Skip to main content
Erschienen in: Journal of Neurology 12/2021

11.11.2020 | Review

Spinocerebellar ataxia type 23 (SCA23): a review

verfasst von: Fan Wu, Xu Wang, Xiaohan Li, Huidi Teng, Tao Tian, Jing Bai

Erschienen in: Journal of Neurology | Ausgabe 12/2021

Einloggen, um Zugang zu erhalten

Abstract

Spinocerebellar ataxias (SCAs), formerly known as autosomal dominant cerebellar ataxias (ADCAs), are a group of hereditary heterogeneous neurodegenerative diseases. Gait, progressive ataxia, dysarthria, and eye movement disorder are common symptoms of spinocerebellar ataxias. Other symptoms include peripheral neuropathy, cognitive impairment, psychosis, and seizures. Patients may lose their lives due to out of coordinated respiration and/or swallowing. Neurological signs cover pyramidal or extrapyramidal signs, spasm, ophthalmoplegia, hyperactive deep tendon reflexes, and so on. Different subtypes of SCAs present various clinical features. Spinocerebellar ataxia type 23 (SCA23), one subtype of the SCA family, is characterized by mutant prodynorphin (PDYN) gene. Based on literatures, this review details a series of SCA23, to improve a whole understanding of clinicians and point out the potential research direction of this dysfunction, including a history, pathophysiological mechanism, diagnosis and differential diagnosis, epigenetics, penetrance and prevalence, genetic counseling, treatment and prognosis.
Literatur
1.
Zurück zum Zitat Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1(8334):1151–1155PubMedCrossRef Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1(8334):1151–1155PubMedCrossRef
2.
Zurück zum Zitat Sullivan R, Yau WY, O’Connor E, Houlden H (2019) Spinocerebellar ataxia: an update. J Neurol 266(2):533–544PubMedCrossRef Sullivan R, Yau WY, O’Connor E, Houlden H (2019) Spinocerebellar ataxia: an update. J Neurol 266(2):533–544PubMedCrossRef
3.
Zurück zum Zitat Paulson HL, Shakkottai VG, Clark HB, Orr HT (2017) Polyglutamine spinocerebellar ataxias—from genes to potential treatments. Nat Rev Neurosci 18(10):613–626PubMedPubMedCentralCrossRef Paulson HL, Shakkottai VG, Clark HB, Orr HT (2017) Polyglutamine spinocerebellar ataxias—from genes to potential treatments. Nat Rev Neurosci 18(10):613–626PubMedPubMedCentralCrossRef
5.
6.
Zurück zum Zitat Yuan Y, Zhou X, Ding F, Liu Y, Tu J (2010) Molecular genetic analysis of a new form of spinocerebellar ataxia in a Chinese Han family. Neurosci Lett 479(3):321–326PubMedCrossRef Yuan Y, Zhou X, Ding F, Liu Y, Tu J (2010) Molecular genetic analysis of a new form of spinocerebellar ataxia in a Chinese Han family. Neurosci Lett 479(3):321–326PubMedCrossRef
7.
Zurück zum Zitat Urbanek MO, Krzyzosiak WJ (2016) RNA FISH for detecting expanded repeats in human diseases. Methods 98:115–123PubMedCrossRef Urbanek MO, Krzyzosiak WJ (2016) RNA FISH for detecting expanded repeats in human diseases. Methods 98:115–123PubMedCrossRef
8.
Zurück zum Zitat Johnson JO, Stevanin G, van de Leemput J, Hernandez DG, Arepalli S, Forlani S et al (2015) A 7.5-Mb duplication at chromosome 11q21–11q22.3 is associated with a novel spastic ataxia syndrome. Mov Disord 30(2):262–266PubMedCrossRef Johnson JO, Stevanin G, van de Leemput J, Hernandez DG, Arepalli S, Forlani S et al (2015) A 7.5-Mb duplication at chromosome 11q21–11q22.3 is associated with a novel spastic ataxia syndrome. Mov Disord 30(2):262–266PubMedCrossRef
9.
Zurück zum Zitat Trott A, Houenou LJ (2012) Mini-review: spinocerebellar ataxias: an update of SCA genes. Recent Pat DNA Gene Seq 6(2):115–121PubMedCrossRef Trott A, Houenou LJ (2012) Mini-review: spinocerebellar ataxias: an update of SCA genes. Recent Pat DNA Gene Seq 6(2):115–121PubMedCrossRef
10.
Zurück zum Zitat Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ (2004) Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13–12.3. Brain 127(Pt 11):2551–2557PubMedCrossRef Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ (2004) Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13–12.3. Brain 127(Pt 11):2551–2557PubMedCrossRef
11.
Zurück zum Zitat Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I et al (2010) Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 87(5):593–603PubMedPubMedCentralCrossRef Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I et al (2010) Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. Am J Hum Genet 87(5):593–603PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Fawcett K, Mehrabian M, Liu YT, Hamed S, Elahi E, Revesz T et al (2013) The frequency of spinocerebellar ataxia type 23 in a UK population. J Neurol 260(3):856–859PubMedCrossRef Fawcett K, Mehrabian M, Liu YT, Hamed S, Elahi E, Revesz T et al (2013) The frequency of spinocerebellar ataxia type 23 in a UK population. J Neurol 260(3):856–859PubMedCrossRef
13.
Zurück zum Zitat Liu YT, Tang BS, Wang JL, Guan WJ, Shen L, Shi YT et al (2012) Spinocerebellar ataxia type 23 is an uncommon SCA subtype in the Chinese Han population. Neurosci Lett 528(1):51–54PubMedCrossRef Liu YT, Tang BS, Wang JL, Guan WJ, Shen L, Shi YT et al (2012) Spinocerebellar ataxia type 23 is an uncommon SCA subtype in the Chinese Han population. Neurosci Lett 528(1):51–54PubMedCrossRef
14.
Zurück zum Zitat Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J et al (2013) Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol 260(7):1807–1812PubMedCrossRef Jezierska J, Stevanin G, Watanabe H, Fokkens MR, Zagnoli F, Kok J et al (2013) Identification and characterization of novel PDYN mutations in dominant cerebellar ataxia cases. J Neurol 260(7):1807–1812PubMedCrossRef
15.
Zurück zum Zitat Mascalchi M, Vella A (2018) Neuroimaging applications in chronic ataxias. Int Rev Neurobiol 143:109–162PubMedCrossRef Mascalchi M, Vella A (2018) Neuroimaging applications in chronic ataxias. Int Rev Neurobiol 143:109–162PubMedCrossRef
16.
Zurück zum Zitat Ito K, Ohtsuka C, Yoshioka K, Maeda T, Yokosawa S, Mori F et al (2019) Differentiation between multiple system atrophy and other spinocerebellar degenerations using diffusion kurtosis imaging. Acad Radiol 26(11):e333–e339PubMedCrossRef Ito K, Ohtsuka C, Yoshioka K, Maeda T, Yokosawa S, Mori F et al (2019) Differentiation between multiple system atrophy and other spinocerebellar degenerations using diffusion kurtosis imaging. Acad Radiol 26(11):e333–e339PubMedCrossRef
17.
Zurück zum Zitat Kim M, Ahn JH, Cho Y, Kim JS, Youn J, Cho JW (2019) Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci Rep 9(1):17329PubMedPubMedCentralCrossRef Kim M, Ahn JH, Cho Y, Kim JS, Youn J, Cho JW (2019) Differential value of brain magnetic resonance imaging in multiple system atrophy cerebellar phenotype and spinocerebellar ataxias. Sci Rep 9(1):17329PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Xue Y, Ankala A, Wilcox WR, Hegde MR (2015) Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 17(6):444–451PubMedCrossRef Xue Y, Ankala A, Wilcox WR, Hegde MR (2015) Solving the molecular diagnostic testing conundrum for Mendelian disorders in the era of next-generation sequencing: single-gene, gene panel, or exome/genome sequencing. Genet Med 17(6):444–451PubMedCrossRef
19.
Zurück zum Zitat Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR et al (2008) ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 10(4):294–300PubMedCrossRef Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR et al (2008) ACMG recommendations for standards for interpretation and reporting of sequence variations: revisions 2007. Genet Med 10(4):294–300PubMedCrossRef
20.
Zurück zum Zitat Whaley NR, Fujioka S, Wszolek ZK (2011) Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 6:33PubMedPubMedCentralCrossRef Whaley NR, Fujioka S, Wszolek ZK (2011) Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 6:33PubMedPubMedCentralCrossRef
21.
22.
Zurück zum Zitat van Gaalen J, Kerstens FG, Maas RP, Härmark L, van de Warrenburg BP (2014) Drug-induced cerebellar ataxia: a systematic review. CNS Drugs 28(12):1139–1153PubMedCrossRef van Gaalen J, Kerstens FG, Maas RP, Härmark L, van de Warrenburg BP (2014) Drug-induced cerebellar ataxia: a systematic review. CNS Drugs 28(12):1139–1153PubMedCrossRef
23.
Zurück zum Zitat Pedroso JL, Vale TC, Braga-Neto P, Dutra LA, França MC, Jr., Teive H A G, et al (2019) Acute cerebellar ataxia: differential diagnosis and clinical approach. Arq Neuropsiquiatr 77(3):184–193PubMedCrossRef Pedroso JL, Vale TC, Braga-Neto P, Dutra LA, França MC, Jr., Teive H A G, et al (2019) Acute cerebellar ataxia: differential diagnosis and clinical approach. Arq Neuropsiquiatr 77(3):184–193PubMedCrossRef
24.
Zurück zum Zitat Kotwal SK, Kotwal S, Gupta R, Singh JB, Mahajan A (2016) Cerebellar ataxia as a presenting feature of hypothyroidism. Acta Endocrinol (Buchar) 12(1):77–79CrossRef Kotwal SK, Kotwal S, Gupta R, Singh JB, Mahajan A (2016) Cerebellar ataxia as a presenting feature of hypothyroidism. Acta Endocrinol (Buchar) 12(1):77–79CrossRef
25.
Zurück zum Zitat Elhadd TA, Linton K, McCoy C, Saha S, Holden R (2014) A hitherto undescribed case of cerebellar ataxia as the sole presentation of thyrotoxicosis in a young man: a plausible association. Ann Saudi Med 34(5):440–443PubMedPubMedCentralCrossRef Elhadd TA, Linton K, McCoy C, Saha S, Holden R (2014) A hitherto undescribed case of cerebellar ataxia as the sole presentation of thyrotoxicosis in a young man: a plausible association. Ann Saudi Med 34(5):440–443PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Rd S, Dr C, H S, (2020) Invited review: epigenetics in neurodevelopment. Neuropathol Appl Neurobiol 46(1):6–27CrossRef Rd S, Dr C, H S, (2020) Invited review: epigenetics in neurodevelopment. Neuropathol Appl Neurobiol 46(1):6–27CrossRef
28.
Zurück zum Zitat Harvey ZH, Chen Y, Jarosz DF (2018) Protein-based inheritance: epigenetics beyond the chromosome. Mol Cell 69(2):195–202PubMedCrossRef Harvey ZH, Chen Y, Jarosz DF (2018) Protein-based inheritance: epigenetics beyond the chromosome. Mol Cell 69(2):195–202PubMedCrossRef
31.
Zurück zum Zitat Biemont C (2010) From genotype to phenotype. What do epigenetics and epigenomics tell us? Heredity (Edinb) 105(1):1–3CrossRef Biemont C (2010) From genotype to phenotype. What do epigenetics and epigenomics tell us? Heredity (Edinb) 105(1):1–3CrossRef
32.
Zurück zum Zitat Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stalhandske L et al (2018) Neuronal expression of opioid gene is controlled by dual epigenetic and transcriptional mechanism in human brain. Cereb Cortex 28(9):3129–3142PubMedCrossRef Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stalhandske L et al (2018) Neuronal expression of opioid gene is controlled by dual epigenetic and transcriptional mechanism in human brain. Cereb Cortex 28(9):3129–3142PubMedCrossRef
34.
Zurück zum Zitat Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298PubMedCrossRef Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298PubMedCrossRef
35.
36.
Zurück zum Zitat Safi-Stibler S, Gabory A (2020) Epigenetics and the developmental origins of health and disease: parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin Cell Dev Biol 97:172–180PubMedCrossRef Safi-Stibler S, Gabory A (2020) Epigenetics and the developmental origins of health and disease: parental environment signalling to the epigenome, critical time windows and sculpting the adult phenotype. Semin Cell Dev Biol 97:172–180PubMedCrossRef
37.
Zurück zum Zitat Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571(7766):489–499PubMedCrossRef Cavalli G, Heard E (2019) Advances in epigenetics link genetics to the environment and disease. Nature 571(7766):489–499PubMedCrossRef
40.
Zurück zum Zitat Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T et al (2013) Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 23(1):9–22PubMedCrossRef Bert SA, Robinson MD, Strbenac D, Statham AL, Song JZ, Hulf T et al (2013) Regional activation of the cancer genome by long-range epigenetic remodeling. Cancer Cell 23(1):9–22PubMedCrossRef
41.
Zurück zum Zitat Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298(5595):1039–1043PubMedCrossRef Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing. Science 298(5595):1039–1043PubMedCrossRef
42.
Zurück zum Zitat Satoh S, Kondo Y, Ohara S, Yamaguchi T, Nakamura K, Yoshida K (2020) Intrafamilial phenotypic variation in spinocerebellar ataxia type 23. Cerebellum Ataxias 7:7PubMedPubMedCentralCrossRef Satoh S, Kondo Y, Ohara S, Yamaguchi T, Nakamura K, Yoshida K (2020) Intrafamilial phenotypic variation in spinocerebellar ataxia type 23. Cerebellum Ataxias 7:7PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42(3):174–183PubMedCrossRef Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42(3):174–183PubMedCrossRef
44.
Zurück zum Zitat Schicks J, Synofzik M, Beetz C, Schiele F, Schöls L (2011) Mutations in the PDYN gene (SCA23) are not a frequent cause of dominant ataxia in Central Europe. Clin Genet 80(5):503–504PubMedCrossRef Schicks J, Synofzik M, Beetz C, Schiele F, Schöls L (2011) Mutations in the PDYN gene (SCA23) are not a frequent cause of dominant ataxia in Central Europe. Clin Genet 80(5):503–504PubMedCrossRef
45.
Zurück zum Zitat Fogel BL, Lee JY, Lane J, Wahnich A, Chan S, Huang A et al (2012) Mutations in rare ataxia genes are uncommon causes of sporadic cerebellar ataxia. Mov Disord 27(3):442–446PubMedPubMedCentralCrossRef Fogel BL, Lee JY, Lane J, Wahnich A, Chan S, Huang A et al (2012) Mutations in rare ataxia genes are uncommon causes of sporadic cerebellar ataxia. Mov Disord 27(3):442–446PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Saigoh K, Mitsui J, Hirano M, Shioyama M, Samukawa M, Ichikawa Y et al (2015) The first Japanese familial case of spinocerebellar ataxia 23 with a novel mutation in the PDYN gene. Parkinsonism Relat Disord 21(3):332–334PubMedCrossRef Saigoh K, Mitsui J, Hirano M, Shioyama M, Samukawa M, Ichikawa Y et al (2015) The first Japanese familial case of spinocerebellar ataxia 23 with a novel mutation in the PDYN gene. Parkinsonism Relat Disord 21(3):332–334PubMedCrossRef
47.
Zurück zum Zitat Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED et al (2005) Pathobiology of dynorphins in trauma and disease. Front Biosci 10:216–235PubMedPubMedCentralCrossRef Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED et al (2005) Pathobiology of dynorphins in trauma and disease. Front Biosci 10:216–235PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136PubMedCrossRef Ludwig M, Leng G (2006) Dendritic peptide release and peptide-dependent behaviours. Nat Rev Neurosci 7(2):126–136PubMedCrossRef
49.
Zurück zum Zitat Riters LV, Cordes MA, Stevenson SA (2017) Prodynorphin and kappa opioid receptor mRNA expression in the brain relates to social status and behavior in male European starlings. Behav Brain Res 320:37–47PubMedCrossRef Riters LV, Cordes MA, Stevenson SA (2017) Prodynorphin and kappa opioid receptor mRNA expression in the brain relates to social status and behavior in male European starlings. Behav Brain Res 320:37–47PubMedCrossRef
51.
52.
Zurück zum Zitat Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stålhandske L et al (2018) Neuronal expression of opioid gene is controlled by dual epigenetic and transcriptional mechanism in human brain. Cereb Cortex 28(9):3129–3142PubMedCrossRef Bazov I, Sarkisyan D, Kononenko O, Watanabe H, Taqi MM, Stålhandske L et al (2018) Neuronal expression of opioid gene is controlled by dual epigenetic and transcriptional mechanism in human brain. Cereb Cortex 28(9):3129–3142PubMedCrossRef
53.
Zurück zum Zitat Kuzmin A, Madjid N, Terenius L, Ogren SO, Bakalkin G (2006) Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice. Neuropsychopharmacology 31(9):1928–1937PubMedCrossRef Kuzmin A, Madjid N, Terenius L, Ogren SO, Bakalkin G (2006) Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice. Neuropsychopharmacology 31(9):1928–1937PubMedCrossRef
54.
Zurück zum Zitat Kreek MJ, Bart G, Lilly C, LaForge KS, Nielsen DA (2005) Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol Rev 57(1):1–26PubMedCrossRef Kreek MJ, Bart G, Lilly C, LaForge KS, Nielsen DA (2005) Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol Rev 57(1):1–26PubMedCrossRef
55.
Zurück zum Zitat Trezza V, Damsteegt R, Achterberg EJ, Vanderschuren LJ (2011) Nucleus accumbens μ-opioid receptors mediate social reward. J Neurosci 31(17):6362–6370PubMedPubMedCentralCrossRef Trezza V, Damsteegt R, Achterberg EJ, Vanderschuren LJ (2011) Nucleus accumbens μ-opioid receptors mediate social reward. J Neurosci 31(17):6362–6370PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Silvia RC, Slizgi GR, Ludens JH, Tang AH (1987) Protection from ischemia-induced cerebral edema in the rat by U-50488H, a kappa opioid receptor agonist. Brain Res 403(1):52–57PubMedCrossRef Silvia RC, Slizgi GR, Ludens JH, Tang AH (1987) Protection from ischemia-induced cerebral edema in the rat by U-50488H, a kappa opioid receptor agonist. Brain Res 403(1):52–57PubMedCrossRef
58.
Zurück zum Zitat Baskin DS, Hosobuchi Y, Loh HH, Lee NM (1984) Dynorphin(1–13) improves survival in cats with focal cerebral ischaemia. Nature 312(5994):551–552PubMedCrossRef Baskin DS, Hosobuchi Y, Loh HH, Lee NM (1984) Dynorphin(1–13) improves survival in cats with focal cerebral ischaemia. Nature 312(5994):551–552PubMedCrossRef
59.
Zurück zum Zitat Macdonald RL, Werz MA (1986) Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J Physiol 377:237–249PubMedPubMedCentralCrossRef Macdonald RL, Werz MA (1986) Dynorphin A decreases voltage-dependent calcium conductance of mouse dorsal root ganglion neurones. J Physiol 377:237–249PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Rusin KI, Giovannucci DR, Stuenkel EL, Moises HC (1997) Kappa-opioid receptor activation modulates Ca2+ currents and secretion in isolated neuroendocrine nerve terminals. J Neurosci 17(17):6565–6574PubMedPubMedCentralCrossRef Rusin KI, Giovannucci DR, Stuenkel EL, Moises HC (1997) Kappa-opioid receptor activation modulates Ca2+ currents and secretion in isolated neuroendocrine nerve terminals. J Neurosci 17(17):6565–6574PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Hauser KF, Mangoura D (1998) Diversity of the endogenous opioid system in development. Novel signal transduction translates multiple extracellular signals into neural cell growth and differentiation. Perspect Dev Neurobiol 5(4):437–449PubMed Hauser KF, Mangoura D (1998) Diversity of the endogenous opioid system in development. Novel signal transduction translates multiple extracellular signals into neural cell growth and differentiation. Perspect Dev Neurobiol 5(4):437–449PubMed
62.
Zurück zum Zitat Knapp PE, Itkis OS, Zhang L, Spruce BA, Bakalkin G, Hauser KF (2001) Endogenous opioids and oligodendroglial function: possible autocrine/paracrine effects on cell survival and development. Glia 35(2):156–165PubMedCrossRef Knapp PE, Itkis OS, Zhang L, Spruce BA, Bakalkin G, Hauser KF (2001) Endogenous opioids and oligodendroglial function: possible autocrine/paracrine effects on cell survival and development. Glia 35(2):156–165PubMedCrossRef
63.
Zurück zum Zitat Caudle RM, Dubner R (1998) Ifenprodil blocks the excitatory effects of the opioid peptide dynorphin 1–17 on NMDA receptor-mediated currents in the CA3 region of the guinea pig hippocampus. Neuropeptides 32(1):87–95PubMedCrossRef Caudle RM, Dubner R (1998) Ifenprodil blocks the excitatory effects of the opioid peptide dynorphin 1–17 on NMDA receptor-mediated currents in the CA3 region of the guinea pig hippocampus. Neuropeptides 32(1):87–95PubMedCrossRef
64.
Zurück zum Zitat Lai SL, Gu Y, Huang LY (1998) Dynorphin uses a non-opioid mechanism to potentiate N-methyl-d-aspartate currents in single rat periaqueductal gray neurons. Neurosci Lett 247(2–3):115–118PubMedCrossRef Lai SL, Gu Y, Huang LY (1998) Dynorphin uses a non-opioid mechanism to potentiate N-methyl-d-aspartate currents in single rat periaqueductal gray neurons. Neurosci Lett 247(2–3):115–118PubMedCrossRef
65.
Zurück zum Zitat Chen L, Gu Y, Huang LY (1995) The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin. J Neurosci 15(6):4602–4611PubMedPubMedCentralCrossRef Chen L, Gu Y, Huang LY (1995) The mechanism of action for the block of NMDA receptor channels by the opioid peptide dynorphin. J Neurosci 15(6):4602–4611PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Tang Q, Gandhoke R, Burritt A, Hruby VJ, Porreca F, Lai J (1999) High-affinity interaction of (des-Tyrosyl)dynorphin A(2–17) with NMDA receptors. J Pharmacol Exp Ther 291(2):760–765PubMed Tang Q, Gandhoke R, Burritt A, Hruby VJ, Porreca F, Lai J (1999) High-affinity interaction of (des-Tyrosyl)dynorphin A(2–17) with NMDA receptors. J Pharmacol Exp Ther 291(2):760–765PubMed
67.
Zurück zum Zitat Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T, Sakurada C et al (2002) Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-d-aspartate receptor mechanism. Brain Res 952(1):7–14PubMedCrossRef Tan-No K, Esashi A, Nakagawasai O, Niijima F, Tadano T, Sakurada C et al (2002) Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-d-aspartate receptor mechanism. Brain Res 952(1):7–14PubMedCrossRef
68.
Zurück zum Zitat Watanabe H, Mizoguchi H, Verbeek DS, Kuzmin A, Nyberg F, Krishtal O et al (2012) Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23. Peptides 35(2):306–310PubMedCrossRef Watanabe H, Mizoguchi H, Verbeek DS, Kuzmin A, Nyberg F, Krishtal O et al (2012) Non-opioid nociceptive activity of human dynorphin mutants that cause neurodegenerative disorder spinocerebellar ataxia type 23. Peptides 35(2):306–310PubMedCrossRef
69.
Zurück zum Zitat Yakovleva T, Marinova Z, Kuzmin A, Seidah NG, Haroutunian V, Terenius L et al (2007) Dysregulation of dynorphins in Alzheimer disease. Neurobiol Aging 28(11):1700–1708PubMedCrossRef Yakovleva T, Marinova Z, Kuzmin A, Seidah NG, Haroutunian V, Terenius L et al (2007) Dysregulation of dynorphins in Alzheimer disease. Neurobiol Aging 28(11):1700–1708PubMedCrossRef
70.
Zurück zum Zitat Hauser KF, Knapp PE, Turbek CS (2001) Structure-activity analysis of dynorphin A toxicity in spinal cord neurons: intrinsic neurotoxicity of dynorphin A and its carboxyl-terminal, nonopioid metabolites. Exp Neurol 168(1):78–87PubMedCrossRef Hauser KF, Knapp PE, Turbek CS (2001) Structure-activity analysis of dynorphin A toxicity in spinal cord neurons: intrinsic neurotoxicity of dynorphin A and its carboxyl-terminal, nonopioid metabolites. Exp Neurol 168(1):78–87PubMedCrossRef
71.
Zurück zum Zitat Sherwood TW, Askwith CC (2009) Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci 29(45):14371–14380PubMedPubMedCentralCrossRef Sherwood TW, Askwith CC (2009) Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. J Neurosci 29(45):14371–14380PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Hugonin L, Vukojević V, Bakalkin G, Gräslund A (2006) Membrane leakage induced by dynorphins. FEBS Lett 580(13):3201–3205PubMedCrossRef Hugonin L, Vukojević V, Bakalkin G, Gräslund A (2006) Membrane leakage induced by dynorphins. FEBS Lett 580(13):3201–3205PubMedCrossRef
73.
Zurück zum Zitat Madani F, Taqi MM, Wärmländer SK, Verbeek DS, Bakalkin G, Gräslund A (2011) Perturbations of model membranes induced by pathogenic dynorphin A mutants causing neurodegeneration in human brain. Biochem Biophys Res Commun 411(1):111–114PubMedCrossRef Madani F, Taqi MM, Wärmländer SK, Verbeek DS, Bakalkin G, Gräslund A (2011) Perturbations of model membranes induced by pathogenic dynorphin A mutants causing neurodegeneration in human brain. Biochem Biophys Res Commun 411(1):111–114PubMedCrossRef
74.
Zurück zum Zitat Marinova Z, Vukojevic V, Surcheva S, Yakovleva T, Cebers G, Pasikova N et al (2005) Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. J Biol Chem 280(28):26360–26370PubMedCrossRef Marinova Z, Vukojevic V, Surcheva S, Yakovleva T, Cebers G, Pasikova N et al (2005) Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. J Biol Chem 280(28):26360–26370PubMedCrossRef
75.
Zurück zum Zitat Hugonin L, Vukojević V, Bakalkin G, Gräslund A (2008) Calcium influx into phospholipid vesicles caused by dynorphin neuropeptides. Biochim Biophys Acta 1778(5):1267–1273PubMedCrossRef Hugonin L, Vukojević V, Bakalkin G, Gräslund A (2008) Calcium influx into phospholipid vesicles caused by dynorphin neuropeptides. Biochim Biophys Acta 1778(5):1267–1273PubMedCrossRef
76.
Zurück zum Zitat Smeets CJ, Zmorzyńska J, Melo MN, Stargardt A, Dooley C, Bakalkin G et al (2016) Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Hum Mol Genet 25(13):2728–2737PubMed Smeets CJ, Zmorzyńska J, Melo MN, Stargardt A, Dooley C, Bakalkin G et al (2016) Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Hum Mol Genet 25(13):2728–2737PubMed
77.
Zurück zum Zitat Watanave M, Hoshino C, Konno A, Fukuzaki Y, Matsuzaki Y, Ishitani T et al (2019) Pharmacological enhancement of retinoid-related orphan receptor α function mitigates spinocerebellar ataxia type 3 pathology. Neurobiol Dis 121:263–273PubMedCrossRef Watanave M, Hoshino C, Konno A, Fukuzaki Y, Matsuzaki Y, Ishitani T et al (2019) Pharmacological enhancement of retinoid-related orphan receptor α function mitigates spinocerebellar ataxia type 3 pathology. Neurobiol Dis 121:263–273PubMedCrossRef
78.
Zurück zum Zitat Huang M, Verbeek DS (2019) Why do so many genetic insults lead to Purkinje cell degeneration and spinocerebellar ataxia? Neurosci Lett 688:49–57PubMedCrossRef Huang M, Verbeek DS (2019) Why do so many genetic insults lead to Purkinje cell degeneration and spinocerebellar ataxia? Neurosci Lett 688:49–57PubMedCrossRef
79.
Zurück zum Zitat Shimobayashi E, Kapfhammer JP (2018) Calcium signaling, PKC gamma, IP3R1 and CAR8 link spinocerebellar Ataxias and Purkinje cell dendritic development. Curr Neuropharmacol 16(2):151–159PubMedPubMedCentralCrossRef Shimobayashi E, Kapfhammer JP (2018) Calcium signaling, PKC gamma, IP3R1 and CAR8 link spinocerebellar Ataxias and Purkinje cell dendritic development. Curr Neuropharmacol 16(2):151–159PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets C et al (2017) Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140(11):2860–2878PubMedCrossRef Nibbeling EAR, Duarri A, Verschuuren-Bemelmans CC, Fokkens MR, Karjalainen JM, Smeets C et al (2017) Exome sequencing and network analysis identifies shared mechanisms underlying spinocerebellar ataxia. Brain 140(11):2860–2878PubMedCrossRef
82.
Zurück zum Zitat Schmitz-Hübsch T, Coudert M, Tezenas du Montcel S, Giunti P, Labrum R, Dürr A et al (2011) Depression comorbidity in spinocerebellar ataxia. Mov Disord 26(5):870–876PubMedCrossRef Schmitz-Hübsch T, Coudert M, Tezenas du Montcel S, Giunti P, Labrum R, Dürr A et al (2011) Depression comorbidity in spinocerebellar ataxia. Mov Disord 26(5):870–876PubMedCrossRef
83.
Zurück zum Zitat Bushart DD, Murphy GG, Shakkottai VG (2016) Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. Ann Transl Med 4(2):25PubMedPubMedCentral Bushart DD, Murphy GG, Shakkottai VG (2016) Precision medicine in spinocerebellar ataxias: treatment based on common mechanisms of disease. Ann Transl Med 4(2):25PubMedPubMedCentral
84.
Zurück zum Zitat Scoles DR, Pulst SM (2019) Antisense therapies for movement disorders. Mov Disord 34(8):1112–1119PubMedCrossRef Scoles DR, Pulst SM (2019) Antisense therapies for movement disorders. Mov Disord 34(8):1112–1119PubMedCrossRef
85.
87.
Zurück zum Zitat Kampinga HH, Bergink S (2016) Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol 15(7):748–759PubMedCrossRef Kampinga HH, Bergink S (2016) Heat shock proteins as potential targets for protective strategies in neurodegeneration. Lancet Neurol 15(7):748–759PubMedCrossRef
89.
Zurück zum Zitat Shuvaev AN, Hosoi N, Sato Y, Yanagihara D, Hirai H (2017) Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. J Physiol 595(1):141–164PubMedCrossRef Shuvaev AN, Hosoi N, Sato Y, Yanagihara D, Hirai H (2017) Progressive impairment of cerebellar mGluR signalling and its therapeutic potential for cerebellar ataxia in spinocerebellar ataxia type 1 model mice. J Physiol 595(1):141–164PubMedCrossRef
90.
Zurück zum Zitat Nishizawa M, Onodera O, Hirakawa A, Shimizu Y, Yamada M (2020) Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J Neurol Neurosurg Psychiatry 91(3):254–262PubMedCrossRef Nishizawa M, Onodera O, Hirakawa A, Shimizu Y, Yamada M (2020) Effect of rovatirelin in patients with cerebellar ataxia: two randomised double-blind placebo-controlled phase 3 trials. J Neurol Neurosurg Psychiatry 91(3):254–262PubMedCrossRef
91.
Zurück zum Zitat Rodríguez-Labrada R, Velázquez-Pérez L, Ziemann U (2018) Transcranial magnetic stimulation in hereditary ataxias: diagnostic utility, pathophysiological insight and treatment. Clin Neurophysiol 129(8):1688–1698PubMedCrossRef Rodríguez-Labrada R, Velázquez-Pérez L, Ziemann U (2018) Transcranial magnetic stimulation in hereditary ataxias: diagnostic utility, pathophysiological insight and treatment. Clin Neurophysiol 129(8):1688–1698PubMedCrossRef
92.
Zurück zum Zitat Tsai YA, Liu RS, Lirng JF, Yang BH, Chang CH, Wang YC et al (2017) Treatment of spinocerebellar Ataxia with mesenchymal stem cells: a phase I/IIa clinical study. Cell Transplant 26(3):503–512PubMedPubMedCentralCrossRef Tsai YA, Liu RS, Lirng JF, Yang BH, Chang CH, Wang YC et al (2017) Treatment of spinocerebellar Ataxia with mesenchymal stem cells: a phase I/IIa clinical study. Cell Transplant 26(3):503–512PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Orozco-Gutiérrez MH, Cervantes-Aragón I, García-Cruz D (2017) Ethical considerations in presymptomatic diagnosis of autosomal dominant spinocerebellar ataxias. Neurologia 32(7):469–475PubMedCrossRef Orozco-Gutiérrez MH, Cervantes-Aragón I, García-Cruz D (2017) Ethical considerations in presymptomatic diagnosis of autosomal dominant spinocerebellar ataxias. Neurologia 32(7):469–475PubMedCrossRef
94.
Zurück zum Zitat do Nascimento-Marinho AS, de Faria-Domingues-de-Lima MA, Vargas FR (2015) Analysis of pre-test interviews in a cohort of Brazilian patients with movement disorders. J Community Genet 6(3):259–264PubMedPubMedCentralCrossRef do Nascimento-Marinho AS, de Faria-Domingues-de-Lima MA, Vargas FR (2015) Analysis of pre-test interviews in a cohort of Brazilian patients with movement disorders. J Community Genet 6(3):259–264PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Diallo A, Jacobi H, Cook A, Giunti P, Parkinson MH, Labrum R et al (2019) Prediction of survival with long-term disease progression in most common Spinocerebellar ataxia. Mov Disord 34(8):1220–1227PubMedCrossRef Diallo A, Jacobi H, Cook A, Giunti P, Parkinson MH, Labrum R et al (2019) Prediction of survival with long-term disease progression in most common Spinocerebellar ataxia. Mov Disord 34(8):1220–1227PubMedCrossRef
96.
Zurück zum Zitat Sarro L, Nanetti L, Castaldo A, Mariotti C (2017) Monitoring disease progression in spinocerebellar ataxias: implications for treatment and clinical research. Expert Rev Neurother 17(9):919–931PubMedCrossRef Sarro L, Nanetti L, Castaldo A, Mariotti C (2017) Monitoring disease progression in spinocerebellar ataxias: implications for treatment and clinical research. Expert Rev Neurother 17(9):919–931PubMedCrossRef
97.
Zurück zum Zitat Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP (2015) The preclinical stage of spinocerebellar ataxias. Neurology 85(1):96–103PubMedCrossRef Maas RP, van Gaalen J, Klockgether T, van de Warrenburg BP (2015) The preclinical stage of spinocerebellar ataxias. Neurology 85(1):96–103PubMedCrossRef
Metadaten
Titel
Spinocerebellar ataxia type 23 (SCA23): a review
verfasst von
Fan Wu
Xu Wang
Xiaohan Li
Huidi Teng
Tao Tian
Jing Bai
Publikationsdatum
11.11.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Neurology / Ausgabe 12/2021
Print ISSN: 0340-5354
Elektronische ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-020-10297-5

Weitere Artikel der Ausgabe 12/2021

Journal of Neurology 12/2021 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.