the basic 4 Ps: product, price, place, and promotion). In social marketing, a product is developed (key benefits, service, or behavior change), the price is evaluated (the costs of stopping an unhealthy behavior or adopting a healthy one, which can be in the form of money, time, opportunity, energy, effort, psychological factors, etc.), the place is defined (the situations in which the target audience can perform the health behavior or obtain any tangible goods or services necessary for the health behavior), and a promotion strategy is planned (selecting promotion techniques and channels) [33], (5) managing programs properly through planning, control, monitoring, implementation, and evaluation [28]. Accordingly, social marketing can be an excellent tool for promoting public health activities.
It is not a new idea to use marketing principles in health education and health promotion to achieve health or social goals [3436]. Social marketing has been applied to solve behavioral problems for more than 40 years [37]. There are many examples of effective use of social marketing framework in the field of public health, including promoting healthy eating behaviors [38], prevention and control of AIDS [39], reducing alcohol consumption in youth and adolescents [40], and increasing physical activity [41]. Given the effectiveness of social marketing in changing health behaviors, the present review intends to collect interventional studies that have used the social marketing framework to promote healthy eating behaviors. The objective of this review will be to evaluate the effectiveness of social marketing-based interventions to promote healthy nutrition behaviors.

Methods

Protocol and registration

The present protocol was registered in the PROSPERO database under registration number CRD42020163972 and is being reported according to guidance provided in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) statement [42], (see Additional file 1). The proposed systematic review will be conducted based on the methodological guidance from the Cochrane Collaboration Handbook of Systematic Reviews [43] and will be reported following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) Statement [44]. Relevant changes to the protocol will be documented and published within the results of the final review.

Eligibility criteria

Types of studies

We will include different types of study designs, including randomized-controlled trials (including cluster trials), non-randomized controlled trials, quasi-experimental studies, and observational studies (including cohort studies, cross-sectional studies, and before-after studies). Pre-and post-interventions are also common and will help determine the effect (if any) of interventions within a single community. The controlled cohort studies and cross-sectional studies will help identify differences in the communities’ outcomes, either overtime or within a particular point in time, respectively.

Types of participants

All population groups, including children, adolescents, adults, or older adults, and the community in different settings (kindergarten, school, home, or community), will be examined.

Types of interventions

The following interventions will be included in the study:
Any intervention to improve eating behaviors including increasing fruit and vegetable, legumes, whole grains, and nuts intake, healthy and low-fat choices (e.g., snack or meal alternatives with lower fat, energy, salt, sugar or higher fiber), other behaviors including variety, novel foods, fiber intake, low-sodium intake, consuming healthy breakfasts, healthy school lunches, and the emphasis on daily water consumption [4552].
Studies must be social marketing-based interventions to promote healthy nutrition behaviors. The interventions that consider all the marketing mix components to improve nutritional behaviors will be included. It consists of the basic 4 Ps of product, price, place, and promotion. Product refers to healthy eating behaviors. Price refers to the cost for the promised benefits or the barriers that may prevent the people from performing healthy eating behaviors and what methods used in interventions to remove these barriers. Place refers to the location where people can obtain information about healthy eating behaviors, and finally, promotion includes the type of persuasive communication to improve eating behaviors.
The evidence from qualitative research will also be used to explain the effect of social marketing-based interventions on nutrition behaviors.

Types of outcome measures

Studies will be included in the review if they have quantifiable measures of the primary outcome. The primary outcomes will be nutritional behaviors including the following:
  • Increased daily consumption of fruit, vegetables, legumes (e.g., lentils and beans), nuts, and whole grains servings [45].
  • Healthy choices, including snack or meal alternatives with lower fat, energy, salt, sugar, or higher fiber. Less than 5 g of salt (equivalent to about one teaspoon) per day [46].
  • Improvement in dietary intake indicators (e.g., Dietary Diversity Score (DDS) and Healthy Eating Index (HEI), diet quality indices (DQI), and Healthy Dietary Habits Index (HDHI)) [53, 54].
  • Prefer unsaturated fats (found in fish, avocado and nuts, and in sunflower, soybean, canola, and olive oils) to saturated fats (found in fatty meat, butter, palm and coconut oil, cream, cheese, ghee, and lard) and trans-fats of all kinds, including both industrially produced trans-fats (found in baked and fried foods, and pre-packaged snacks and foods, such as frozen pizza, pies, cookies, biscuits, wafers, and cooking oils and spreads) and ruminant trans-fats (found in meat and dairy foods from ruminant animals, such as cows, sheep, goats, and camels).
  • Reduced intake of saturated fats to less than 10% of total energy intake and trans-fats to less than 1% of total energy intake [49].
  • Reduced intake of industrially produced trans-fats [50, 51].
  • Less than 10% of total energy intake from free sugars [45, 52]. Free sugars are all sugars added to foods or drinks by the manufacturer, cook, consumer, and sugars naturally present in honey, syrups, fruit juices, and fruit juice concentrates.
  • Other behaviors, including variety, novel foods, consuming healthy breakfasts, healthy school lunches, and the emphasis on daily water consumption [45].
Secondary outcomes will include improvement in the quality of life, nutritional status, and weight status.
Only articles published in English will be included. We will exclude reviews, methodological articles, and conceptual documents (e.g., non-empirical studies). We will exclude studies without a control group, not reporting outcome data, and/or addressing diseased/medically diagnosed populations.
The primary source of literature will be a structured search of major electronic databases (from January 1990 onwards): PubMed/MEDLINE, EMBASE, Web of Science, and the Cochrane Central Register of Controlled Trials (CENTRAL). The secondary source of potentially relevant material will be a search of the grey or difficult to locate literature, including ProQuest and Google Scholar. We will perform hand-searching of the reference lists of included studies, relevant reviews, or other relevant documents. Authors who are prolific in the field will be contacted. The literature searches will be designed and conducted by the review team, including an experienced health information specialist. The search will include a broad range of terms and keywords related to nutrition behavior, social marketing, and interventions. A draft search strategy for the main databases is provided in Additional file 2.

Data management and selection process

All the identified studies of different sources will be transferred to Endnote and systematically de-duplicated through The Systematic Review Assistant-Deduplication Module (SRA-DM). This freely available application has greater sensitivity and specificity than Endnote for the de-duplication process [55]. The remaining studies will be screened for eligibility by two independent reviewers. The resolution of any conflicts will be made by a third independent reviewer or by discussion. The reasons for the exclusion of any article will be documented. A full-text screening will then be carried out. A PRISMA flow chart showing details of studies included and excluded at each stage of the study selection process will be provided [56].

Data extraction

We will extract data from the included studies using the pre-standardized data extraction form (see Additional file 3). The form will be tested and adapted as necessary before using it. Data extraction form will capture the following data fields: study title, author(s), publication year, geographic origin, study design, enrolment period, sample size, duration of intervention, participant characteristics (age, sex), intervention type, and its components, primary and secondary outcomes. Two authors will independently extract the data. We will discuss any differences between the two data extraction sheets to reach a consensus or consult a third author if an agreement is impossible to achieve. We will also contact study authors to obtain any missing information or clarify unclear data by getting the original report.

Assessment of risk of bias in included studies

To estimate the potential bias that will be most relevant for the study, we will use the following tools: the Cochrane tool for assessing the risk of bias in randomized trials (RoB 2 tool) [57], the Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I) [58], and the Newcastle–Ottawa Scale (NOS) for observational studies [59]. Two authors (AD & MB) will independently assess the risk of bias in each included study. Potential conflicts will be resolved through discussion.

Measures of intervention effect

Where continuous scales of measurement are used to assess the effects of the intervention (e.g., mean number of servings of fruit and vegetable consumption, nutrition knowledge scores), the mean difference (MD) will be used, or the standardized mean difference (SMD) if different scales have been used. When considering studies with multiple intervention groups, we will try to combine all relevant experimental intervention groups into a single group to enable a single pairwise comparison. For considering cross-over studies, we will only use data from the first period. If the meta-analysis is not performed, the reason will be provided. At this stage, the findings will be summarized and discussed. Conclusions will also be formed based on the power of each of the studies. After summarizing the results and providing conclusions, the specific features associated with effective interventions will be identified.

Dealing with missing data

Studies with missing data will also be included in the systematic review. Any further information required from the original author will be requested by written correspondence (e.g., emailing the corresponding author) and any relevant information obtained in this manner. Attrition rates, for example, drop-outs, losses to follow-up, and withdrawals will be investigated.

Data synthesis

The data from each paper (e.g., study characteristics, context, participants, outcomes, and findings) will be used to build evidence tables of an overall description of included studies. Effect sizes (e.g., MD) will be presented along with 95% confidence intervals. If feasible and appropriate, effect sizes from primary studies will be used to perform random-effects meta-analyses. Since heterogeneity is expected a priori, we will estimate the pooled effect sizes using the random-effects model. The random-effects model assumes the study prevalence estimates follow a normal distribution, considering both within-study and between-study variation. Forest plots will be used to visualize the extent of heterogeneity among studies. We will quantify statistical heterogeneity by estimating the variance between studies using I2 statistic [60]. I2 ranges between 0% and 100% (with values of 0–25% and 75–100% taken to indicate low and considerable heterogeneity, respectively). We will also report Cochran Q test with a P value of 0.05 considered statistically significant (heterogeneity).

Additional analyses

If sufficient data are available, we will conduct a subgroup analysis to explore possible heterogeneity sources (e.g., participants, interventions, and study quality). Heterogeneity among participants could be related to age (e.g., elderly, adults, children, and adolescents), sex (male versus female), geographic location (e.g., urban versus rural, country, or region), and socio-economic condition. Heterogeneity in interventions could be related to how the intervention is delivered, components of the intervention, the duration of the intervention, and settings (kindergarten, school, home, or community). Publication bias will be assessed by inspection of the funnel plots for asymmetry and with Egger’s test [61] and Begg’s test [62], with the results considered to indicate potential small study effects when P values are < 0.10.

Software to be used

All analyses will be conducted using STATA (13.0; Stata Corporation, College Station, Texas, USA Stata).

Quality assessment of included studies

Data extraction form also includes an overall grading of the evidence related to each of the main outcomes using the GRADE (Grades of Recommendation, Assessment, Development, and Evaluation) approach. It is the most flexible methodology for evaluating the evidence (downgrading, upgrading, handling indirect evidence, etc.) The GRADE approach defines the quality of a body of evidence as to the extent to which one can be confident that an estimate of effect or association is close to the true quantity of specific interest [63].

Discussion

There is no doubt that diet quality has a major impact on health. A higher-quality diet has always been associated with better health outcomes [64, 65]. The relationship between diet and health is an undeniable cause-and-effect one [66]. This causal relationship has been proven through very detailed studies aimed at identifying causal pathways whereby specific nutrients affect health [67] and the high-quality intervention trials such as those incorporating the Mediterranean diet [68, 69]. Diet is currently among the leading preventable causes of mortality and disability in nearly all countries [70, 71]. Given the role of unhealthy nutrition in increasing the prevalence of non-communicable diseases [72], it is not unreasonable to expect an important step to prevent diseases and reduce mortality rates by correcting eating habits and food choices. However, the critical issue is that it is challenging to implement and maintain health-promoting behaviors, including healthy eating behaviors. This issue is significantly exacerbated in environments where low nutritional value and low-cost ready-to-eat foods are readily available and frequently advertised [73, 74].
Examining the available evidence and modeling based on practical and successful studies is considered the first step to facilitate policy improvement and design effective programs to promote healthy eating behaviors. On the other hand, an essential step for the final judgment on the types of interventions and their impact on promoting healthy eating behaviors is to conduct a systematic review of related studies [75]. Therefore, the present study is intended to collect articles related to interventions based on the social marketing approach to promoting healthy eating behaviors by searching for relevant scientific literature. After the final selection and extraction of papers, the components of the interventions, implementation methods, and their effectiveness will be identified and reported in a systematic review article to guide design interventions with the same purpose.
This systematic review will be restricted to articles in English due to functional reasons, and therefore could miss relevant papers published in other languages.
The review results can provide policymakers with the information needed to make decisions and plan to promote healthy eating behaviors and understand the factors influencing the programs’ implementation.
This review is intended for publication in a peer-reviewed journal. Analyses and scripts will be made publicly available. Any changes to the protocol will be documented as well.

Acknowledgements

This review will be conducted by the approval and funding of the Shahid Beheshti University of Medical Sciences (SBMU). The authors hereby express their gratitude to the SBMU.

Declarations

The study protocol was approved by the Ethics Committee of National Nutrition and Food Technology Research Institute at Shahid Beheshti University of Medical Sciences (IR. SBMU.nnftri.1397.031).
Not applicable

Competing interests

Authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Atun R, Jaffar S, Nishtar S, Knaul FM, Barreto ML, Nyirenda M, et al. Improving responsiveness of health systems to non-communicable diseases. Lancet. 2013;381(9867):690–7.PubMedCrossRef Atun R, Jaffar S, Nishtar S, Knaul FM, Barreto ML, Nyirenda M, et al. Improving responsiveness of health systems to non-communicable diseases. Lancet. 2013;381(9867):690–7.PubMedCrossRef
2.
Zurück zum Zitat Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544.CrossRef Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388(10053):1459–544.CrossRef
3.
Zurück zum Zitat Wang Y, Wang J. Modelling and prediction of global non-communicable diseases. BMC Public Health. 2020;20:1–13.CrossRef Wang Y, Wang J. Modelling and prediction of global non-communicable diseases. BMC Public Health. 2020;20:1–13.CrossRef
5.
Zurück zum Zitat Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60.PubMedPubMedCentralCrossRef Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Moodie R, Stuckler D, Monteiro C, Sheron N, Neal B, Thamarangsi T, et al. Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet. 2013;381(9867):670–9.PubMedCrossRef Moodie R, Stuckler D, Monteiro C, Sheron N, Neal B, Thamarangsi T, et al. Profits and pandemics: prevention of harmful effects of tobacco, alcohol, and ultra-processed food and drink industries. Lancet. 2013;381(9867):670–9.PubMedCrossRef
7.
Zurück zum Zitat Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B. Ultra-processed products are becoming dominant in the global food system. Obes Rev. 2013;14:21–8.PubMedCrossRef Monteiro CA, Moubarac JC, Cannon G, Ng SW, Popkin B. Ultra-processed products are becoming dominant in the global food system. Obes Rev. 2013;14:21–8.PubMedCrossRef
8.
Zurück zum Zitat Duffey KJ, Popkin BM. Energy density, portion size, and eating occasions: contributions to increased energy intake in the United States, 1977–2006. PLoS Med. 2011;8(6):e1001050.PubMedPubMedCentralCrossRef Duffey KJ, Popkin BM. Energy density, portion size, and eating occasions: contributions to increased energy intake in the United States, 1977–2006. PLoS Med. 2011;8(6):e1001050.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70(1):3–21.PubMedCrossRef Popkin BM, Adair LS, Ng SW. Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev. 2012;70(1):3–21.PubMedCrossRef
10.
Zurück zum Zitat Micha R, Khatibzadeh S, Shi P, Andrews KG, Engell RE, Mozaffarian D. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open. 2015;5(9):e008705.PubMedPubMedCentralCrossRef Micha R, Khatibzadeh S, Shi P, Andrews KG, Engell RE, Mozaffarian D. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open. 2015;5(9):e008705.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health. 2007;97(4):667–75.PubMedPubMedCentralCrossRef Vartanian LR, Schwartz MB, Brownell KD. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am J Public Health. 2007;97(4):667–75.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.PubMed Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics--2012 update: a report from the American Heart Association. Circulation. 2012;125(1):e2–e220.PubMed
13.
Zurück zum Zitat Mozaffarian D, Aro A, Willett WC. Health effects of trans-fatty acids: experimental and observational evidence. Eur J Clin Nutr. 2009;63(S2):S5.PubMedCrossRef Mozaffarian D, Aro A, Willett WC. Health effects of trans-fatty acids: experimental and observational evidence. Eur J Clin Nutr. 2009;63(S2):S5.PubMedCrossRef
14.
Zurück zum Zitat Strong K, Mathers C, Leeder S, Beaglehole R. Preventing chronic diseases: how many lives can we save? Lancet. 2005;366(9496):1578–82.PubMedCrossRef Strong K, Mathers C, Leeder S, Beaglehole R. Preventing chronic diseases: how many lives can we save? Lancet. 2005;366(9496):1578–82.PubMedCrossRef
16.
Zurück zum Zitat NICE. Prevention of cardiovascular disease. Manchester: NICE Public Health Guidance 25; 2010. NICE. Prevention of cardiovascular disease. Manchester: NICE Public Health Guidance 25; 2010.
17.
Zurück zum Zitat McGill R, Anwar E, Orton L, Bromley H, Lloyd-Williams F, O’Flaherty M, et al. Are interventions to promote healthy eating equally effective for all? Systematic review of socioeconomic inequalities in impact. BMC Public Health. 2015;15(1):457.PubMedPubMedCentralCrossRef McGill R, Anwar E, Orton L, Bromley H, Lloyd-Williams F, O’Flaherty M, et al. Are interventions to promote healthy eating equally effective for all? Systematic review of socioeconomic inequalities in impact. BMC Public Health. 2015;15(1):457.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Lenoir-Wijnkoop I, Gutiérrez-Ibarluzea I, Dubois DJ. Today’s nutrition and tomorrow’s public health: challenges and opportunities: Frontiers Media SA; 2016. Lenoir-Wijnkoop I, Gutiérrez-Ibarluzea I, Dubois DJ. Today’s nutrition and tomorrow’s public health: challenges and opportunities: Frontiers Media SA; 2016.
19.
Zurück zum Zitat Davis R, Campbell R, Hildon Z, Hobbs L, Michie S. Theories of behaviour and behaviour change across the social and behavioural sciences: a scoping review. Health Psychol Rev. 2015;9(3):323–44.PubMedCrossRef Davis R, Campbell R, Hildon Z, Hobbs L, Michie S. Theories of behaviour and behaviour change across the social and behavioural sciences: a scoping review. Health Psychol Rev. 2015;9(3):323–44.PubMedCrossRef
20.
Zurück zum Zitat Fishbein M, Yzer MC. Using theory to design effective health behavior interventions. Commun Theory. 2003;13(2):164–83.CrossRef Fishbein M, Yzer MC. Using theory to design effective health behavior interventions. Commun Theory. 2003;13(2):164–83.CrossRef
21.
Zurück zum Zitat Glanz K, Bishop DB. The role of behavioral science theory in development and implementation of public health interventions. Annu Rev Public Health. 2010;31:399–418.PubMedCrossRef Glanz K, Bishop DB. The role of behavioral science theory in development and implementation of public health interventions. Annu Rev Public Health. 2010;31:399–418.PubMedCrossRef
22.
Zurück zum Zitat Noar SM, Benac CN, Harris MS. Does tailoring matter? Meta-analytic review of tailored print health behavior change interventions. Psychol Bull. 2007;133(4):673.PubMedCrossRef Noar SM, Benac CN, Harris MS. Does tailoring matter? Meta-analytic review of tailored print health behavior change interventions. Psychol Bull. 2007;133(4):673.PubMedCrossRef
23.
Zurück zum Zitat Cane J, Richardson M, Johnston M, Ladha R, Michie S. From lists of behaviour change techniques (BCT s) to structured hierarchies: comparison of two methods of developing a hierarchy of BCT s. Br J Health Psychol. 2015;20(1):130–50.PubMedCrossRef Cane J, Richardson M, Johnston M, Ladha R, Michie S. From lists of behaviour change techniques (BCT s) to structured hierarchies: comparison of two methods of developing a hierarchy of BCT s. Br J Health Psychol. 2015;20(1):130–50.PubMedCrossRef
24.
Zurück zum Zitat Fadhil A, Gabrielli S, editors. Addressing challenges in promoting healthy lifestyles: the al-chatbot approach. Proceedings of the 11th EAI international conference on pervasive computing technologies for healthcare. 2017. Fadhil A, Gabrielli S, editors. Addressing challenges in promoting healthy lifestyles: the al-chatbot approach. Proceedings of the 11th EAI international conference on pervasive computing technologies for healthcare. 2017.
25.
Zurück zum Zitat Abraham C, Michie S. A taxonomy of behavior change techniques used in interventions. Health Psychol. 2008;27(3):379.PubMedCrossRef Abraham C, Michie S. A taxonomy of behavior change techniques used in interventions. Health Psychol. 2008;27(3):379.PubMedCrossRef
26.
Zurück zum Zitat Nigg CR, Allegrante JP, Ory M. Theory-comparison and multiple-behavior research: common themes advancing health behavior research. Health Educ Res. 2002;17(5):670–9.PubMedCrossRef Nigg CR, Allegrante JP, Ory M. Theory-comparison and multiple-behavior research: common themes advancing health behavior research. Health Educ Res. 2002;17(5):670–9.PubMedCrossRef
27.
Zurück zum Zitat Lubans DR, Foster C, Biddle SJ. A review of mediators of behavior in interventions to promote physical activity among children and adolescents. Prev Med. 2008;47(5):463–70.PubMedCrossRef Lubans DR, Foster C, Biddle SJ. A review of mediators of behavior in interventions to promote physical activity among children and adolescents. Prev Med. 2008;47(5):463–70.PubMedCrossRef
28.
Zurück zum Zitat Andreasen A. Marketing social change: changing behavior to promote health, social development and the environment. San Francisco: Jossey- Bass; 1995. Andreasen A. Marketing social change: changing behavior to promote health, social development and the environment. San Francisco: Jossey- Bass; 1995.
29.
Zurück zum Zitat Da Silva EC, Mazzon JA. Developing social marketing plan for health promotion. Int J Public Adm. 2016;39(8):577–86.CrossRef Da Silva EC, Mazzon JA. Developing social marketing plan for health promotion. Int J Public Adm. 2016;39(8):577–86.CrossRef
31.
Zurück zum Zitat Stead M, Gordon R, Angus K, McDermott L. A systematic review of social marketing effectiveness. Health Educ. 2007;107(2):126–91.CrossRef Stead M, Gordon R, Angus K, McDermott L. A systematic review of social marketing effectiveness. Health Educ. 2007;107(2):126–91.CrossRef
32.
Zurück zum Zitat Grier S, Bryant CA. Social marketing in public health. Annu Rev Public Health. 2005;26:319–39.PubMedCrossRef Grier S, Bryant CA. Social marketing in public health. Annu Rev Public Health. 2005;26:319–39.PubMedCrossRef
33.
Zurück zum Zitat Shams M. Social marketing for health: theoretical and conceptual considerations. In: Haider M, Platter H, editors. Selected issues in global health communications. London: Intechopen; 2018. p. 43–55. Shams M. Social marketing for health: theoretical and conceptual considerations. In: Haider M, Platter H, editors. Selected issues in global health communications. London: Intechopen; 2018. p. 43–55.
34.
Zurück zum Zitat Hastings G, Haywood A. Social marketing and communication in health promotion. Health Promot Int. 1991;6(2):135–45.CrossRef Hastings G, Haywood A. Social marketing and communication in health promotion. Health Promot Int. 1991;6(2):135–45.CrossRef
35.
Zurück zum Zitat Wiebe GD. Merchandising commodities and citizenship on television. Public Opin Q. 1951;15(4):679–91.CrossRef Wiebe GD. Merchandising commodities and citizenship on television. Public Opin Q. 1951;15(4):679–91.CrossRef
36.
Zurück zum Zitat Craig Lefebvre R, Flora JA. Social marketing and public health intervention. Health Educ Q. 1988;15(3):299–315.CrossRef Craig Lefebvre R, Flora JA. Social marketing and public health intervention. Health Educ Q. 1988;15(3):299–315.CrossRef
37.
Zurück zum Zitat Lefebvre RC. An integrative model for social marketing. J Soc Mark. 2011;1(1):54–72.CrossRef Lefebvre RC. An integrative model for social marketing. J Soc Mark. 2011;1(1):54–72.CrossRef
38.
Zurück zum Zitat Young L, Anderson J, Beckstrom L, Bellows L, Johnson SL. Using social marketing principles to guide the development of a nutrition education initiative for preschool-aged children. J Nutr Educ Behav. 2004;36(5):250–7.PubMedCrossRef Young L, Anderson J, Beckstrom L, Bellows L, Johnson SL. Using social marketing principles to guide the development of a nutrition education initiative for preschool-aged children. J Nutr Educ Behav. 2004;36(5):250–7.PubMedCrossRef
39.
Zurück zum Zitat Meekers D. The role of social marketing in sexually transmitted diseases/HIV protection in 4600 sexual contacts in urban Zimbabwe. Aids. 2001;15(2):285–7.PubMedCrossRef Meekers D. The role of social marketing in sexually transmitted diseases/HIV protection in 4600 sexual contacts in urban Zimbabwe. Aids. 2001;15(2):285–7.PubMedCrossRef
40.
Zurück zum Zitat Palmer RS, Kilmer JR, Larimer ME. If you feed them, will they come? The use of social marketing to increase interest in attending a college alcohol program. J Am Coll Heal. 2006;55(1):47–52.CrossRef Palmer RS, Kilmer JR, Larimer ME. If you feed them, will they come? The use of social marketing to increase interest in attending a college alcohol program. J Am Coll Heal. 2006;55(1):47–52.CrossRef
41.
Zurück zum Zitat Wong F, Huhman M, Asbury L, Bretthauer-Mueller R, McCarthy S, Londe P, et al. VERB™—a social marketing campaign to increase physical activity among youth. Prev Chronic Dis. 2004;1(3). Wong F, Huhman M, Asbury L, Bretthauer-Mueller R, McCarthy S, Londe P, et al. VERB™—a social marketing campaign to increase physical activity among youth. Prev Chronic Dis. 2004;1(3).
42.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097.PubMedPubMedCentralCrossRef
43.
44.
Zurück zum Zitat Welch V, Petticrew M, Tugwell P, Moher D, O'Neill J, Waters E, et al. PRISMA-Equity 2012 extension: reporting guidelines for systematic reviews with a focus on health equity. PLoS Med. 2012;9(10):e1001333.PubMedPubMedCentralCrossRef Welch V, Petticrew M, Tugwell P, Moher D, O'Neill J, Waters E, et al. PRISMA-Equity 2012 extension: reporting guidelines for systematic reviews with a focus on health equity. PLoS Med. 2012;9(10):e1001333.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat WHO. Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation: World Health Organization; 2003. WHO. Diet, nutrition, and the prevention of chronic diseases: report of a joint WHO/FAO expert consultation: World Health Organization; 2003.
46.
Zurück zum Zitat WHO. Guideline: sodium intake for adults and children: World Health Organization; 2012. WHO. Guideline: sodium intake for adults and children: World Health Organization; 2012.
47.
Zurück zum Zitat Hooper L, Abdelhamid A, Bunn D, Brown T, Summerbell CD, Skeaff CM. Effects of total fat intake on body weight. Cochrane Database Syst Rev. 2015;8. Hooper L, Abdelhamid A, Bunn D, Brown T, Summerbell CD, Skeaff CM. Effects of total fat intake on body weight. Cochrane Database Syst Rev. 2015;8.
48.
Zurück zum Zitat Joint F. Fats and fatty acids in human nutrition. Report of an expert consultation, 10-14 November 2008, Geneva. 2010. Joint F. Fats and fatty acids in human nutrition. Report of an expert consultation, 10-14 November 2008, Geneva. 2010.
49.
Zurück zum Zitat WHO. Guidelines: saturated fatty acid and trans—fatty acid intake for adults and children. Geneva: WHO; 2018. WHO. Guidelines: saturated fatty acid and trans—fatty acid intake for adults and children. Geneva: WHO; 2018.
50.
Zurück zum Zitat Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009;6(4):e1000058.PubMedPubMedCentralCrossRef Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, et al. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. PLoS Med. 2009;6(4):e1000058.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat WHO. Replace trans fat: an action package to eliminate industrially-produced trans-fatty acids: World Health Organization; 2019. WHO. Replace trans fat: an action package to eliminate industrially-produced trans-fatty acids: World Health Organization; 2019.
52.
Zurück zum Zitat WHO. Guideline: sugars intake for adults and children: World Health Organization; 2015. WHO. Guideline: sugars intake for adults and children: World Health Organization; 2015.
53.
Zurück zum Zitat Kourlaba G, Panagiotakos DB. Dietary quality indices and human health: a review. Maturitas. 2009;62(1):1–8.PubMedCrossRef Kourlaba G, Panagiotakos DB. Dietary quality indices and human health: a review. Maturitas. 2009;62(1):1–8.PubMedCrossRef
54.
Zurück zum Zitat Wong JE, Haszard JJ, Howe AS, Parnell WR, Skidmore PM. Development of a healthy dietary habits index for New Zealand adults. Nutrients. 2017;9(5):454.PubMedCentralCrossRef Wong JE, Haszard JJ, Howe AS, Parnell WR, Skidmore PM. Development of a healthy dietary habits index for New Zealand adults. Nutrients. 2017;9(5):454.PubMedCentralCrossRef
55.
Zurück zum Zitat Rathbone J, Carter M, Hoffmann T, Glasziou P. Better duplicate detection for systematic reviewers: evaluation of Systematic Review Assistant-Deduplication Module. Syst Rev. 2015;4(1):6.PubMedPubMedCentralCrossRef Rathbone J, Carter M, Hoffmann T, Glasziou P. Better duplicate detection for systematic reviewers: evaluation of Systematic Review Assistant-Deduplication Module. Syst Rev. 2015;4(1):6.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.PubMedCrossRef Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.PubMedCrossRef
57.
Zurück zum Zitat Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Bmj. 2019;366. Sterne JA, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. Bmj. 2019;366.
58.
Zurück zum Zitat Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Bmj. 2016;355. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. Bmj. 2016;355.
60.
Zurück zum Zitat Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193.PubMedCrossRef Huedo-Medina TB, Sánchez-Meca J, Marín-Martínez F, Botella J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol Methods. 2006;11(2):193.PubMedCrossRef
62.
Zurück zum Zitat Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994:1088–101. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994:1088–101.
63.
Zurück zum Zitat Schünemann HJ, Vist GE, Higgins JP, Santesso N, Deeks JJ, Glasziou P, et al. Interpreting results and drawing conclusions. Cochrane Handb Syst Rev Intervent. 2019:403–31. Schünemann HJ, Vist GE, Higgins JP, Santesso N, Deeks JJ, Glasziou P, et al. Interpreting results and drawing conclusions. Cochrane Handb Syst Rev Intervent. 2019:403–31.
64.
Zurück zum Zitat Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis-art. No. A1344. Br Med J. 2008;337(7671):NIL_44-NIL_50. Sofi F, Cesari F, Abbate R, Gensini GF, Casini A. Adherence to Mediterranean diet and health status: meta-analysis-art. No. A1344. Br Med J. 2008;337(7671):NIL_44-NIL_50.
65.
Zurück zum Zitat Lai JS, Hiles S, Bisquera A, Hure AJ, McEvoy M, Attia J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr. 2013;99(1):181–97.PubMedCrossRef Lai JS, Hiles S, Bisquera A, Hure AJ, McEvoy M, Attia J. A systematic review and meta-analysis of dietary patterns and depression in community-dwelling adults. Am J Clin Nutr. 2013;99(1):181–97.PubMedCrossRef
66.
Zurück zum Zitat Segal L, Opie RS. A nutrition strategy to reduce the burden of diet related disease: access to dietician services must complement population health approaches. Front Pharmacol. 2015;6:160.PubMedPubMedCentralCrossRef Segal L, Opie RS. A nutrition strategy to reduce the burden of diet related disease: access to dietician services must complement population health approaches. Front Pharmacol. 2015;6:160.PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Parletta N, Milte CM, Meyer BJ. Nutritional modulation of cognitive function and mental health. J Nutr Biochem. 2013;24(5):725–43.PubMedCrossRef Parletta N, Milte CM, Meyer BJ. Nutritional modulation of cognitive function and mental health. J Nutr Biochem. 2013;24(5):725–43.PubMedCrossRef
68.
Zurück zum Zitat De Lorgeril M, Salen P, Martin J-L, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99(6):779–85.PubMedCrossRef De Lorgeril M, Salen P, Martin J-L, Monjaud I, Delaye J, Mamelle N. Mediterranean diet, traditional risk factors, and the rate of cardiovascular complications after myocardial infarction: final report of the Lyon Diet Heart Study. Circulation. 1999;99(6):779–85.PubMedCrossRef
69.
Zurück zum Zitat Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.PubMedCrossRef Estruch R, Ros E, Salas-Salvadó J, Covas M-I, Corella D, Arós F, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.PubMedCrossRef
70.
Zurück zum Zitat Mozaffarian D, Afshin A, Benowitz NL, Bittner V, Daniels SR, Franch HA, et al. Population approaches to improve diet, physical activity, and smoking habits: a scientific statement from the American Heart Association. Circulation. 2012;126(12):1514–63.CrossRefPubMed Mozaffarian D, Afshin A, Benowitz NL, Bittner V, Daniels SR, Franch HA, et al. Population approaches to improve diet, physical activity, and smoking habits: a scientific statement from the American Heart Association. Circulation. 2012;126(12):1514–63.CrossRefPubMed
72.
Zurück zum Zitat Scarborough P, Nnoaham KE, Clarke D, Capewell S, Rayner M. Modelling the impact of a healthy diet on cardiovascular disease and cancer mortality. J Epidemiol Community Health. 2012;66(5):420–6.PubMedCrossRef Scarborough P, Nnoaham KE, Clarke D, Capewell S, Rayner M. Modelling the impact of a healthy diet on cardiovascular disease and cancer mortality. J Epidemiol Community Health. 2012;66(5):420–6.PubMedCrossRef
73.
Zurück zum Zitat Brandstetter S, Rüter J, Curbach J, Loss J. A systematic review on empowerment for healthy nutrition in health promotion. Public Health Nutr. 2015;18(17):3146–54.PubMedCrossRef Brandstetter S, Rüter J, Curbach J, Loss J. A systematic review on empowerment for healthy nutrition in health promotion. Public Health Nutr. 2015;18(17):3146–54.PubMedCrossRef
74.
Zurück zum Zitat Liberato SC, Bailie R, Brimblecombe J. Nutrition interventions at point-of-sale to encourage healthier food purchasing: a systematic review. BMC Public Health. 2014;14(1):919.PubMedPubMedCentralCrossRef Liberato SC, Bailie R, Brimblecombe J. Nutrition interventions at point-of-sale to encourage healthier food purchasing: a systematic review. BMC Public Health. 2014;14(1):919.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Khan K, Kunz R, Kleijnen J, Antes G. Systematic reviews to support evidence-based medicine: Crc Press; 2011.CrossRef Khan K, Kunz R, Kleijnen J, Antes G. Systematic reviews to support evidence-based medicine: Crc Press; 2011.CrossRef
Metadaten
Titel
Social marketing-based interventions to promote healthy nutrition behaviors: a systematic review protocol
verfasst von
Azam Doustmohammadian
Marjan Bazhan
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
Systematic Reviews / Ausgabe 1/2021
Elektronische ISSN: 2046-4053
DOI
https://doi.org/10.1186/s13643-021-01625-5

Weitere Artikel der Ausgabe 1/2021

Systematic Reviews 1/2021 Zur Ausgabe