Skip to main content
Erschienen in: Brain Topography 5/2018

19.02.2018 | Original Paper

Spatial and Temporal Characteristics of Set-Related Inhibitory and Excitatory Inputs from the Dorsal Premotor Cortex to the Ipsilateral Motor Cortex Assessed by Dual-Coil Transcranial Magnetic Stimulation

verfasst von: Sara Parmigiani, Benedetta Zattera, Guido Barchiesi, Luigi Cattaneo

Erschienen in: Brain Topography | Ausgabe 5/2018

Einloggen, um Zugang zu erhalten

Abstract

The capacity to produce movements only at appropriate times is fundamental in successful behavior and requires a fine interplay between motor inhibition and facilitation. Evidence in humans indicates that the dorsal premotor cortex (PMCd) is involved in such preparatory and inhibitory processes, but how PMCd modulates motor output in humans is still unclear. We investigated this issue in healthy human volunteers, using a variant of the dual-coil transcranial magnetic stimulation (TMS) technique that allows testing the short-latency effects of conditioning TMS to the left PMCd on test TMS applied to the ipsilateral orofacial primary motor cortex (M1). Participants performed a delayed cued simple reaction time task. They were asked to produce a lip movement cued by an imperative GO-signal presented after a predictable SET-period, during which TMS was applied at different intervals. Results showed that the area of motor evoked potentials (MEPs) to test TMS was modulated by conditioning TMS. A transient inhibition cortico-bulbar excitability by PMCd stimulation was observed around the middle of the SET-period. Conversely, a ramping excitatory effect of PMCd stimulation appeared towards the end of the SET-period, as the time of the predicted GO-signal approached. The time-course of PMCd–M1 activity scaled to the varying SET-period duration. Our data indicate that inhibition and excitation of motor output during a delayed reaction time task are two distinct neural phenomena. They both originate in PMCd and are conveyed via cortico–cortical connections to the ipsilateral M1, where they are integrated to produce harmonic fluctuations of motor output.
Literatur
Zurück zum Zitat Aron AR (2007) The neural basis of inhibition in cognitive control. Neurosci 13:214–228 Aron AR (2007) The neural basis of inhibition in cognitive control. Neurosci 13:214–228
Zurück zum Zitat Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27:11860–11864PubMedCrossRef Aron AR, Durston S, Eagle DM, Logan GD, Stinear CM, Stuphorn V (2007) Converging evidence for a fronto-basal-ganglia network for inhibitory control of action and cognition. J Neurosci 27:11860–11864PubMedCrossRef
Zurück zum Zitat Baumer T, Schippling S, Kroeger J, Zittel S, Koch G, Thomalla G, Rothwell JC, Siebner HR, Orth M, Munchau A (2009) Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest—a bifocal TMS study. Clin Neurophysiol 120:1724–1731PubMedCrossRef Baumer T, Schippling S, Kroeger J, Zittel S, Koch G, Thomalla G, Rothwell JC, Siebner HR, Orth M, Munchau A (2009) Inhibitory and facilitatory connectivity from ventral premotor to primary motor cortex in healthy humans at rest—a bifocal TMS study. Clin Neurophysiol 120:1724–1731PubMedCrossRef
Zurück zum Zitat Beck S, Houdayer E, Richardson SP, Hallett M (2009) The role of inhibition from the left dorsal premotor cortex in right-sided focal hand dystonia. Brain Stimul 2:208–214PubMedPubMedCentralCrossRef Beck S, Houdayer E, Richardson SP, Hallett M (2009) The role of inhibition from the left dorsal premotor cortex in right-sided focal hand dystonia. Brain Stimul 2:208–214PubMedPubMedCentralCrossRef
Zurück zum Zitat Bestmann S, Swayne O, Blankenburg F, Ruff CC, Haggard P, Weiskopf N, Josephs O, Driver J, Rothwell JC, Ward NS (2008) Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18:1281–1291PubMedCrossRef Bestmann S, Swayne O, Blankenburg F, Ruff CC, Haggard P, Weiskopf N, Josephs O, Driver J, Rothwell JC, Ward NS (2008) Dorsal premotor cortex exerts state-dependent causal influences on activity in contralateral primary motor and dorsal premotor cortex. Cereb Cortex 18:1281–1291PubMedCrossRef
Zurück zum Zitat Boy F, Husain M, Singh KD, Sumner P (2010) Supplementary motor area activations in unconscious inhibition of voluntary action. Exp Brain Res 206:441–448PubMedCrossRef Boy F, Husain M, Singh KD, Sumner P (2010) Supplementary motor area activations in unconscious inhibition of voluntary action. Exp Brain Res 206:441–448PubMedCrossRef
Zurück zum Zitat Brinkworth RS, Türker KS, Savundra AW (2003) Response of human jaw muscles to axial stimulation of the incisor. J Physiol 547(1):233–245PubMedCrossRef Brinkworth RS, Türker KS, Savundra AW (2003) Response of human jaw muscles to axial stimulation of the incisor. J Physiol 547(1):233–245PubMedCrossRef
Zurück zum Zitat Brodin P, Miles TS, Türker KS (1993) Simple reaction-time responses to mechanical and electrical stimuli in human masseter muscle. Arch Oral Biol 38(3):221–226PubMedCrossRef Brodin P, Miles TS, Türker KS (1993) Simple reaction-time responses to mechanical and electrical stimuli in human masseter muscle. Arch Oral Biol 38(3):221–226PubMedCrossRef
Zurück zum Zitat Buch ER, Johnen VM, Nelissen N, O’Shea J, Rushworth MF (2011) Noninvasive associative plasticity induction in a corticocortical pathway of the human brain. J Neurosci 31(48):17669–17679PubMedCrossRef Buch ER, Johnen VM, Nelissen N, O’Shea J, Rushworth MF (2011) Noninvasive associative plasticity induction in a corticocortical pathway of the human brain. J Neurosci 31(48):17669–17679PubMedCrossRef
Zurück zum Zitat Burle B, Vidal F, Tandonnet C, Hasbroucq T (2004) Physiological evidence for response inhibition in choice reaction time tasks. Brain Cogn 56:153–164PubMedCrossRef Burle B, Vidal F, Tandonnet C, Hasbroucq T (2004) Physiological evidence for response inhibition in choice reaction time tasks. Brain Cogn 56:153–164PubMedCrossRef
Zurück zum Zitat Cattaneo L, Barchiesi G (2011) Transcranial magnetic mapping of the short-latency modulations of corticospinal activity from the ipsilateral hemisphere during rest. Front Neural Circuits 5:1–13CrossRef Cattaneo L, Barchiesi G (2011) Transcranial magnetic mapping of the short-latency modulations of corticospinal activity from the ipsilateral hemisphere during rest. Front Neural Circuits 5:1–13CrossRef
Zurück zum Zitat Cattaneo L, Pavesi G (2013) The facial motor system. Neurosci Biobehav Rev 38:135159 Cattaneo L, Pavesi G (2013) The facial motor system. Neurosci Biobehav Rev 38:135159
Zurück zum Zitat Cattaneo L, Macaluso GM, Pavesi G (2007) Inhibitory reflexes in human perioral facial muscles: a single-motor unit study. Clin Neurophysiol 118(4):794–801PubMedCrossRef Cattaneo L, Macaluso GM, Pavesi G (2007) Inhibitory reflexes in human perioral facial muscles: a single-motor unit study. Clin Neurophysiol 118(4):794–801PubMedCrossRef
Zurück zum Zitat Chambers CD, Bellgrove MA, Gould IC, English T, Garavan H, NcNaught E, Kamke M, Mattingley JB (2007) Dissociable mechanisms of cognitive control in prefrontal and premotor cortex. J Neurophysiol 98:3638–3647PubMedCrossRef Chambers CD, Bellgrove MA, Gould IC, English T, Garavan H, NcNaught E, Kamke M, Mattingley JB (2007) Dissociable mechanisms of cognitive control in prefrontal and premotor cortex. J Neurophysiol 98:3638–3647PubMedCrossRef
Zurück zum Zitat Chambers CD, Garavan H, Bellgrove MA (2009) Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev 33:631–646PubMedCrossRef Chambers CD, Garavan H, Bellgrove MA (2009) Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Rev 33:631–646PubMedCrossRef
Zurück zum Zitat Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298PubMedCrossRef Cisek P, Kalaska JF (2010) Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci 33:269–298PubMedCrossRef
Zurück zum Zitat Davare M, Lemon R, Olivier E (2008) Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. J Physiol 586:2735–2742PubMedPubMedCentralCrossRef Davare M, Lemon R, Olivier E (2008) Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. J Physiol 586:2735–2742PubMedPubMedCentralCrossRef
Zurück zum Zitat Davare M, Montague K, Olivier E, Rothwell JC, Lemon RN (2009) Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex 45:1050–1057PubMedPubMedCentralCrossRef Davare M, Montague K, Olivier E, Rothwell JC, Lemon RN (2009) Ventral premotor to primary motor cortical interactions during object-driven grasp in humans. Cortex 45:1050–1057PubMedPubMedCentralCrossRef
Zurück zum Zitat Davare M, Rothwell JC, Lemon RN (2010) Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Curr Biol 20:176–181PubMedPubMedCentralCrossRef Davare M, Rothwell JC, Lemon RN (2010) Causal connectivity between the human anterior intraparietal area and premotor cortex during grasp. Curr Biol 20:176–181PubMedPubMedCentralCrossRef
Zurück zum Zitat di Pellegrino G, Wise SP (1993) Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. J Neurosci 13:1227–1243PubMedCrossRef di Pellegrino G, Wise SP (1993) Visuospatial versus visuomotor activity in the premotor and prefrontal cortex of a primate. J Neurosci 13:1227–1243PubMedCrossRef
Zurück zum Zitat Duque J, Labruna L, Verset S, Olivier E, Ivry RB (2012) Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci 32:806–816PubMedPubMedCentralCrossRef Duque J, Labruna L, Verset S, Olivier E, Ivry RB (2012) Dissociating the role of prefrontal and premotor cortices in controlling inhibitory mechanisms during motor preparation. J Neurosci 32:806–816PubMedPubMedCentralCrossRef
Zurück zum Zitat Fadiga L, Craighero L, Buccino G, Rizzolatti G (2002) Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur J Neurosci 15(2):399–402PubMedCrossRef Fadiga L, Craighero L, Buccino G, Rizzolatti G (2002) Speech listening specifically modulates the excitability of tongue muscles: a TMS study. Eur J Neurosci 15(2):399–402PubMedCrossRef
Zurück zum Zitat Fiori F, Chiappini E, Soriano M, Paracampo R, Romei V, Borgomaneri S, Avenanti A (2016) Long-latency modulation of motor cortex excitability by ipsilateral posterior inferior frontal gyrus and pre-supplementary motor area. Sci Rep 6:38396PubMedPubMedCentralCrossRef Fiori F, Chiappini E, Soriano M, Paracampo R, Romei V, Borgomaneri S, Avenanti A (2016) Long-latency modulation of motor cortex excitability by ipsilateral posterior inferior frontal gyrus and pre-supplementary motor area. Sci Rep 6:38396PubMedPubMedCentralCrossRef
Zurück zum Zitat Fiori F, Chiappini E, Candidi M, Romei V, Borgomaneri S, Avenanti A (2017) Long-latency interhemispheric interactions between motor-related areas and the primary motor cortex: a dual site TMS study. Sci Rep 7(1):14936PubMedPubMedCentralCrossRef Fiori F, Chiappini E, Candidi M, Romei V, Borgomaneri S, Avenanti A (2017) Long-latency interhemispheric interactions between motor-related areas and the primary motor cortex: a dual site TMS study. Sci Rep 7(1):14936PubMedPubMedCentralCrossRef
Zurück zum Zitat Ghosh S, Porter R (1988) Corticocortical synaptic influences on morphologically identified pyramidal neurons in the motor cortex of the monkey. J Physiol 400:617–629PubMedPubMedCentralCrossRef Ghosh S, Porter R (1988) Corticocortical synaptic influences on morphologically identified pyramidal neurons in the motor cortex of the monkey. J Physiol 400:617–629PubMedPubMedCentralCrossRef
Zurück zum Zitat Godschalk M, Lemon RN, Kuypers HGJM., Van Der Steen J (1985) The involvement of monkey premotor cortex neurones in preparation of visually cued arm movements. Behav Brain Res 18:143–157PubMedCrossRef Godschalk M, Lemon RN, Kuypers HGJM., Van Der Steen J (1985) The involvement of monkey premotor cortex neurones in preparation of visually cued arm movements. Behav Brain Res 18:143–157PubMedCrossRef
Zurück zum Zitat Groppa S, Schlaak BH, Münchau A, Werner-Petroll N, Dünnweber J, Bäumer T, van Nuenen BFL, Siebner HR (2012) The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route. Hum Brain Mapp 33:419–430PubMedCrossRef Groppa S, Schlaak BH, Münchau A, Werner-Petroll N, Dünnweber J, Bäumer T, van Nuenen BFL, Siebner HR (2012) The human dorsal premotor cortex facilitates the excitability of ipsilateral primary motor cortex via a short latency cortico-cortical route. Hum Brain Mapp 33:419–430PubMedCrossRef
Zurück zum Zitat Hardwick RM, Lesage E, Eickhoff CR, Clos M, Fox P, Eickhoff SB (2015) Multimodal connectivity of motor learning-related dorsal premotor cortex. Neuroimage 123:114–128PubMedPubMedCentralCrossRef Hardwick RM, Lesage E, Eickhoff CR, Clos M, Fox P, Eickhoff SB (2015) Multimodal connectivity of motor learning-related dorsal premotor cortex. Neuroimage 123:114–128PubMedPubMedCentralCrossRef
Zurück zum Zitat Hatanaka N, Nambu A, Yamashita A, Takada M, Tokuno H (2001) Somatotopic arrangement and corticocortical inputs of the hindlimb region of the primary motor cortex in the macaque monkey. Neurosci Res 40:9–22PubMedCrossRef Hatanaka N, Nambu A, Yamashita A, Takada M, Tokuno H (2001) Somatotopic arrangement and corticocortical inputs of the hindlimb region of the primary motor cortex in the macaque monkey. Neurosci Res 40:9–22PubMedCrossRef
Zurück zum Zitat Hoshi E, Tanji J, Gallivan JP, Mclean DA, Flanagan JR, Culham JC (2014) Contrasting neuronal activity in the dorsal and ventral premotor areas during preparation to reach. J Neurophysiol 87:1123–1128CrossRef Hoshi E, Tanji J, Gallivan JP, Mclean DA, Flanagan JR, Culham JC (2014) Contrasting neuronal activity in the dorsal and ventral premotor areas during preparation to reach. J Neurophysiol 87:1123–1128CrossRef
Zurück zum Zitat Johansen-Berg H, Rushworth MFS, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 99:14518–14523PubMedCrossRef Johansen-Berg H, Rushworth MFS, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM (2002) The role of ipsilateral premotor cortex in hand movement after stroke. Proc Natl Acad Sci USA 99:14518–14523PubMedCrossRef
Zurück zum Zitat Kaufman MT, Churchland MM, Santhanam G, Byron M, Afshar A, Ryu SI, Shenoy KV (2010) Roles of monkey premotor neuron classes in movement preparation and execution. J Neurophysiol 104(2):799–810PubMedPubMedCentralCrossRef Kaufman MT, Churchland MM, Santhanam G, Byron M, Afshar A, Ryu SI, Shenoy KV (2010) Roles of monkey premotor neuron classes in movement preparation and execution. J Neurophysiol 104(2):799–810PubMedPubMedCentralCrossRef
Zurück zum Zitat Kiefer M, Marzinzik F, Weisbrod M, Scherg M, Spitzer M (1998) The time course of brain activations during response inhibition: evidence from event-related potentials in a go/no go task. Neuroreport 9:765–770PubMedCrossRef Kiefer M, Marzinzik F, Weisbrod M, Scherg M, Spitzer M (1998) The time course of brain activations during response inhibition: evidence from event-related potentials in a go/no go task. Neuroreport 9:765–770PubMedCrossRef
Zurück zum Zitat Kirchner H, Thorpe SJ (2006) Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vis Res 46(11):1762–1776PubMedCrossRef Kirchner H, Thorpe SJ (2006) Ultra-rapid object detection with saccadic eye movements: visual processing speed revisited. Vis Res 46(11):1762–1776PubMedCrossRef
Zurück zum Zitat Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez Sauco M, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26:7452–7459PubMedCrossRef Koch G, Franca M, Del Olmo MF, Cheeran B, Milton R, Alvarez Sauco M, Rothwell JC (2006) Time course of functional connectivity between dorsal premotor and contralateral motor cortex during movement selection. J Neurosci 26:7452–7459PubMedCrossRef
Zurück zum Zitat Koch G, Fernandez Del Olmo M, Cheeran B, Schippling S, Caltagirone C, Driver J, Rothwell JC (2008) Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space. J Neurosci 28:5944–5953PubMedPubMedCentralCrossRef Koch G, Fernandez Del Olmo M, Cheeran B, Schippling S, Caltagirone C, Driver J, Rothwell JC (2008) Functional interplay between posterior parietal and ipsilateral motor cortex revealed by twin-coil transcranial magnetic stimulation during reach planning toward contralateral space. J Neurosci 28:5944–5953PubMedPubMedCentralCrossRef
Zurück zum Zitat Koch G, Ponzo V, Di Lorenzo F, Caltagirone C, Veniero D (2013) Hebbian and anti-Hebbian spike-timing-dependent plasticity of human cortico-cortical connections. J Neurosci 33(23):9725–9733PubMedCrossRef Koch G, Ponzo V, Di Lorenzo F, Caltagirone C, Veniero D (2013) Hebbian and anti-Hebbian spike-timing-dependent plasticity of human cortico-cortical connections. J Neurosci 33(23):9725–9733PubMedCrossRef
Zurück zum Zitat Kroeger J, Bäumer T, Jonas M, Rothwell JC, Siebner HR, Münchau A (2010) Charting the excitability of premotor to motor connections while withholding or initiating a selected movement. Eur J Neurosci 32(10):1771–1779PubMedCrossRef Kroeger J, Bäumer T, Jonas M, Rothwell JC, Siebner HR, Münchau A (2010) Charting the excitability of premotor to motor connections while withholding or initiating a selected movement. Eur J Neurosci 32(10):1771–1779PubMedCrossRef
Zurück zum Zitat Kurata K, Wise SP (1988a) Premotor and supplementary motor cortex in. Exp Brain Res 72:237–248PubMedCrossRef Kurata K, Wise SP (1988a) Premotor and supplementary motor cortex in. Exp Brain Res 72:237–248PubMedCrossRef
Zurück zum Zitat Kurata K, Wise SP (1988b) Premotor cortex of rhesus monkeys: set-related activity during two conditional motor tasks. Exp Brain Res 69:327–343PubMedCrossRef Kurata K, Wise SP (1988b) Premotor cortex of rhesus monkeys: set-related activity during two conditional motor tasks. Exp Brain Res 69:327–343PubMedCrossRef
Zurück zum Zitat Li JY, Espay AJ, Gunraj CA, Pal PK, Cunic DI, Lang AE, Chen R (2007) Interhemispheric and ipsilateral connections in Parkinson’s disease: relation to mirror movements. Mov Disord 22(6):813–821PubMedCrossRef Li JY, Espay AJ, Gunraj CA, Pal PK, Cunic DI, Lang AE, Chen R (2007) Interhemispheric and ipsilateral connections in Parkinson’s disease: relation to mirror movements. Mov Disord 22(6):813–821PubMedCrossRef
Zurück zum Zitat Maule F, Barchiesi G, Brochier T, Cattaneo L (2015) Haptic working memory for grasping: the role of the parietal operculum. Cereb Cortex 25:528–537PubMedCrossRef Maule F, Barchiesi G, Brochier T, Cattaneo L (2015) Haptic working memory for grasping: the role of the parietal operculum. Cereb Cortex 25:528–537PubMedCrossRef
Zurück zum Zitat Mirabella G, Pani P, Ferraina S (2011) Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol 106(3):1454–1466PubMedCrossRef Mirabella G, Pani P, Ferraina S (2011) Neural correlates of cognitive control of reaching movements in the dorsal premotor cortex of rhesus monkeys. J Neurophysiol 106(3):1454–1466PubMedCrossRef
Zurück zum Zitat Moll L, Kuypers HG (1977). Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198(4314):317–319PubMedCrossRef Moll L, Kuypers HG (1977). Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198(4314):317–319PubMedCrossRef
Zurück zum Zitat Morecraft RJ, Louie JL, Herrick JL, Stilwell-Morecraft KS (2001) Cortical innervation of the facial nucleus in the non-human primate: a new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain 124(1):176–208PubMedCrossRef Morecraft RJ, Louie JL, Herrick JL, Stilwell-Morecraft KS (2001) Cortical innervation of the facial nucleus in the non-human primate: a new interpretation of the effects of stroke and related subtotal brain trauma on the muscles of facial expression. Brain 124(1):176–208PubMedCrossRef
Zurück zum Zitat Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized “premotor” areas. Brain Res 177:176–182PubMedCrossRef Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized “premotor” areas. Brain Res 177:176–182PubMedCrossRef
Zurück zum Zitat Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869PubMedCrossRef Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869PubMedCrossRef
Zurück zum Zitat Neubert FX, Mars RB, Buch ER, Olivier E, Rushworth MF (2010) Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proc Natl Acad Sci 107(30):13240–13245PubMedCrossRef Neubert FX, Mars RB, Buch ER, Olivier E, Rushworth MF (2010) Cortical and subcortical interactions during action reprogramming and their related white matter pathways. Proc Natl Acad Sci 107(30):13240–13245PubMedCrossRef
Zurück zum Zitat Ni Z, Charab S, Gunraj C, Nelson AJ, Udupa K, Yeh I-J, Chen R (2011) Transcranial magnetic stimulation in different current directions activates separate cortical circuits. J Neurophysiol 105:749–756PubMedCrossRef Ni Z, Charab S, Gunraj C, Nelson AJ, Udupa K, Yeh I-J, Chen R (2011) Transcranial magnetic stimulation in different current directions activates separate cortical circuits. J Neurophysiol 105:749–756PubMedCrossRef
Zurück zum Zitat O’Shea J, Sebastian C, Boorman ED, Johansen-Berg H, Rushworth MFS (2007) Functional specificity of human premotor-motor cortical interactions during action selection. Eur J Neurosci 26:2085–2095PubMedCrossRef O’Shea J, Sebastian C, Boorman ED, Johansen-Berg H, Rushworth MFS (2007) Functional specificity of human premotor-motor cortical interactions during action selection. Eur J Neurosci 26:2085–2095PubMedCrossRef
Zurück zum Zitat Parmigiani S, Barchiesi G, Cattaneo L (2015) The dorsal premotor cortex exerts a powerful and specific inhibitory effect on the ipsilateral corticofacial system: a dual-coil transcranial magnetic stimulation study. Exp Brain Res 233:3253–3260PubMedCrossRef Parmigiani S, Barchiesi G, Cattaneo L (2015) The dorsal premotor cortex exerts a powerful and specific inhibitory effect on the ipsilateral corticofacial system: a dual-coil transcranial magnetic stimulation study. Exp Brain Res 233:3253–3260PubMedCrossRef
Zurück zum Zitat Pavesi G, Macaluso GM, Marchetti P, Cattaneo L, Tinchelli S, De Laat A, Mancia D (2000) Trigemino-facial reflex inhibitory responses in some lower facial muscles. Muscle Nerve 23(6):939–945PubMedCrossRef Pavesi G, Macaluso GM, Marchetti P, Cattaneo L, Tinchelli S, De Laat A, Mancia D (2000) Trigemino-facial reflex inhibitory responses in some lower facial muscles. Muscle Nerve 23(6):939–945PubMedCrossRef
Zurück zum Zitat Pirio Richardson S, Beck S, Bliem B, Hallett M (2014) Abnormal dorsal premotor-motor inhibition in writer’s cramp. Mov Disord 29:797–803PubMedCrossRef Pirio Richardson S, Beck S, Bliem B, Hallett M (2014) Abnormal dorsal premotor-motor inhibition in writer’s cramp. Mov Disord 29:797–803PubMedCrossRef
Zurück zum Zitat Riehle A, Grammont F, MacKay WA (2006) Cancellation of a planned movement in monkey motor cortex. Neuroreport 17:281–285PubMedCrossRef Riehle A, Grammont F, MacKay WA (2006) Cancellation of a planned movement in monkey motor cortex. Neuroreport 17:281–285PubMedCrossRef
Zurück zum Zitat Romei V, Chiappini E, Hibbard PB, Avenanti A (2016) Empowering reentrant projections from V5 to V1 boosts sensitivity to motion. Curr Biol 26(16):2155–2160PubMedCrossRef Romei V, Chiappini E, Hibbard PB, Avenanti A (2016) Empowering reentrant projections from V5 to V1 boosts sensitivity to motion. Curr Biol 26(16):2155–2160PubMedCrossRef
Zurück zum Zitat Rossi S, Hallett M (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039PubMedPubMedCentralCrossRef Rossi S, Hallett M (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol 120:2008–2039PubMedPubMedCentralCrossRef
Zurück zum Zitat Rothwell JC (2011) Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Hum Mov Sci 30:906–915PubMedCrossRef Rothwell JC (2011) Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Hum Mov Sci 30:906–915PubMedCrossRef
Zurück zum Zitat Sato M, Buccino G, Gentilucci M, Cattaneo L (2010) On the tip of the tongue: modulation of the primary motor cortex during audiovisual speech perception. Speech Commun 52:533–541CrossRef Sato M, Buccino G, Gentilucci M, Cattaneo L (2010) On the tip of the tongue: modulation of the primary motor cortex during audiovisual speech perception. Speech Commun 52:533–541CrossRef
Zurück zum Zitat Sattler V, Dickler M, Michaud M, Meunier S, Simonetta-Moreau M (2014) Does abnormal interhemispheric inhibition play a role in mirror dystonia? Mov Disord 29(6):787–796PubMedCrossRef Sattler V, Dickler M, Michaud M, Meunier S, Simonetta-Moreau M (2014) Does abnormal interhemispheric inhibition play a role in mirror dystonia? Mov Disord 29(6):787–796PubMedCrossRef
Zurück zum Zitat Sawaguchi T, Yamane I, Kubota K (1996) Application of the GABA antagonist bicuculline to the premotor cortex reduces the ability to withhold reaching movements by well-trained monkeys in visually guided reaching task. J Neurophysiol 75(5):2150–2156PubMedCrossRef Sawaguchi T, Yamane I, Kubota K (1996) Application of the GABA antagonist bicuculline to the premotor cortex reduces the ability to withhold reaching movements by well-trained monkeys in visually guided reaching task. J Neurophysiol 75(5):2150–2156PubMedCrossRef
Zurück zum Zitat Schluter ND, Rushworth MFS, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain 121:785–799PubMedCrossRef Schluter ND, Rushworth MFS, Passingham RE, Mills KR (1998) Temporary interference in human lateral premotor cortex suggests dominance for the selection of movements. A study using transcranial magnetic stimulation. Brain 121:785–799PubMedCrossRef
Zurück zum Zitat Thura D, Cisek P (2014) Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. Neuron 81:1401–1416PubMedCrossRef Thura D, Cisek P (2014) Deliberation and commitment in the premotor and primary motor cortex during dynamic decision making. Neuron 81:1401–1416PubMedCrossRef
Zurück zum Zitat Thura D, Cisek P (2016) Modulation of premotor and primary motor cortical activity during volitional adjustments of speed-accuracy trade-offs. J Neurosci 36:938–956PubMedCrossRef Thura D, Cisek P (2016) Modulation of premotor and primary motor cortical activity during volitional adjustments of speed-accuracy trade-offs. J Neurosci 36:938–956PubMedCrossRef
Zurück zum Zitat Tokuno H, Nambu A (2000) Organization of nonprimary motor cortical inputs on pyramidal and nonpyramidal tract neurons of primary motor cortex: an electrophysiological study in the macaque monkey. Cereb Cortex 10:58–68PubMedCrossRef Tokuno H, Nambu A (2000) Organization of nonprimary motor cortical inputs on pyramidal and nonpyramidal tract neurons of primary motor cortex: an electrophysiological study in the macaque monkey. Cereb Cortex 10:58–68PubMedCrossRef
Zurück zum Zitat Tokuno H, Tanji J (1993) Input organization of distal and proximal forelimb areas in the monkey primary motor cortex: a retrograde double labeling study. J Comp Neurol 333:199–209PubMedCrossRef Tokuno H, Tanji J (1993) Input organization of distal and proximal forelimb areas in the monkey primary motor cortex: a retrograde double labeling study. J Comp Neurol 333:199–209PubMedCrossRef
Zurück zum Zitat Tukey JW (1977) Exploratory data analysis, vol 2. Addison-Wesley Publishing Company, Boston Tukey JW (1977) Exploratory data analysis, vol 2. Addison-Wesley Publishing Company, Boston
Zurück zum Zitat Vesia M, Bolton DA, Mochizuki G, Staines WR (2013) Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Neuropsychologia 51:410–417PubMedCrossRef Vesia M, Bolton DA, Mochizuki G, Staines WR (2013) Human parietal and primary motor cortical interactions are selectively modulated during the transport and grip formation of goal-directed hand actions. Neuropsychologia 51:410–417PubMedCrossRef
Zurück zum Zitat Vicario CM, Rafal RD, Borgomaneri S, Paracampo R, Kritikos A, Avenanti A (2016) Pictures of disgusting foods and disgusted facial expressions suppress the tongue motor cortex. Soc Cogn Affect Neurosci 12(2):352–362PubMedCentral Vicario CM, Rafal RD, Borgomaneri S, Paracampo R, Kritikos A, Avenanti A (2016) Pictures of disgusting foods and disgusted facial expressions suppress the tongue motor cortex. Soc Cogn Affect Neurosci 12(2):352–362PubMedCentral
Zurück zum Zitat Watkins K, Paus T (2004) Modulation of motor excitability during speech perception: the role of Broca’s area. J Cogn Neurosci 16:978–987PubMedCrossRef Watkins K, Paus T (2004) Modulation of motor excitability during speech perception: the role of Broca’s area. J Cogn Neurosci 16:978–987PubMedCrossRef
Zurück zum Zitat Watkins KE, Strafella AP, Paus T (2003) Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41:989–994PubMedCrossRef Watkins KE, Strafella AP, Paus T (2003) Seeing and hearing speech excites the motor system involved in speech production. Neuropsychologia 41:989–994PubMedCrossRef
Zurück zum Zitat Weinrich M, Wise SP, Mauritz KH (1984) A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107(Pt 2):385–414PubMedCrossRef Weinrich M, Wise SP, Mauritz KH (1984) A neurophysiological study of the premotor cortex in the rhesus monkey. Brain 107(Pt 2):385–414PubMedCrossRef
Zurück zum Zitat Wise SP (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19PubMedCrossRef Wise SP (1985) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1–19PubMedCrossRef
Zurück zum Zitat Wise SP, Mauritz KH (1985) Set-related neuronal activity in the premotor cortex of rhesus monkeys: effects of changes in motor set. Proc R Soc Lond B 223(1232), 331–354PubMedCrossRef Wise SP, Mauritz KH (1985) Set-related neuronal activity in the premotor cortex of rhesus monkeys: effects of changes in motor set. Proc R Soc Lond B 223(1232), 331–354PubMedCrossRef
Zurück zum Zitat World Medical Association (2009) Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects World Medical Association (2009) Declaration of Helsinki. Ethical Principles for Medical Research Involving Human Subjects
Zurück zum Zitat Zoghi M, Pearce SL, Nordstrom M (2003) Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle. J Physiol 550:933–946PubMedPubMedCentralCrossRef Zoghi M, Pearce SL, Nordstrom M (2003) Differential modulation of intracortical inhibition in human motor cortex during selective activation of an intrinsic hand muscle. J Physiol 550:933–946PubMedPubMedCentralCrossRef
Metadaten
Titel
Spatial and Temporal Characteristics of Set-Related Inhibitory and Excitatory Inputs from the Dorsal Premotor Cortex to the Ipsilateral Motor Cortex Assessed by Dual-Coil Transcranial Magnetic Stimulation
verfasst von
Sara Parmigiani
Benedetta Zattera
Guido Barchiesi
Luigi Cattaneo
Publikationsdatum
19.02.2018
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 5/2018
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-018-0635-x

Weitere Artikel der Ausgabe 5/2018

Brain Topography 5/2018 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.