Skip to main content
Erschienen in: Experimental Brain Research 3/2004

01.10.2004 | Review

Some thoughts on cortical minicolumns

verfasst von: Kathleen S. Rockland, Noritaka Ichinohe

Erschienen in: Experimental Brain Research | Ausgabe 3/2004

Einloggen, um Zugang zu erhalten

Abstract

Although a columnar geometry is one of the defining features of cortical organization, major issues regarding its basic nature, key features, and functional significance remain unclear and often controversial. This review is intended to survey some of the basic anatomical features of columnar organization, and in particular the smaller scale dendritic minicolumns. One motive was simply to clarify what seem to be differences in terminology, where “minicolumn” can be used to refer to vertical rows of cells, pyramidal cell modules, or apical dendritic bundles. A second aim was to review anatomical details which over the years have tended increasingly to be overlooked. A third aim was to expand on recent results concerning the border of layers 1 and 2 as a specialized zone with its own micromodular organization. Views on columnar organization have arguably been heavily influenced by a desire for general principles; but re-examination of the complex underlying features may be both timely and worthwhile. We point out that what are defined as dendritic bundles do not extend through the full cortical thickness and are not strictly repetitive, but rather display significant inter- and intra-areal variation.
Fußnoten
1
Tissue blocks provided by Drs. Matsumura and Kobayashi at Kyorin University were acquired postmortem from two females (65 and 71 years old) with no history of neurologic or mental disorders. These were perfused through bilateral common carotid arteries at 6.5 and 9.0 h after death, with 5 and 6 l of 4% paraformaldehyde in 0.1 M phosphate buffer (4°C). The brains were removed and postfixed in the same fixative overnight at 4°C. Histologically intact tissue blocks provided by Dr. Wakabayashi at Hirosaki University were from two male individuals (65 and 68 years old) who had small infarctions or cancer metastasis in brain. These blocks, used in the initial phase of the investigation, were obtained from autopsies, and were immersion-fixed with 20% formalin for 3–4 weeks. Brain blocks from all four donors were transferred to 0.1 M phosphate buffer, and then immersed into 30% sucrose until they sank. The blocks were cut into 40-µm thick tangential sections on a freezing microtome.
 
Literatur
Zurück zum Zitat Amirikian B, Georgopoulos AP (2003) Modular organization of directionally tuned cells in the motor cortex: is there a short-range order? Proc Natl Acad Sci USA 100:12474–12479CrossRefPubMed Amirikian B, Georgopoulos AP (2003) Modular organization of directionally tuned cells in the motor cortex: is there a short-range order? Proc Natl Acad Sci USA 100:12474–12479CrossRefPubMed
Zurück zum Zitat Brown CE, Dyck RH (2002) Rapid, experience-dependent changes in levels of synaptic zinc in primary somatosensory cortex of the adult mouse. J Neurosci 22:2617–2625PubMed Brown CE, Dyck RH (2002) Rapid, experience-dependent changes in levels of synaptic zinc in primary somatosensory cortex of the adult mouse. J Neurosci 22:2617–2625PubMed
Zurück zum Zitat Brown CE, Dyck RH (2003) An improved method for visualizing the cell bodies of zincergic neurons. J Neurosci Methods 129:41–47CrossRefPubMed Brown CE, Dyck RH (2003) An improved method for visualizing the cell bodies of zincergic neurons. J Neurosci Methods 129:41–47CrossRefPubMed
Zurück zum Zitat Bruno RM, Khatri V, Land PW, Simons DJ (2003) Thalamocortical angular tuning domains within individual barrels of rat somatosensory cortex. J Neurosci 23:9565–9574PubMed Bruno RM, Khatri V, Land PW, Simons DJ (2003) Thalamocortical angular tuning domains within individual barrels of rat somatosensory cortex. J Neurosci 23:9565–9574PubMed
Zurück zum Zitat Buldyrev SV, Cruz L, Gomez-Isla T, Gomez-Tortosa E, Havlin S, Le R, et al. (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc Natl Acad Sci USA 97:5039–5043CrossRefPubMed Buldyrev SV, Cruz L, Gomez-Isla T, Gomez-Tortosa E, Havlin S, Le R, et al. (2000) Description of microcolumnar ensembles in association cortex and their disruption in Alzheimer and Lewy body dementias. Proc Natl Acad Sci USA 97:5039–5043CrossRefPubMed
Zurück zum Zitat Buxhoeveden DP, Casanova MF (2002a) The minicolumn and evolution of the brain. Brain Behav Evol 60:125–151CrossRefPubMed Buxhoeveden DP, Casanova MF (2002a) The minicolumn and evolution of the brain. Brain Behav Evol 60:125–151CrossRefPubMed
Zurück zum Zitat Buxhoeveden DP, Casanova MF (2002b) The minicolumn hypothesis in neuroscience. Brain 125:935–951CrossRefPubMed Buxhoeveden DP, Casanova MF (2002b) The minicolumn hypothesis in neuroscience. Brain 125:935–951CrossRefPubMed
Zurück zum Zitat Buxhoeveden DP, Switala AE, Roy E, Casanova MF (2000) Quantitative analysis of cell columns in the cerebral cortex. J Neurosci Methods 97:7–17CrossRefPubMed Buxhoeveden DP, Switala AE, Roy E, Casanova MF (2000) Quantitative analysis of cell columns in the cerebral cortex. J Neurosci Methods 97:7–17CrossRefPubMed
Zurück zum Zitat Carmichael ST, Price JL (1994) Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol 346:366–402PubMed Carmichael ST, Price JL (1994) Architectonic subdivision of the orbital and medial prefrontal cortex in the macaque monkey. J Comp Neurol 346:366–402PubMed
Zurück zum Zitat Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002) Minicolumnar pathology in autism. Neurology 58:428–432PubMed Casanova MF, Buxhoeveden DP, Switala AE, Roy E (2002) Minicolumnar pathology in autism. Neurology 58:428–432PubMed
Zurück zum Zitat Casanovas-Aguilar C, Reblet C, Perez-Clausell J, Bueno-Lopez JL (1998) Zinc-rich afferents to the rat neocortex: projections to the visual cortex traced with intracerebral selenite injections. J Chem Neuroanat 15:97–109CrossRefPubMed Casanovas-Aguilar C, Reblet C, Perez-Clausell J, Bueno-Lopez JL (1998) Zinc-rich afferents to the rat neocortex: projections to the visual cortex traced with intracerebral selenite injections. J Chem Neuroanat 15:97–109CrossRefPubMed
Zurück zum Zitat Casanovas-Aguilar C, Miro-Bernie N, Perez-Clausell J (2002) Zinc-rich neurones in the rat visual cortex give rise to two laminar segregated systems of connections. Neuroscience 110:445–458CrossRefPubMed Casanovas-Aguilar C, Miro-Bernie N, Perez-Clausell J (2002) Zinc-rich neurones in the rat visual cortex give rise to two laminar segregated systems of connections. Neuroscience 110:445–458CrossRefPubMed
Zurück zum Zitat Christensen MK, Frederickson CJ, Danscher G (1992) Retrograde tracing of zinc-containing neurons by selenide ions: a survey of seven selenium compounds. J Histochem Cytochem 40:575–579PubMed Christensen MK, Frederickson CJ, Danscher G (1992) Retrograde tracing of zinc-containing neurons by selenide ions: a survey of seven selenium compounds. J Histochem Cytochem 40:575–579PubMed
Zurück zum Zitat Cooper BG, Mizumori SJY (2001) Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J Neurosci 21:3986–4001PubMed Cooper BG, Mizumori SJY (2001) Temporary inactivation of the retrosplenial cortex causes a transient reorganization of spatial coding in the hippocampus. J Neurosci 21:3986–4001PubMed
Zurück zum Zitat DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19CrossRefPubMed DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14:1–19CrossRefPubMed
Zurück zum Zitat DeYoe EA, Hockfield S, Garren H, Van Essen DC (1990) Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Vis Neurosci 5:67–81PubMed DeYoe EA, Hockfield S, Garren H, Van Essen DC (1990) Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey. Vis Neurosci 5:67–81PubMed
Zurück zum Zitat Diogo ACM, Soares JGM, Koulakov A, Albright TD, Gattass R (2003) Electrophysiological imaging of functional architecture in the cortical middle temporal visual area of Cebus apella monkey. J Neurosci 23:3881–3898PubMed Diogo ACM, Soares JGM, Koulakov A, Albright TD, Gattass R (2003) Electrophysiological imaging of functional architecture in the cortical middle temporal visual area of Cebus apella monkey. J Neurosci 23:3881–3898PubMed
Zurück zum Zitat Dyck RH, Chaudhuri A, Cynader MS (2003) Experience-dependent regulation of the zincergic innervation of visual cortex in adult monkeys. Cereb Cortex 13:1094–1109CrossRefPubMed Dyck RH, Chaudhuri A, Cynader MS (2003) Experience-dependent regulation of the zincergic innervation of visual cortex in adult monkeys. Cereb Cortex 13:1094–1109CrossRefPubMed
Zurück zum Zitat Escobar MI, Pimienta H, Caviness VS, Jacobson M, Crandall JE, Kosik KS (1986) Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems. Neuroscience 17:975–989CrossRefPubMed Escobar MI, Pimienta H, Caviness VS, Jacobson M, Crandall JE, Kosik KS (1986) Architecture of apical dendrites in the murine neocortex: dual apical dendritic systems. Neuroscience 17:975–989CrossRefPubMed
Zurück zum Zitat Feldman ML, Peters A (1974) A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Res 77:55–76CrossRefPubMed Feldman ML, Peters A (1974) A study of barrels and pyramidal dendritic clusters in the cerebral cortex. Brain Res 77:55–76CrossRefPubMed
Zurück zum Zitat Fleischhauer K (1974) On different patterns of dendritic bundling in the cerebral cortex of the cat. Z Anat Entwickl Gesch 143:115–126 Fleischhauer K (1974) On different patterns of dendritic bundling in the cerebral cortex of the cat. Z Anat Entwickl Gesch 143:115–126
Zurück zum Zitat Fleischhauer K, Petsche H, Wittowski W (1972) Vertical bundles of dendrites in the neocortex. Z Anat Entwickl Gesch 136:213–223 Fleischhauer K, Petsche H, Wittowski W (1972) Vertical bundles of dendrites in the neocortex. Z Anat Entwickl Gesch 136:213–223
Zurück zum Zitat Fujita I, Fujita T (1996) Intrinsic connections in the macaque inferior temporal cortex. J Comp Neurol 368:467–486CrossRefPubMed Fujita I, Fujita T (1996) Intrinsic connections in the macaque inferior temporal cortex. J Comp Neurol 368:467–486CrossRefPubMed
Zurück zum Zitat Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346CrossRefPubMed Fujita I, Tanaka K, Ito M, Cheng K (1992) Columns for visual features of objects in monkey inferotemporal cortex. Nature 360:343–346CrossRefPubMed
Zurück zum Zitat Gabbott PLA (2003) Radial organization of neurons and dendrites in human cortical areas 25, 32, and 32′. Brain Res 992:298–304CrossRefPubMed Gabbott PLA (2003) Radial organization of neurons and dendrites in human cortical areas 25, 32, and 32′. Brain Res 992:298–304CrossRefPubMed
Zurück zum Zitat Gabbott PLA, Bacon SJ (1996) The organization of dendritic bundles in the prelimbic cortex (area 232) of the rat. Brain Res 730:75–86PubMed Gabbott PLA, Bacon SJ (1996) The organization of dendritic bundles in the prelimbic cortex (area 232) of the rat. Brain Res 730:75–86PubMed
Zurück zum Zitat Garey LJ (1994) Brodmann’s Localisation in the cerebral cortex. Smith-Gordon, London Garey LJ (1994) Brodmann’s Localisation in the cerebral cortex. Smith-Gordon, London
Zurück zum Zitat Harker KT, Whishaw IQ (2002) Impaired spatial performance in rats with retrosplenial lesions: Importance of the spatial problem and the rat strain in identifying lesion effects in a swimming pool. J Neurosci 22:1155–1164PubMed Harker KT, Whishaw IQ (2002) Impaired spatial performance in rats with retrosplenial lesions: Importance of the spatial problem and the rat strain in identifying lesion effects in a swimming pool. J Neurosci 22:1155–1164PubMed
Zurück zum Zitat Hendry SH, Huntsman MM, Vinuela A, Mohler H, de Blas AL, Jones EG (1994) GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood. J Neurosci 14:2383–2401PubMed Hendry SH, Huntsman MM, Vinuela A, Mohler H, de Blas AL, Jones EG (1994) GABAA receptor subunit immunoreactivity in primate visual cortex: distribution in macaques and humans and regulation by visual input in adulthood. J Neurosci 14:2383–2401PubMed
Zurück zum Zitat Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186PubMed Hof PR, Morrison JH (1995) Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: a quantitative immunohistochemical analysis. J Comp Neurol 352:161–186PubMed
Zurück zum Zitat Horton JC, Hocking DR (1998) Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J Neurosci 18:5433–5455PubMed Horton JC, Hocking DR (1998) Monocular core zones and binocular border strips in primate striate cortex revealed by the contrasting effects of enucleation, eyelid suture, and retinal laser lesions on cytochrome oxidase activity. J Neurosci 18:5433–5455PubMed
Zurück zum Zitat Huntley GW, Rogers SW, Moran T, Janssen W, Archin N, Vickers JC, Cauley K, Heinemann SF, Morrison JH (1993) Selective distribution of kainate receptor subunit immunoreactivity in monkey neocortex revealed by a monoclonal antibody that recognizes glutamate receptor subunits GluR5/6/7. J Neurosci 13:2965–2981PubMed Huntley GW, Rogers SW, Moran T, Janssen W, Archin N, Vickers JC, Cauley K, Heinemann SF, Morrison JH (1993) Selective distribution of kainate receptor subunit immunoreactivity in monkey neocortex revealed by a monoclonal antibody that recognizes glutamate receptor subunits GluR5/6/7. J Neurosci 13:2965–2981PubMed
Zurück zum Zitat Ichinohe N, Rockland KS (2002) Parvalbumin positive dendrites co-localize with apical dendritic bundles in rat retrosplenial cortex. Neuroreport 13:757–761CrossRefPubMed Ichinohe N, Rockland KS (2002) Parvalbumin positive dendrites co-localize with apical dendritic bundles in rat retrosplenial cortex. Neuroreport 13:757–761CrossRefPubMed
Zurück zum Zitat Ichinohe N, Rockland KS (2003a) Interactive vision: A new columnar system in layer 2. In: Kaneko A (ed) The neural basis of early vision. Springer, Tokyo, pp199–203 Ichinohe N, Rockland KS (2003a) Interactive vision: A new columnar system in layer 2. In: Kaneko A (ed) The neural basis of early vision. Springer, Tokyo, pp199–203
Zurück zum Zitat Ichinohe N, Rockland KS (2003b) Zinc-enriched neural system in the monkey cortex. In: Abstracts of Sixth IBRO World Congress of Neuroscience, p 314 Ichinohe N, Rockland KS (2003b) Zinc-enriched neural system in the monkey cortex. In: Abstracts of Sixth IBRO World Congress of Neuroscience, p 314
Zurück zum Zitat Ichinohe N, Rockland KS (2004) Region specific micromodularity in the uppermost layers in primate cerebral cortex. Cereb Cortex [published online 13 May 2004] DOI 10.1093/cercor/bhh077 Ichinohe N, Rockland KS (2004) Region specific micromodularity in the uppermost layers in primate cerebral cortex. Cereb Cortex [published online 13 May 2004] DOI 10.1093/cercor/bhh077
Zurück zum Zitat Ichinohe N, Fujiyama F, Kaneko T, Rockland KS (2003) Honeycomb-like mosaic at the border of layers 1 and 2 in the cerebral cortex. J Neurosci 23:1372–1382PubMed Ichinohe N, Fujiyama F, Kaneko T, Rockland KS (2003) Honeycomb-like mosaic at the border of layers 1 and 2 in the cerebral cortex. J Neurosci 23:1372–1382PubMed
Zurück zum Zitat Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 95:735–740CrossRefPubMed Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 95:735–740CrossRefPubMed
Zurück zum Zitat Johnson DMG, Illig KR, Behan M, Haberly LB (2000) New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. J Neurosci 20:6974–6982PubMed Johnson DMG, Illig KR, Behan M, Haberly LB (2000) New features of connectivity in piriform cortex visualized by intracellular injection of pyramidal cells suggest that “primary” olfactory cortex functions like “association” cortex in other sensory systems. J Neurosci 20:6974–6982PubMed
Zurück zum Zitat Kornack DR, Rakic P (1995) Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15:311–321CrossRefPubMed Kornack DR, Rakic P (1995) Radial and horizontal deployment of clonally related cells in the primate neocortex: relationship to distinct mitotic lineages. Neuron 15:311–321CrossRefPubMed
Zurück zum Zitat Land PW, Akhtar ND. (1999) Experience-dependent alteration of synaptic zinc in rat somatosensory barrel cortex. Somatosens Mot Res 16:139–150CrossRefPubMed Land PW, Akhtar ND. (1999) Experience-dependent alteration of synaptic zinc in rat somatosensory barrel cortex. Somatosens Mot Res 16:139–150CrossRefPubMed
Zurück zum Zitat Lev DL, White EL (1997) Organization of pyramidal cell apical dendrites and composition of dendritic clusters in the mouse: Emphasis on primary motor cortex. Eur J Neurosci 9:280–290PubMed Lev DL, White EL (1997) Organization of pyramidal cell apical dendrites and composition of dendritic clusters in the mouse: Emphasis on primary motor cortex. Eur J Neurosci 9:280–290PubMed
Zurück zum Zitat Lorente de No R (1949) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system, 3rd edn, chap 15. Oxford University Press, Oxford, pp 288–330 Lorente de No R (1949) Cerebral cortex: architecture, intracortical connections, motor projections. In: Fulton JF (ed) Physiology of the nervous system, 3rd edn, chap 15. Oxford University Press, Oxford, pp 288–330
Zurück zum Zitat Lubke J, Arnd R, Feldmeyer D, Sakmann B (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13:1051–1063CrossRefPubMed Lubke J, Arnd R, Feldmeyer D, Sakmann B (2003) Morphometric analysis of the columnar innervation domain of neurons connecting layer 4 and layer 2/3 of juvenile rat barrel cortex. Cereb Cortex 13:1051–1063CrossRefPubMed
Zurück zum Zitat Lund JS (1990) Excitatory and inhibitory circuitry and laminar mapping strategies in the primary visual cortex of the monkey. In: Edelman GM, Gall WE, Cowan WM (eds) Signal and sense: local and global order in perceptional maps, chap 2. John Wiley, New York, pp51–66 Lund JS (1990) Excitatory and inhibitory circuitry and laminar mapping strategies in the primary visual cortex of the monkey. In: Edelman GM, Gall WE, Cowan WM (eds) Signal and sense: local and global order in perceptional maps, chap 2. John Wiley, New York, pp51–66
Zurück zum Zitat Lund JS, Hendrickson AE, Ogren MP, Tobin EA (1981) Anatomical organization of primate visual Cortex Area VII. J Comp Neurol 202:19–45PubMed Lund JS, Hendrickson AE, Ogren MP, Tobin EA (1981) Anatomical organization of primate visual Cortex Area VII. J Comp Neurol 202:19–45PubMed
Zurück zum Zitat Lund JS, Yoshioka, T, Levitt JB (1994) Substrates for interlaminar connections in area V1 of macaque monkey cerebral cortex. In: Peters A, Rockland KS (eds) Cerebral Cortex, vol 10. Plenum Press, New York, pp 37–60 Lund JS, Yoshioka, T, Levitt JB (1994) Substrates for interlaminar connections in area V1 of macaque monkey cerebral cortex. In: Peters A, Rockland KS (eds) Cerebral Cortex, vol 10. Plenum Press, New York, pp 37–60
Zurück zum Zitat Massing W, Fleischhauer K (1973) Further observations on vertical bundles of dendrites in celebral cortex of the rabbit. Z Anat Entwickl Gesch 141:115–123 Massing W, Fleischhauer K (1973) Further observations on vertical bundles of dendrites in celebral cortex of the rabbit. Z Anat Entwickl Gesch 141:115–123
Zurück zum Zitat Mengual E, Casanovas-Aguilar C, Perez-Clausell J, Gimenez-Amaya JM (1995) Heterogeneous and compartmental distribution of zinc in the striatum and globus pallidus of the rat. Neuroscience 66:523–537CrossRefPubMed Mengual E, Casanovas-Aguilar C, Perez-Clausell J, Gimenez-Amaya JM (1995) Heterogeneous and compartmental distribution of zinc in the striatum and globus pallidus of the rat. Neuroscience 66:523–537CrossRefPubMed
Zurück zum Zitat Mountcastle VB (1978) An organizing principle for cerebral function. The unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT Press, Cambridge MA, pp 7–50 Mountcastle VB (1978) An organizing principle for cerebral function. The unit module and the distributed system. In: Edelman GM, Mountcastle VB (eds) The mindful brain. MIT Press, Cambridge MA, pp 7–50
Zurück zum Zitat Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J Comp Neurol 471:241–276CrossRefPubMed Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1–4, in the rat brain. J Comp Neurol 471:241–276CrossRefPubMed
Zurück zum Zitat Ong WY, Garey LJ (1990) Neuronal architecture of the human temporal cortex. Anat Embryol 181:351–369PubMed Ong WY, Garey LJ (1990) Neuronal architecture of the human temporal cortex. Anat Embryol 181:351–369PubMed
Zurück zum Zitat Peters A (1994) The organization of the primary visual cortex in the macaque. In: Peters A, Rockland KS (eds) Cerebral cortex, vol 10. Plenum Press, New York, pp 1–35 Peters A (1994) The organization of the primary visual cortex in the macaque. In: Peters A, Rockland KS (eds) Cerebral cortex, vol 10. Plenum Press, New York, pp 1–35
Zurück zum Zitat Peters A, Kara DA (1987) The neuronal composition of area 17of rat visual cortex. IV. The organization of pyramidal cells. J Comp Neurol 260:573–590PubMed Peters A, Kara DA (1987) The neuronal composition of area 17of rat visual cortex. IV. The organization of pyramidal cells. J Comp Neurol 260:573–590PubMed
Zurück zum Zitat Peters A, Sethares C (1991) Organization of pyramidal neurons in area 17 of monkey visual cortex. J Comp Neurol 306:1–23PubMed Peters A, Sethares C (1991) Organization of pyramidal neurons in area 17 of monkey visual cortex. J Comp Neurol 306:1–23PubMed
Zurück zum Zitat Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365:232–255CrossRefPubMed Peters A, Sethares C (1996) Myelinated axons and the pyramidal cell modules in monkey primary visual cortex. J Comp Neurol 365:232–255CrossRefPubMed
Zurück zum Zitat Peters A, Walsh TM (1972) A study of the organization of apical dendrites in the somatic sensory cortex of the rat. J Comp Neurol 144:253–268PubMed Peters A, Walsh TM (1972) A study of the organization of apical dendrites in the somatic sensory cortex of the rat. J Comp Neurol 144:253–268PubMed
Zurück zum Zitat Peters A, Cifuentes JM, Sethares C (1997) The organization of pyramidal cells in area 18 of the rhesus monkey. Cereb Cortex 7:405–421CrossRefPubMed Peters A, Cifuentes JM, Sethares C (1997) The organization of pyramidal cells in area 18 of the rhesus monkey. Cereb Cortex 7:405–421CrossRefPubMed
Zurück zum Zitat Rao SG, Williams GV, Goldman-Rakic PS (1999) Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J Neurophysiol 81:1903–1916PubMed Rao SG, Williams GV, Goldman-Rakic PS (1999) Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J Neurophysiol 81:1903–1916PubMed
Zurück zum Zitat Rockland KS (2002) Visual cortical organization at the single axon level: a beginning. Neurosci Res 42:155–166CrossRefPubMed Rockland KS (2002) Visual cortical organization at the single axon level: a beginning. Neurosci Res 42:155–166CrossRefPubMed
Zurück zum Zitat Roney KJ, Scheibel AB, Shaw GL (1979) Dendritic bundles: survey of anatomical experiments and physiological theories. Brain Res Rev 1:225–271CrossRef Roney KJ, Scheibel AB, Shaw GL (1979) Dendritic bundles: survey of anatomical experiments and physiological theories. Brain Res Rev 1:225–271CrossRef
Zurück zum Zitat Sakai M (1985) Dendritic bundles formed by layer VI pyramidal cells in the monkey frontal association cortex. Exp Brain Res 58:609–612PubMed Sakai M (1985) Dendritic bundles formed by layer VI pyramidal cells in the monkey frontal association cortex. Exp Brain Res 58:609–612PubMed
Zurück zum Zitat Schlaug G, Schleicher A, Zilles K (1995) Quantitative analysis of the columnar arrangement of neurons in the human cingulated cortex. J Comp Neurol 351:441–452PubMed Schlaug G, Schleicher A, Zilles K (1995) Quantitative analysis of the columnar arrangement of neurons in the human cingulated cortex. J Comp Neurol 351:441–452PubMed
Zurück zum Zitat Schmolke C, Viebahn C (1986) Dendrite bundles in lamina II/III of the rabbit neocortex. Anat Embryol 173:343–348PubMed Schmolke C, Viebahn C (1986) Dendrite bundles in lamina II/III of the rabbit neocortex. Anat Embryol 173:343–348PubMed
Zurück zum Zitat Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8:4049–4068PubMed Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8:4049–4068PubMed
Zurück zum Zitat Slomianka L, Danscher G, Frederickson CJ (1990) Labeling of the neurons of origin of zinc-containing pathways by intraperitoneal injections of sodium selenite. Neuroscience38:843–854 Slomianka L, Danscher G, Frederickson CJ (1990) Labeling of the neurons of origin of zinc-containing pathways by intraperitoneal injections of sodium selenite. Neuroscience38:843–854
Zurück zum Zitat Staiger JF, Flagmeyer I, Schubert D, Zilles K, Kotter R, Luhmann HJ (2004) Functional Diversity of Layer IV Spiny Neurons in Rat Somatosensory Cortex: Quantitative Morphology of Electrophysiologically Characterized and Biocytin Labeled Cells. Cereb Cortex 14:690–701CrossRefPubMed Staiger JF, Flagmeyer I, Schubert D, Zilles K, Kotter R, Luhmann HJ (2004) Functional Diversity of Layer IV Spiny Neurons in Rat Somatosensory Cortex: Quantitative Morphology of Electrophysiologically Characterized and Biocytin Labeled Cells. Cereb Cortex 14:690–701CrossRefPubMed
Zurück zum Zitat Sternberger LA, Sternberger (1983) NH. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130PubMed Sternberger LA, Sternberger (1983) NH. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA 80:6126–6130PubMed
Zurück zum Zitat Sutherland RJ, Whishaw IQ, Kolb B (1988) Contribution of cingulate cortex to two forms of spatial learning and memory. J Neurosci 8:1863–1872PubMed Sutherland RJ, Whishaw IQ, Kolb B (1988) Contribution of cingulate cortex to two forms of spatial learning and memory. J Neurosci 8:1863–1872PubMed
Zurück zum Zitat Suzuki WA, Amaral DG (2003) Perihinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463:67–91CrossRefPubMed Suzuki WA, Amaral DG (2003) Perihinal and parahippocampal cortices of the macaque monkey: cytoarchitectonic and chemoarchitectonic organization. J Comp Neurol 463:67–91CrossRefPubMed
Zurück zum Zitat Szentagothai J (1975) The ‘module concept’ in cerebral architecture. Brain Res 95:475–496CrossRefPubMed Szentagothai J (1975) The ‘module concept’ in cerebral architecture. Brain Res 95:475–496CrossRefPubMed
Zurück zum Zitat Tanaka K (2003) Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb Cortex 13:90–99CrossRefPubMed Tanaka K (2003) Columns for complex visual object features in the inferotemporal cortex: clustering of cells with similar but slightly different stimulus selectivities. Cereb Cortex 13:90–99CrossRefPubMed
Zurück zum Zitat Thomson AM, Bannister AP (1998) Postsynaptic pyramidal target selection by descending layer III pyramidal axons: Dual intracellular recordings and biocytin filling in slices of rat neocortex. Neurosci 84:669–683CrossRef Thomson AM, Bannister AP (1998) Postsynaptic pyramidal target selection by descending layer III pyramidal axons: Dual intracellular recordings and biocytin filling in slices of rat neocortex. Neurosci 84:669–683CrossRef
Zurück zum Zitat van Brederode JF, Foehring RC, Spain WJ (2000) Morphological and electrophysiological properties of atypically oriented layer 2 pyramidal cells of the juvenile rat neocortex. Neuroscience 101:851–861CrossRefPubMed van Brederode JF, Foehring RC, Spain WJ (2000) Morphological and electrophysiological properties of atypically oriented layer 2 pyramidal cells of the juvenile rat neocortex. Neuroscience 101:851–861CrossRefPubMed
Zurück zum Zitat White EL, Peters A (1993) Cortical modules in the posteromedial Barrel subfield (SM1) of the mouse. J Comp Neurol 334:86–96PubMed White EL, Peters A (1993) Cortical modules in the posteromedial Barrel subfield (SM1) of the mouse. J Comp Neurol 334:86–96PubMed
Zurück zum Zitat Wyss JM, Van Groen T, Sripanidkulchai K (1990) Dendritic bundling in layer I of granular retrosplenial cortex: intracellular labeing and selectivity of innervation. J Comp Neurol 295:33–42PubMed Wyss JM, Van Groen T, Sripanidkulchai K (1990) Dendritic bundling in layer I of granular retrosplenial cortex: intracellular labeing and selectivity of innervation. J Comp Neurol 295:33–42PubMed
Zurück zum Zitat Zhu Y, Zhu JJ (2004) Rapid arrival and integration of ascending sensory information in layer 1 nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex. J Neurosci 24:1272–1279CrossRefPubMed Zhu Y, Zhu JJ (2004) Rapid arrival and integration of ascending sensory information in layer 1 nonpyramidal neurons and tuft dendrites of layer 5 pyramidal neurons of the neocortex. J Neurosci 24:1272–1279CrossRefPubMed
Metadaten
Titel
Some thoughts on cortical minicolumns
verfasst von
Kathleen S. Rockland
Noritaka Ichinohe
Publikationsdatum
01.10.2004
Erschienen in
Experimental Brain Research / Ausgabe 3/2004
Print ISSN: 0014-4819
Elektronische ISSN: 1432-1106
DOI
https://doi.org/10.1007/s00221-004-2024-9

Weitere Artikel der Ausgabe 3/2004

Experimental Brain Research 3/2004 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.