Skip to main content
Erschienen in: Journal of Orthopaedic Surgery and Research 1/2016

Open Access 01.12.2016 | Research Article

Stem cells in articular cartilage regeneration

verfasst von: Giuseppe Filardo, Francesco Perdisa, Alice Roffi, Maurilio Marcacci, Elizaveta Kon

Erschienen in: Journal of Orthopaedic Surgery and Research | Ausgabe 1/2016

Abstract

Background

Mesenchymal stem cells (MSCs) have emerged as a promising option to treat articular chondral defects and early OA stages. However, their potential and limitations for clinical use remain controversial. Thus, the aim of this systematic review was to examine MSCs treatment strategies in order to summarize the current clinical evidence for the treatment of cartilage lesions and OA.

Methods

A systematic review of the literature was performed on the PubMed database using the following string: “cartilage treatment” AND “mesenchymal stem cells”. The filters included publications on the clinical use of MSCs for cartilage defects and OA in English language up to 2015.

Results

Our search identified 1639 papers: 60 were included in the analysis, with an increasing number of studies published on this topic over time. Seven were randomized, 13 comparative, 31 case series, and 9 case reports; 26 studies reported the results after injective administration, whereas 33 used surgical implantation. One study compared the 2 different modalities. With regard to the cell source, 20 studies concerned BMSCs, 17 ADSCs, 16 BMC, 5 PBSCs, 1 SDSCs, and 1 compared BMC vs PBSCs.

Conclusions

The available studies allow to draw some indications. First, no major adverse events related to the treatment or to the cell harvest have been reported. Second, a clinical benefit of using MSCs therapies has been reported in most of the studies, regardless of cell-source, indication or administration method. Third, young age, lower BMI, smaller lesion size for focal lesions and earlier stages of OA joints, have been shown to correlate with better outcomes, even though the available data strength doesn’t allow to define clear cutoff values.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors were involved in the conception and design of the study or acquisition of data or analysis and interpretation of data and contributed to drafting the article or revising it critically for important intellectual content. All authors gave their final approval of the manuscript to be submitted.
Abkürzungen
ADSCs
mesenchymal stem cells derived from adipose tissue
BMC
bone marrow concentrate
BMSCs
bone marrow expanded stem cells
FG
fibrin glue
HA
hyaluronic acid
HTO
high tibial osteotomy
i.a.
intra-articular
MAST
matrix-assisted stem cells transplantation
MFX
microfractures
MSCs
mesenchymal stem cells
OA
osteoarthritis
OLK
osteochondral knee lesion
OLTs
osteochondral lesions of the talus
PBSCs
stem cells derived from peripheral blood
PEMFs
pulsed electromagnetic fields
RCT
randomized controlled trial
SDSCs
mesenchymal stem cells derived from synovial tissue
SVF
stromal vascular fraction

Background

Articular cartilage lesions are a debilitating disease, often resulting in fibrillation and subsequent degradation of the surrounding articular surface, possibly involving the subchondral bone as well, thus favoring the development of osteoarthritis (OA). OA affects up to 15 % of the adult population and represents the second greatest cause of disability worldwide [1], with a massive impact on society both in terms of quality of life for the individuals and high costs for the healthcare system [2]. Several approaches have been proposed for the management of cartilage degeneration, ranging from pharmacological to surgical options, aimed at reducing symptoms and restoring a satisfactory knee function [3, 4]. However, none of them has clearly shown the potential of restoring chondral surface and physiological joint homeostasis in order to prevent OA, which in the final stage often requires prosthetic replacement.
Among the solutions proposed to delay the need for metal resurfacing of the damaged articular surface, mesenchymal stem cells (MSCs) have recently emerged as a promising option to treat articular defects and early OA stages [5]. MSCs are multipotent progenitor cells that can differentiate into selected lineages including chondrocytes, with capability of self-renewal, high plasticity, and immunosuppressive and anti-inflammatory action [6, 7]. Moreover, Caplan and colleagues [8] recently underlined that these cells, derived from perivascular cells called “pericytes”, have a key role in the response to tissue injuries not just by differentiating themselves, but also by inducing repair/regeneration processes at the injury site through the secretion of several bioactive molecules [9]. In light of these properties, MSCs represent an excellent candidate for cell therapies and their healing potential has been explored also in terms of cartilage tissue regeneration and OA processes modulation [6]. The first investigations involved MSCs derived from bone marrow, which have been applied either as a cell suspension after being expanded by culture (BMSCs), or used as a simple bone marrow concentrate (BMC), thanks to their relative abundance [6]. Despite an extensive preclinical research and promising clinical results, some drawbacks related to the cell harvest and culture led to the development of different alternative options, with stem cells derived from adipose tissue (ADSCs), synovial tissue (SDSCs), and peripheral blood (PBSCs) [10, 11]. Besides these sources already explored and reported in the clinical use, cells derived from fetal tissues are being currently investigated at preclinical level [12]. Although numerous advancements have been made, the understanding of MSCs mechanism of action as well as their potential and limitations for the clinical use remain controversial. Many questions are still open on the identification of patients who might benefit more from this kind of treatment, as well as the most suitable protocol of administration (no. of cells, concentrated or culture-expanded, best harvest source, etc.).
Based on these premises, the aim of this systematic review was to examine the literature on MSCs treatment strategies in the clinical setting, in order to summarize the current evidence on their potential for the treatment of cartilage lesions and OA.

Materials and methods

A systematic review of the literature was performed on the PubMed database by two independent reviewers using the following string: “cartilage treatment” AND “mesenchymal stem cells”. The filters included publications on the use of MSCs for cartilage defects and OA in the clinical field and in English language, published from 2000 to the end of 2015. Articles were first screened by title and abstract. Subsequently, the full texts of the resulting articles were screened and those not reporting clinical results of MSCs for cartilage and OA treatment were excluded. The reference lists of the selected articles were also screened to obtain further studies for this review.

Results

Our search identified 1639 papers after the screening process, 60 were included in the analysis (Fig. 1), which showed an increasing number of studies published on this topic over time (Fig. 2). Among the 60 selected studies, 7 were randomized, 13 comparative, 31 case series, and 9 case reports; 26 studies reported the results after injective administration, whereas 33 used surgical implantation. One study compared the two different modalities. With regard to the cell source, 20 studies concerned BMSCs, 17 ADSCs, 16 BMC, 5 PBSCs, 1 SDSCs, and 1 compared BMC versus PBSCs. While all the included studies are summarized in detail in Table 1 according to cell source and treatment strategy, the most relevant findings will be discussed in the following paragraphs.
Table 1
Details of the 60 clinical trials identified by the systematic review focusing on MSCs use for the treatment of cartilage pathology
MSCs
Publication
Study type
Treatment
Additional information
Pathology
N patients
Follow-up
Results
Cultured BMSCs
Davatchi [22] 2015
Int Journal of Rheum Disease
Case series
IA injection
Previous study update
Knee OA
3
60 months
Still significant improvement at 5 years, but gradual worsening after 6-month follow-up
Vega [26] 2015
Transplantation
RCT
IA injection
Allogeneic BMSCs
Knee OA
15 BMSCs
15 HA
12 months
Significant better functional and cartilage quality improvements in MSCs group vs. control
Sol Rich [18] 2015
J Stem Cell Res Ther
Case series
IA injection
 
Knee OA
12
24 months
Excellent clinical and quantitative MRI outcome measures at 2 years
Vangsness [25] 2014
JBJS Am
RCT
IA injection
Allogeneic BMSCs
After medial meniscectomy
Knee OA
18 low-dose MSCs + HA
18 high-dose MSCs + HA
19 HA
24 months
Knee pain improvement and evidence of meniscus regeneration at MRI for both doses vs. control
Orozco [21] 2014
Transplantation
Case series
IA injection
Previous study update
Knee OA
12
24 months
Pain improvement at 12 months maintained at 24 months.
The quality of cartilage further improved at MRI at 24 months
Wong [24] 2013
Arthroscopy
RCT
IA injection
Comb HTO + MFX and post-op injection
Knee OA
28 BMSCs + HA
28 HA
24 months
BMSCs i.a. injection produced superior clinical and MRI outcomes at 24 months
Ricther [35] 2013
Foot & Ankle
Case series
Surgical delivery
MAST
Collagen membrane
Ankle chondral defects
25
24 months
No adverse events.
Clinical scores improvement
Positive findings at histology
Orozco [22] 2013
Transplantation
Case series
IA injection
 
Knee OA
12
12 months
No safety issues. Rapid and progressive clinical improvement at 12 months
11/12 patients increased cartilage quality at MRI
Lee [23] 2012
Ann Accad Med Singapore
Comparative
IA injection
 
Knee cartilage defects
35 MFX + BMSCs + HA
35 BMSCs + periosteal patch
24 months
MFX + BMSCs + HA had comparable results vs. BMSCs + periosteal patch, but lower invasivity
Emadedin [19] 2012
Arch Iran Med
Case series
IA injection
 
Knee OA
6
12 months
No local or systemic adverse events.
Decreased pain, improved function and walking distance
3/6 increased cartilage thickness at MRI
Kasemkijwattana [29] 2011
J Med Assoc Thai
Case report
Surgical delivery
MAST
Collagen membrane
Knee cartilage defects
2
31 months
Significant clinical improvement
Good filling, tissue stiffness, and integration at 2nd look
Davatchi [17] 2011
Int J Rheum Dis
Case series
IA injection
 
Knee OA
4
12 months
Encouraging clinical results no X-Rays improvement
Haleem [28] 2010
Cartilage
Case series
Surgical delivery
MAST
PRF as scaffold
Knee cartilage defects
5
12 months
5/5 symptoms improvement
Complete defect filling and surface congruity with native cartilage in 3/5 at MRI
Nejadnik [34] 2010
AJSM
Comparative
Surgical delivery
BMSCs + periosteal flap
Knee cartilage defects
36 ACI
36 BMSCs + periosteal flap
24 months
Comparable improvement in quality of life, health, and sport activity. M better than F, older than 45 years lower improvement only in ACI group.
Centeno [16] 2008
Pain Physician
Case report
IA injection
 
Knee cartilage defects
1 IA BMSCs + 2 weekly platelet lysate IA injections
24 months
Improvement of range of motion and pain scores. Significant cartilage and meniscus growth at MRI
Kuroda [30] 2007
Osteoarthritis & Cartilage
Case report
Surgical delivery
BMSCs + collagen gel + periosteum
Knee cartilage defects
1
12 months
Hyaline-like tissue regeneration, improvement in clinical symptoms and return to previous activity level
Wakitani [31] 2007
J Tissue Eng Regen Med
Case report
Surgical delivery
BMSCs + collagen gel + periosteum or synovium
Knee cartilage defect patella
3
17–27 months
Improvement in clinical symptoms maintained over time. Fibrocartilaginous tissue at histology
Adachi [27] 2005
J Rheumatol
Case report
Surgical delivery
MAST
Hydroxyapatite ceramic
Knee osteochondral defect
1
 
Cartilage-like and bone tissue regeneration at 2nd look arthroscopy
Wakitani [32] 2004
Cell Transplant
Case report
Surgical delivery
BMSCs + collagen gel + periosteum
Knee cartilage defect
Patella
2
5 years
Short-term clinical improvement, then stable at 24 months fibrocartilage defect filling
Wakitani [33] 2002
Osteoarthritis & Cartilage
Comparative
Surgical delivery
Collagen gel sheet + periosteum
Knee OA
12 BMSCs + HTO
12 cell-free control + HTO
16 months
Comparable clinical outcomes, but better arthroscopic and histological score in cell-transplanted group
BM Concentrate
Gobbi [47] 2015
Cartilage
Comparative
Surgical delivery
MAST
HA matrix
Knee cartilage defects patellofemoral
19 MACT
18 BMC
3 years
Significant scores improvement in both groups.
Better IKDC subj for BMC. MACI: trochlea better than patella; BMC: site n.s.
Better filling at MRI for BMC
Buda [40] 2015
Arch Orthop Trauma Surg
Case series
Surgical delivery
MAST
HA matrix
OLTs and ankle OA
56
36 months
Clinical outcome improvement at 12 months, further increase at 24 months and lowering trend at 36 months
Higher BMI and OA degree had worse results
Buda [39] 2015
Cartilage
Case series
Surgical delivery
MAST
HA matrix
Ankle osteochondral lesions (hemophilic patients)
5
24 months
Clinical improvement at 2 years.
3 patients back to sports.
Signs of cartilage and bone tissue regeneration at MRI.
No radiographic joint degeneration progression
Buda R [43] 2015
Int Orthop
Comparative
Surgical delivery
MAST
HA matrix + PRF
OLTs
40 ACI
40 BMC
48 months
ACI and MAST was equally effective for the treatment of OLT. MAST preferred for the 1 step procedure, and lower costs
Gobbi [50] 2014
AJSM
Case series
Surgical delivery
MAST
Collagen membrane
Knee chondral defects
25
3 years
Significant scores improvement
Older than 45 and smaller or single lesions showed better outcomes.
Good implant stability and complete filling at MRI.
Cadossi [44] 2014
Foot Ankle Int
RCT
Surgical delivery
MAST
HA matrix
OLTs
15 BMDCs + HA + PEMF
15 BMDCs + HA
12 months
Biophysical stimulation started soon after surgery aided patient recovery leading to pain control and a better clinical outcome with these improvements lasting more than 1 year after surgery
Buda [41] 2014
Joints
Case series
Surgical delivery
MAST
HA/collagen powder matrix + PRF
OLTs
41 BMAC + HA + PRF
23 BMAC + collagen powder + PRF
53 months
Significant clinical improvement, gradual decrease after 24+ months
Skowronski [51] 2013
Orthop Traumatol Rehabil
Case series
Surgical delivery
MAST
Collagen membrane
Knee chondral defects
54
5 years
Improvement in clinical scores in 52/54 patients without complications
After 5 years n.s. deterioration in 3 patients
Giannini [38] 2013
AJSM
Case series
Surgical delivery
MAST
HA membrane or collagen powder + PRF
OLTs
49
24–48 months
Good clinical results at 24 months, then significant decrease at 36 and 48 months. T2 mapping similar to native hyaline cartilage and correlate with the clinical results
Buda [46] 2013
Muskuloskeletal Surg
Case series
Surgical delivery
MAST
HA matrix
OLKs
30
29 months
Good clinical outcome osteochondral regeneration at control MRI and biopsies
Gigante [48] 2012
Arhtroscopy Technique
Case report
Surgical delivery
MAST
Collagen membrane + MFX
Knee chondral defects
1
24 months
Pain free at 6 months, still asymptomatic at 24 months
Positive MRI tissue appearance at 12 months
Gigante [49] 2011
Int J Immunopathol Pharmacol
Case series
Surgical delivery
MAST
collagen membrane
Knee chondral defects
5
12 months
Patients asymptomatic
Nearly normal arthroscopic appearance and satisfactory repair tissue at 12 months
Giannini [42] 2010
Injury
Comparative
Surgical delivery
MAST
HA matrix + PRF
OLTs
10 ACI open
46 arthroscopic MACT
25 arthroscopic MAST
36 months
Similar clinical improvement among groups.
Good restoration of the cartilaginous layer with hyaline-like characteristics at MRI and histology
Varma [36] 2010
J Indian Med Assoc
Comparative
IA injection
Augmentation to debridement
Knee OA
25 Debridement + BMC
25 Debridement alone
6 months
BMC: higher improvement in symptoms, function, and quality of life
Buda [45] 2010
JBJS Am
Case series
Surgical delivery
MAST
HA matrix + PRF
OLKs
20
24 months
Significant clinical improvement at 12 and 24 months. Associated procedures delayed recovery. Satisfactory MRI findings in 80 % of patients
Giannini [37] 2009
Clin Orthop Rel Res
Case series
Surgical delivery
MAST
HA matrix or collagen powder + PRF
OLTs
48
24 months
Clinical improvement
Regenerated tissue in various degree of remodeling, none had complete hyaline-like features at histology
PBSCs
Fu [55] 2014
Knee
Case report
Surgical delivery
PBSCs + autologous Periosteal flap + patellofemoral realignment
Knee chondral defects
1
7.5 years
Patient returned to competitive kickboxing
Smooth surface 8 months after surgery
Significant clinical and MRI improvements
Turajane [53] T 2013
J Med Assoc Thai
Case series
IA injection
PBSCs + GFs addition/preservation + HA + microdrilling
Knee OA
5
6 months
Improvement in all clinical scores without adverse events
Saw [54] 2013
Arthroscopy
RCT
IA injection
Subchondral drilling
PBSCs + HA vs. HA
5 IA injections post-op
3 more IA injections after 6 months
Knee chondral defects
25 drilling + (PBSCs + HA)
25 drilling + HA
2 years
Comparable significant clinical improvement for both groups
PBSCs + HA had both MRI and histology superior vs. control group
Skowronski [56] 2012
Orthop Traumatol Rehabil
Case series
Surgical delivery
PBSCs covered by collagen membrane
Knee chondral defects
52
6 years
No adverse events
Improvement in all clinical scores at 12 months. Poor outcomes in 2 patients at 12 months
At 72 months minor deterioration in 2 more patients
Saw [52] 2011
Arthroscopy
Case series
IA injection
Subchondral drilling + 5 weekly IA injections
Knee chondral defects
5
10–26 months
No adverse events hyaline cartilage regeneration at histology
BMC vs. PBSCs
Skowronski [77] 2013
Orthop Traumatol Rehabil
Comparative
Surgical delivery
PBSCs vs. BMC covered by collagen membrane
OLKs
21 BMC
25 PBSCs
5 years
Superior results in PBSCs group: good cartilaginous surface and integration. Slight clinical scores decrease in both groups at 60 months
SDSCs
Sekiya [76] 2015
Clin Orthop Relat Res
Case series
Surgical delivery
Cultured cells
Scaffold free
Knee chondral defects
10
48 months
Significant clinical improvement
Positive findings at MRI, and hyaline like in 3/4 at histology
ADSCs
Kim [71] 2015
AJSM
Comparative
Surgical delivery vs. IA injection
Subcutaneous fat
SVF on FG scaffold vs. PRP-SVF injection
Isolated focal defects in knee OA
20 SVF-FG
20 SVF-PRP
28.6 months
Significant improvement in both groups. Better clinical results at final f-up and 2nd look appearance at 12 months for SVF-FG. No. of cells correlated with outcomes only for injective group
Kim [72] 2015
Osteoarthritis Cartilage
Case series
Surgical delivery
Subcutaneous fat
SVF + FG scaffold
Isolated focal defects in OA knee
20
27.9 months
Significant clinical and MRI scores improvement
MRI correlates with clinical outcomes
Michalek [67] 2015
Cell Transplant
Case series
IA injection
Subcutaneous fat
SVF
OA (various joints)
1114
17.2 months
No adverse effects, safe, cost-effective
Clinical improvement at 3–12 months.
Follow-up at 12 months: 63 % patients had ≥75 % score improvement
91 % patients had ≥50 % score improvement
Slower healing for obese and worse OA
Koh [74] 2015
Arthroscopy
RCT
Surgical delivery
Subcutaneous fat
MFX + FG + SVF vs. MFX
Knee chondral defects
40 MFX + SVF-FG
40 MFX
27.4 months
KOOS pain and symptoms better for SVF vs. control
2nd look: complete coverage 65 vs. 45 %
SVF better MRI scores
Kim [73] 2015
AJSM
Case series
Surgical delivery
Subcutaneous fat
SVF + FG
Isolated Focal defects in OA knee
49
26.7 months
74.5 % good/excellent results
Patient age >60 years or lesion size >6.0 cm2 are predictors of clinical failure
Jo [59] 2014
Stem cell
Case series
IA injection
Cultured subcutaneous
Phase I: low dose (1.0 × 107) vs. mid-dose (5.0 × 107) vs. high dose (1.0 × 108)
Phase II: 18 patients received only high dose
Knee OA
Phase I: 9
Phase II: 18
6 months
High-dose was more effective for knee function improvement
MRI: decreased defect size and improved cartilage volume
No adverse events related to cell dose
Kim [69] 2014
AJSM
Comparative
IA injection
Subcutaneous fat
SVF + marrow stimulation vs. marrow stimulation
OLTs
24 marrow stim + SVF
26 marrow stimulation
21.9 months
All clinical and MRI scores in SVF group improved significantly with respect to marrow stimulation alone SVF gave better outcomes for patients older than 46.1 years, lesion size >152.2 mm2, or in presence of subchondral cysts
Kim [71] 2014
AJSM
Comparative
Surgical delivery
Subcutaneous fat
SVF local adherent vs. SVF + FG
Isolated focal defects in OA knee
17 FG
37 scaffold-free
28.6 months
Both comparable clinical improvement
2nd look arthrosocopy at 12.3 months f-up: better ICRS scores for FG group
Bui [62] 2014
Biomed Res Ther
Case series
IA injection
Subcutaneous fat
SVF + PRP
Knee OA
21
8.5 months
Significant clinical scores improvement. No side effects.
MRI: increased cartilage thickness
Koh [70] 2014
AJSM
Case series
Surgical delivery
Subcutaneous fat
SVF
Isolated focal defects in knee OA
35
26.5 months
Clinical improvement
76 % abnormal repair tissue at 2nd look arthroscopy (12.7 months f-up)
Better outcomes if size <5.4 cm2 and/or BMI < 27.5
Koh [74] 2014
Arthroscopy
RCT
IA injection
Subcutaneous fat
HTO + PRP vs. HTO + PRP + SVF
Knee OA
23 HTO + PRP + SVF
21 HTO + PRP
24 months
SVF produced better improvement of KOOS pain and symptoms and VAS pain
Fibrocartilage coverage SVF 50 vs. 10 % control
Pak [61] 2013
BMC Musculoskelet Disord
Case series
IA injection
Subcutaneous fat SVF + PRP
OA (various joints)
91
26.7 months
SVF/PRP injections are safe
Clinical improvement knee and hip
Kim [68] 2013
AJSM
Comparative
IA injection
Subcutaneous fat SVF + PRP
Isolated defect in ankle OA
35 MFX
30 MFX + SVF
21.8 months
Clinical improvement both groups
SVF group better results, especially applied to Tegner score
Large lesion and/or subchondral cysts affected outcomes only for MFX alone
Koh [65] 2013
KSSTA
Case series
IA injection
Subcutaneous fat
SVF + PRP
Knee OA
30
24 months
Significant clinical improvement
14/16 (87.5 %) of 2nd look arthroscopy within 24 months improved or maintained cartilage status.
Further clinical improvement 24 vs. 12 months
Koh [64] 2013
Arthroscopy
Case series
IA injection after debridement
Fat pad
SVF + PRP
Knee OA
18
24 months
function and pain improvement. Womac and MRI correlate with cell no.
Better if OA ≤ 3
Koh [63] 2012
Knee
Comparative
IA injection
After debridement
Fat pad
SVF + PRP
Knee OA
25 debridement
+ SVF-PRP
25 debridement
12 months min
Both improved scores.
SVF performed better in <55 years and OA ≤ 3 (ICRS)
 
Pak [60] 2011
J Med Case Rep
Case report
IA injection
Subcutaneous fat
SVF + PRP + low dose dexamethasone
Knee OA
2
3 months
Clinical improvement
Significant positive changes at MRI

BMSCs

An increasing number of papers have been focused on this cell source in the past few years, both as BMSCs and BMC. Cultured BMSCs and BMC differ for composition, since adult bone marrow contains heterogeneous blood cells at various differentiation stages [13]. Thus, the harvest includes plasma, red blood cells, platelets, and nucleated cells, a small fraction of which contains adult MSCs that can be isolated through culture expansion [14]. However, even if not expanded, the heterogeneity of cell progenitor types in BMC might positively influence tissue regeneration [15]. Moreover, cell culture not only offers a higher number of cells but also presents high costs and some regulatory problems, since these products might be considered as pharmacological treatments by regulatory agencies. Thus, one-step techniques using BMC for the delivery of autologous cells in a single time are gaining increasing interest in the clinical setting. Besides these considerations, positive findings are leading the research towards the use of both cell-based strategies.

Cultured BMSCs: injective treatment

In 2008, Centeno and colleagues [16] first reported the promising clinical and MRI improvements at early follow-up after single intra-articular (i.a.) injection of autologous cultured BMSCs in a patient with knee degenerative cartilage disease, and similar findings at short term were later shown also by the groups of Davatchi [17], Emadedin [18], and Sol Rich [19]. Orozco et al. confirmed a rapid and progressive clinical improvement of knee OA in the first 12 months [20], which was maintained at 24-month follow-up, together with improved cartilage quality at MRI [21]. Finally, Davatchi et al. [22] updated their report, showing gradual mid-term deterioration of the outcomes in advanced OA.
Among comparative studies, Lee et al. [23] tested two administration strategies for focal knee cartilage defects and found no differences either by using BMSCs implantation under periosteum flap or microfractures (MFX) plus BMSCs i.a. injection, thus endorsing the less invasive approach.
Three randomized controlled trials (RCTs) have also been published. Wong et al. [24] treated knee unicompartmental OA with varus malalignment by combined high tibial osteotomy (HTO) and MFX. Patients randomly received post-operative i.a. injection of BMSCs-hyaluronic acid (HA) or HA alone as control. Both groups improved their scores, but BMSCs produced better clinical and MRI outcomes. Vangsness et al. [25] administered a single i.a. injection in patients after medial partial meniscectomy. Patients were randomized in two treatment groups (low- or high-dose allogeneic cultured BMSCs with HA) and a control group (HA-only). Both treatment groups showed improved clinical scores versus control, and MRI showed signs of meniscal volume increase at 24 months. Finally, Vega et al. [26] randomized two treatment groups for knee OA: a significantly greater improvement was shown after a single allogeneic BMSCs injection compared to control HA.

Cultured BMSCs: surgical delivery

Adachi et al. [27] observed cartilage and bone regeneration in a biopsy after cultured BMSCs implantation on hydroxyapatite-ceramic scaffold for osteochondral knee lesion (OLK). Haalem et al. [28] implanted BMSCs on a platelet fibrin glue (FG) scaffold, showing significant improvement and complete MRI filling of the cartilage defect. Kasemkijwattana et al. [29] seeded cells on a collagen scaffold with positive results in two traumatic knee lesions. Similarly, Kuroda et al. [30] had good results implanting BMSCs on collagen membrane with periosteum coverage in a judo-player knee, with hyaline-like tissue at a 12-month histology evaluation. Wakitani et al. used the same technique with positive findings also for patellofemoral lesions [31], stable at mid-term follow-up [32]. They also performed a comparative evaluation of this technique for focal defects in OA knees: two groups were treated with HTO, with or without BMSCs augmentation [33]. BMSCs-group showed better histology, but clinical scores comparable to the cell-free group. Nejadnik et al. compared BMSCs implantation with first-generation ACI in two groups of patients and observed comparable benefits [34].
Finally, Richter et al. [35] investigated the outcomes offered by BMSCs onto a collagen matrix for chondral ankle lesions, confirming no complications and a promising clinical improvement at 24 months of follow-up.

BMC: injective treatment

A single study by Varma et al. [36] reported promising results with BMC injection after arthroscopic debridement for knee OA, with increased benefits compared to debridement alone.

BMC: surgical delivery

The group of Giannini published several studies of scaffold-associated BMC implantation in knee and ankle joint defects. In their first study [37], they showed clinical and MRI improvements at 24 months after BMC implantation into collagen powder or HA matrix for osteochondral lesions of the talus (OLTs). Later [38], they reported a significant worsening between 24 and 48 months of follow-up, but the final result was still satisfactory compared to the basal level. Patients with longer symptoms before surgery had worse clinical outcomes. They also observed no degeneration progression at 24 months in five hemophilic ankle lesions [39], and similar results were confirmed in a larger group of patients treated for OLTs or ankle OA defects [40]. Also, this study showed a worsening trend after 24 months with a higher failure rate, which underlined the influence of OA degree and patient BMI. Moreover, a further study by Buda et al. [41] confirmed a similar trend of gradual worsening up to 72 months after scaffold-assisted BMC implantation.
Giannini et al. [42] also performed comparative evaluations: positive and similar clinical outcomes were found in three groups of patients treated with one-step BMC-HA matrix implantation versus open ACI or arthroscopic MACT for OLTs at 36 months of follow-up. These results were later confirmed at 48 months after collagen scaffold implantation, seeded either with BMC or cultured chondrocytes, with better tissue quality at MRI for the BMC group [43]. Moreover, a RCT by Cadossi et al. [44] highlighted that biophysical stimulation with pulsed electromagnetic fields (PEMFs) might improve the results at 12 months after collagen matrix-BMC implantation for OLTs.
Matrix-assisted BMC implantation was also investigated for the treatment of OLKs. The promising results using BMC on HA matrix were first reported by Buda et al. at short-term follow-up, with positive MRI and histology findings [45, 46], and then confirmed by Gobbi et al. [47], who observed superior outcomes using BMC instead of chondrocytes for the treatment of large patellofemoral defects. Similar results were obtained also by seeding BMC on collagen scaffolds: Gigante et al. [48] used BMC-enhanced AMIC technique with positive short-term clinical results, but limited tissue quality at histology [49], and Gobbi et al. [50] observed hyaline appearance and better short-term improvement in patients younger than 45 years and with single and smaller lesion. Finally, Skowronski et al. [51] documented stable mid-term outcomes after the treatment of large chondral lesions.

PBSCs

The possibility of using autologous PBSCs obtained by culture expansion from a venous sample was first introduced by Saw et al. [52], who treated chondral knee lesions with subchondral drilling and five postoperative i.a. injections of PBSCs and HA, reporting no adverse reactions and positive histological findings. Turajane and colleagues [53] showed short-term clinical improvement using the same technique in early knee OA patients. Later, the group of Saw [54] also performed a RCT, documenting comparable clinical outcomes at 24 months, but better MRI and histological evaluations versus HA control.
With regard to surgical application, Fu et al. [55] reported optimal results at 7.5 years in a lateral trochlea lesion treated with patellar realignment plus periosteum-covered PBSCs implantation in a kick boxer, and Skowronski et al. [56] implanted PBSCs with a collagen membrane in a group of patients, reporting a stable improvement up to 72-month follow-up.

ADSCs

ADSCs present a lower chondrogenic potential when compared with BMSCs [57]. Nonetheless, they can be obtained from liposuction, a simple and cheap procedure, and their clinical use is rapidly increasing, thanks to their easy availability and abundance [10]. Whereas the use of cultured cells has rarely been reported, the preferred technique involves cell harvest, collagenase digestion, and isolation of the stromal vascular fraction (SVF), a heterogeneous cell population that, among pre-adipocytes and immune cells, also includes ADSCs [58].

Injective treatment

Jo et al. [59] published the only available study on cultured ADSCs, applied at different doses: their preliminary clinical data showed no adverse events, and a clinical-MRI improvement at 6 months after injecting the highest dose.
Most of the literature focused instead on SVF. Regarding knee OA, Pak et al. [60] first obtained a promising clinical improvement 3 months after i.a. injection of subcutaneous SVF with HA, dexamethasone, and PRP in a patient. Later, they [61] confirmed safety and effectiveness of SVF injections in a larger cohort of patients treated into different joints. Bui et al. [62] also reported short-term clinical and MRI improvement after injection of SVF and PRP. However, the group of Koh was the main investigator of SVF use, starting from the infrapatellar fat pad source, in a case–control study [63]: all patients underwent debridement and the treatment group received an additional SVF-PRP injection. No major adverse events and a tendency for better outcomes were observed in the SVF group. The improvement was confirmed at 24 months in a further study [64]. The number of injected cells correlated with both clinical and MRI outcomes, while SVF had lower effects on the final stage OA. Later, the same group began to process subcutaneous fat with an analogous technique. They treated knee OA in elderly patients with arthroscopic lavage and SVF-PRP injection [65]: clinical improvement was obtained both at 12 and 24 months, and positive findings were reported at second look evaluation. Moreover, SVF injections significantly improved the benefits of high tibial osteotomy (HTO) for symptomatic varus knee, compared to control (HTO and PRP-only), both at clinical and second look evaluation [66].
Michalek et al. [67] administered single-dose SVF injections to the largest available group of patients, reporting no treatment-related adverse events and gradual clinical improvement between 3 and 12 months, with a slower recovery for obese and higher OA degrees.
Finally, the group of Koh also investigated SVF use in the ankle joint: Kim et al. injected SVF after marrow stimulation in two comparative studies, and observed higher clinical and MRI improvement both for ankle OA [68] or OLTs [69], compared to surgery alone. The benefit was greater for younger patients with smaller lesions, but the treatment was effective even in older patients.

Surgical delivery

Koh et al. [70] reported a significant clinical improvement 2 years after a scaffold-free SVF implantation for focal chondral lesions in OA knees, but abnormal repair tissue was observed in most cases at second look evaluation. In a subsequent study, the association with FG as scaffold significantly improved tissue quality, even though clinical results remained similar to SVF alone [71]. Later, they reported positive short-term results and correlation with MRI findings after SVF-FG implantation for OA [72]. Furthermore, a larger prospective study confirmed good/excellent results in 75 % patients at 24 months [73]. Interestingly, older age, higher BMI, and larger defect size were negative predictors in all these studies. SVF-FG augmentation also improved the outcome versus MF alone in an RCT, despite comparable histology findings [74].
Finally, a study on matched-paired groups found comparable clinical results but better ICRS macroscopic scores at 12 months for SVF surgical implantation versus injective delivery, whereas at the further follow-up, a significant clinical superiority was also obtained for surgical SVF delivery [75].

SDSCs

SDSCs are a promising source of stem cells for cartilage tissue engineering, thanks to the greatest chondrogenic and lowest osteogenic potential among MSCs [57]. Sekiya et al. [76] reported promising results up to mid-term follow-up using SDMSCs scaffold-free implantation into single knee cartilage defects, with ¾ biopsies showing hyaline cartilage.

Comparative studies

Skowronski et al. [77] performed the only clinical comparative study among stem cell types showing superior results with PBSCs rather than BMC under a collagen membrane for OLKs at 5-year follow-up.

Discussion

This systematic research highlighted that the use of mesenchymal precursors as a biological approach to treat cartilage lesions and OA has widely increased (Fig. 2), as confirmed by the growing number of clinical trials published on this topic. In addition to an intensive preclinical research, the use of these procedures has recently broken down the barriers towards clinical application, with more than half of the available papers published in the last 3 years. Different sources have been investigated for clinical application, especially targeting knee or ankle cartilage disease. Among them, the most exploited cell types are those derived from bone marrow and adipose tissue. Cells have been used either after culture expansion or simply concentrated for one-step procedures: in particular, adipose cells have been applied mainly through cell concentration, and cells derived from bone marrow are currently applied both after expansion or concentration, while PBSCs and SDSCs can be only exploited through in vitro expansion due to their low number.
Regardless of cell source and manipulation, cells have being administered either surgically or through i.a. injection, to target focal lesions as well as degenerative joint disease.
Overall, despite the increasing literature on this topic, there is still limited evidence about the use of MSCs for the treatment of articular cartilage, in particular as far as high-level studies are concerned: in fact, most of the available papers are case series, while only few papers reported RCTs. Moreover, the few high level studies do not allow to clearly prove the effective potential of MSCs, due to the limited number of patients treated and to the presence of several confounding factors (PRP concomitant use, cell use in combination with scaffolds, etc.). To this regard, while several studies applied cells in association with PRP, with the rationale to provide both cells and growth factors at the same time, there is no evidence that adding platelet-derived growth factors provides any increased benefit with respect to cell administration alone, and specifically designed studies are needed in order to clarify the role of PRP with respect to MSCs and/or scaffolds in cartilage treatment. Furthermore, the tissue harvest procedure poses practical and ethical limitations which prevent from performing studies with a blinded design, therefore leaving an important bias related to the placebo effect, which is an important issue in this field of new fashionable regenerative treatments.
On the other hand, the available studies still allow to draw some indications on potential and limitations of MSCs clinical use for the treatment of cartilage lesions and OA.
First, the use of MSCs in the clinical setting can be considered safe, since no major adverse events related to the treatment nor to the cell harvest have been reported, at least from the available reports at short- to mid-term follow-up. Second, a clinical benefit of using MSCs therapies has been reported in most of the studies, regardless of cell source, indication, or administration method. This effectiveness has been reflected by clinical improvement but also positive MRI and macroscopic findings, whereas histologic features gave more controversial results among different studies. Third, different studies also gave a few indications regarding the patients who might benefit more from MSCs treatment: young age, lower BMI, smaller lesion size for focal lesions, and earlier stages of OA joints have been shown to correlate with better outcomes, even though the available data strength does not allow to define clear cutoff values.
The systematic analysis of the literature also allowed to underline other interesting findings that deserve to be discussed. Definite trends can be observed with regard to the delivery method: while different combinations of products and delivery methods have been investigated over the years, currently cultured cells are mostly being administered by i.a. injection, while one-step surgical implantation is preferred for cell concentrates. The different trends observed in this field are explained both by the controversial preclinical and clinical findings, which still leaves space for clinical investigations in opposite direction, but also by practical considerations, both in terms of economical, ethical, and regulatory limitations [6]. Many aspects are taken in consideration for the treatment choice, with physicians and researchers exploring different strategies, each one presenting potential advantages and possible drawbacks. To this regard, while culture expansion guarantees a selected MSC lineage to be delivered, but presenting high costs and some contamination risks related to cell manipulation, cell concentration offers a lower number of MSCs, in a heterogeneous cell population, and can be performed in one step, thus simplifying the procedure, reducing costs, and increasing patient compliance. To date, no clear evidence of superior outcome between the two cell manipulations is available, and also their most effective delivery method remains to be defined, with only a single retrospective study reporting better results for surgical delivery compared to i.a. SVF injection in a matched-paired analysis of two groups treated for single focal defects in knee OA [75]. Regarding surgical implantation, the use of solid scaffolds has been shown to be beneficial for SVF implantation [71], and it is the gold standard for the application of BMC [3741, 43, 47, 48, 50, 51]. The good results obtained with scaffolds implanted with BMC have been compared with chondrocyte-based surgical techniques, showing similar outcomes, but with the advantage of the one-step approach [42, 43, 47].
Finally, regardless of cell source, manipulation and delivery method, the optimal cell dose is still under investigation. After a first preliminary study reported no complications related to high dose of cultured ADSCs [59], only a single clinical study specifically focused on this aspect, suggesting benefits and absence of side effects by using higher dose of BMSCs for the treatment of post-meniscectomized knees [25]. However, the lack of standardization and the heterogeneity of the studies reported in the current literature do not allow to extend these findings to the several proposed MSCs treatment strategies.
The clinical application of MSCs for the treatment of articular cartilage defects and OA shows promising results, but too many questions still remain open. Even though no complications have been reported, longer follow-ups on broader patient population are needed to confirm the safety of these procedures. Likewise, while promising results have been shown, the potential of these treatments should be confirmed by reliable clinical data through double-blind, controlled, prospective, and multicenter studies with longer follow-up. In addition, specific studies should be designed to identify the best cell sources, manipulation, and delivery techniques, as well as pathology and disease phase indications, with the aim of optimizing the outcome for a treatment focused on focal chondral defects or joint degeneration.

Conclusions

This systematic review revealed a high interest of researchers in the clinical use of MSCs for cartilage and OA treatment, as testified by the increasing number of reports published over time. Whereas the lack of contraindication and generally promising clinical outcomes have been reported, the prevalence of low-quality studies, with many variables, shows several aspects that still need to be optimized, such as the best cell source and the most appropriate processing method, the most effective dose and delivery procedure. On the other hand, the first hints on the kind of patients who might benefit more from these procedures are being drawn. High-level studies with large number of patients and long-term follow-up are mandatory to evaluate the real potential of this biological approach for cartilage repair.

Acknowledgements

This project received institutional support by the Italian Ministry of Health Ricerca Finalizzata (RF-2011-02352638).
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors were involved in the conception and design of the study or acquisition of data or analysis and interpretation of data and contributed to drafting the article or revising it critically for important intellectual content. All authors gave their final approval of the manuscript to be submitted.
Literatur
1.
Zurück zum Zitat Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, Liang MH, Kremers HM, Mayes MD, Merkel PA, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008;58:15–25.CrossRefPubMed Helmick CG, Felson DT, Lawrence RC, Gabriel S, Hirsch R, Kwoh CK, Liang MH, Kremers HM, Mayes MD, Merkel PA, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I. Arthritis Rheum. 2008;58:15–25.CrossRefPubMed
3.
Zurück zum Zitat Di Martino A, Kon E, Perdisa F, Sessa A, Filardo G, Neri MP, Bragonzoni L, Marcacci M. Surgical treatment of early knee osteoarthritis with a cell-free osteochondral scaffold: results at 24 months of follow-up. Injury. 2015;46 Suppl 8:S33–8.CrossRefPubMed Di Martino A, Kon E, Perdisa F, Sessa A, Filardo G, Neri MP, Bragonzoni L, Marcacci M. Surgical treatment of early knee osteoarthritis with a cell-free osteochondral scaffold: results at 24 months of follow-up. Injury. 2015;46 Suppl 8:S33–8.CrossRefPubMed
4.
Zurück zum Zitat Kon E, Filardo G, Drobnic M, Madry H, Jelic M, van Dijk N, Della Villa S. Non-surgical management of early knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2012;20:436–49.CrossRefPubMed Kon E, Filardo G, Drobnic M, Madry H, Jelic M, van Dijk N, Della Villa S. Non-surgical management of early knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2012;20:436–49.CrossRefPubMed
5.
Zurück zum Zitat Kon E, Filardo G, Roffi A, Andriolo L, Marcacci M. New trends for knee cartilage regeneration: from cell-free scaffolds to mesenchymal stem cells. Curr Rev Musculoskelet Med. 2012;5:236–43.CrossRefPubMedPubMedCentral Kon E, Filardo G, Roffi A, Andriolo L, Marcacci M. New trends for knee cartilage regeneration: from cell-free scaffolds to mesenchymal stem cells. Curr Rev Musculoskelet Med. 2012;5:236–43.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc. 2013;21:1717–29.CrossRefPubMed Filardo G, Madry H, Jelic M, Roffi A, Cucchiarini M, Kon E. Mesenchymal stem cells for the treatment of cartilage lesions: from preclinical findings to clinical application in orthopaedics. Knee Surg Sports Traumatol Arthrosc. 2013;21:1717–29.CrossRefPubMed
7.
Zurück zum Zitat Manferdini C, Maumus M, Gabusi E, Piacentini A, Filardo G, Peyrafitte JA, Jorgensen C, Bourin P, Fleury-Cappellesso S, Facchini A, et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 2013;65:1271–81.CrossRefPubMed Manferdini C, Maumus M, Gabusi E, Piacentini A, Filardo G, Peyrafitte JA, Jorgensen C, Bourin P, Fleury-Cappellesso S, Facchini A, et al. Adipose-derived mesenchymal stem cells exert antiinflammatory effects on chondrocytes and synoviocytes from osteoarthritis patients through prostaglandin E2. Arthritis Rheum. 2013;65:1271–81.CrossRefPubMed
10.
Zurück zum Zitat Perdisa F, Gostynska N, Roffi A, Filardo G, Marcacci M, Kon E. Adipose-derived mesenchymal stem cells for the treatment of articular cartilage: a systematic review on preclinical and clinical evidence. Stem Cells Int. 2015;2015:597652.CrossRefPubMedPubMedCentral Perdisa F, Gostynska N, Roffi A, Filardo G, Marcacci M, Kon E. Adipose-derived mesenchymal stem cells for the treatment of articular cartilage: a systematic review on preclinical and clinical evidence. Stem Cells Int. 2015;2015:597652.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Ahmed TA, Hincke MT. Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage. Histol Histopathol. 2014;29:669–89.PubMed Ahmed TA, Hincke MT. Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage. Histol Histopathol. 2014;29:669–89.PubMed
12.
Zurück zum Zitat Berg L, Koch T, Heerkens T, Bessonov K, Thomsen P, Betts D. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood. Vet Comp Orthop Traumatol. 2009;22:363–70.PubMed Berg L, Koch T, Heerkens T, Bessonov K, Thomsen P, Betts D. Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood. Vet Comp Orthop Traumatol. 2009;22:363–70.PubMed
13.
Zurück zum Zitat Kotobuki N, Hirose M, Takakura Y, Ohgushi H. Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs. 2004;28:33–9.CrossRefPubMed Kotobuki N, Hirose M, Takakura Y, Ohgushi H. Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif Organs. 2004;28:33–9.CrossRefPubMed
14.
Zurück zum Zitat Sensebe L, Krampera M, Schrezenmeier H, Bourin P, Giordano R. Mesenchymal stem cells for clinical application. Vox Sang. 2010;98:93–107.CrossRefPubMed Sensebe L, Krampera M, Schrezenmeier H, Bourin P, Giordano R. Mesenchymal stem cells for clinical application. Vox Sang. 2010;98:93–107.CrossRefPubMed
15.
Zurück zum Zitat Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun. 2004;320:914–9.CrossRefPubMed Indrawattana N, Chen G, Tadokoro M, Shann LH, Ohgushi H, Tateishi T, Tanaka J, Bunyaratvej A. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun. 2004;320:914–9.CrossRefPubMed
16.
Zurück zum Zitat Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11:343–53.PubMed Centeno CJ, Busse D, Kisiday J, Keohan C, Freeman M, Karli D. Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells. Pain Physician. 2008;11:343–53.PubMed
17.
Zurück zum Zitat Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011;14:211–5.CrossRefPubMed Davatchi F, Abdollahi BS, Mohyeddin M, Shahram F, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis. Preliminary report of four patients. Int J Rheum Dis. 2011;14:211–5.CrossRefPubMed
18.
Zurück zum Zitat Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, Farjad R, Baghaban Eslaminejad M. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15:422–8.PubMed Emadedin M, Aghdami N, Taghiyar L, Fazeli R, Moghadasali R, Jahangir S, Farjad R, Baghaban Eslaminejad M. Intra-articular injection of autologous mesenchymal stem cells in six patients with knee osteoarthritis. Arch Iran Med. 2012;15:422–8.PubMed
19.
Zurück zum Zitat Rich S, Munar A, Soler Romagosa F, Peirau X, Huguet M, Alberca M, Sánchez A, García Sancho J, Orozco L. Treatment of knee osteoarthritis with autologous expanded bone marrow mesenchymal stem cells: 50 cases clinical and MRI results at one year follow-up. J Stem Cell Res Ther. 2015;5:7. Rich S, Munar A, Soler Romagosa F, Peirau X, Huguet M, Alberca M, Sánchez A, García Sancho J, Orozco L. Treatment of knee osteoarthritis with autologous expanded bone marrow mesenchymal stem cells: 50 cases clinical and MRI results at one year follow-up. J Stem Cell Res Ther. 2015;5:7.
20.
Zurück zum Zitat Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95:1535–41.CrossRefPubMed Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation. 2013;95:1535–41.CrossRefPubMed
21.
Zurück zum Zitat Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: two-year follow-up results. Transplantation. 2014;97:e66–8.CrossRefPubMed Orozco L, Munar A, Soler R, Alberca M, Soler F, Huguet M, Sentis J, Sanchez A, Garcia-Sancho J. Treatment of knee osteoarthritis with autologous mesenchymal stem cells: two-year follow-up results. Transplantation. 2014;97:e66–8.CrossRefPubMed
22.
Zurück zum Zitat Davatchi F, Sadeghi Abdollahi B, Mohyeddin M, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum Dis. 2015. Davatchi F, Sadeghi Abdollahi B, Mohyeddin M, Nikbin B. Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum Dis. 2015.
23.
Zurück zum Zitat Lee KB, Wang VT, Chan YH, Hui JH. A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid—a prospective comparative study on safety and short-term efficacy. Ann Acad Med Singapore. 2012;41:511–7.PubMed Lee KB, Wang VT, Chan YH, Hui JH. A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid—a prospective comparative study on safety and short-term efficacy. Ann Acad Med Singapore. 2012;41:511–7.PubMed
24.
Zurück zum Zitat Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy. 2013;29:2020–8.CrossRefPubMed Wong KL, Lee KB, Tai BC, Law P, Lee EH, Hui JH. Injectable cultured bone marrow-derived mesenchymal stem cells in varus knees with cartilage defects undergoing high tibial osteotomy: a prospective, randomized controlled clinical trial with 2 years’ follow-up. Arthroscopy. 2013;29:2020–8.CrossRefPubMed
25.
Zurück zum Zitat Vangsness Jr CT, Farr 2nd J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014;96:90–8.CrossRefPubMed Vangsness Jr CT, Farr 2nd J, Boyd J, Dellaero DT, Mills CR, LeRoux-Williams M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: a randomized, double-blind, controlled study. J Bone Joint Surg Am. 2014;96:90–8.CrossRefPubMed
26.
Zurück zum Zitat Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99:1681–90.CrossRefPubMed Vega A, Martin-Ferrero MA, Del Canto F, Alberca M, Garcia V, Munar A, Orozco L, Soler R, Fuertes JJ, Huguet M, et al. Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells: a randomized controlled trial. Transplantation. 2015;99:1681–90.CrossRefPubMed
27.
Zurück zum Zitat Adachi N, Ochi M, Deie M, Ito Y. Transplant of mesenchymal stem cells and hydroxyapatite ceramics to treat severe osteochondral damage after septic arthritis of the knee. J Rheumatol. 2005;32:1615–8.PubMed Adachi N, Ochi M, Deie M, Ito Y. Transplant of mesenchymal stem cells and hydroxyapatite ceramics to treat severe osteochondral damage after septic arthritis of the knee. J Rheumatol. 2005;32:1615–8.PubMed
28.
Zurück zum Zitat Haleem AM, Singergy AA, Sabry D, Atta HM, Rashed LA, Chu CR, El Shewy MT, Azzam A, Abdel Aziz MT. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1:253–61.CrossRefPubMedPubMedCentral Haleem AM, Singergy AA, Sabry D, Atta HM, Rashed LA, Chu CR, El Shewy MT, Azzam A, Abdel Aziz MT. The clinical use of human culture-expanded autologous bone marrow mesenchymal stem cells transplanted on platelet-rich fibrin glue in the treatment of articular cartilage defects: a pilot study and preliminary results. Cartilage. 2010;1:253–61.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Kasemkijwattana C, Hongeng S, Kesprayura S, Rungsinaporn V, Chaipinyo K, Chansiri K. Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report. J Med Assoc Thai. 2011;94:395–400.PubMed Kasemkijwattana C, Hongeng S, Kesprayura S, Rungsinaporn V, Chaipinyo K, Chansiri K. Autologous bone marrow mesenchymal stem cells implantation for cartilage defects: two cases report. J Med Assoc Thai. 2011;94:395–400.PubMed
30.
Zurück zum Zitat Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage. 2007;15:226–31.CrossRefPubMed Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, Ohgushi H, Wakitani S, Kurosaka M. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthritis Cartilage. 2007;15:226–31.CrossRefPubMed
31.
Zurück zum Zitat Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med. 2007;1:74–9.CrossRefPubMed Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H. Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med. 2007;1:74–9.CrossRefPubMed
32.
Zurück zum Zitat Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant. 2004;13:595–600.CrossRefPubMed Wakitani S, Mitsuoka T, Nakamura N, Toritsuka Y, Nakamura Y, Horibe S. Autologous bone marrow stromal cell transplantation for repair of full-thickness articular cartilage defects in human patellae: two case reports. Cell Transplant. 2004;13:595–600.CrossRefPubMed
33.
Zurück zum Zitat Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10:199–206.CrossRefPubMed Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees. Osteoarthritis Cartilage. 2002;10:199–206.CrossRefPubMed
34.
Zurück zum Zitat Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38:1110–6.CrossRefPubMed Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH. Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38:1110–6.CrossRefPubMed
35.
Zurück zum Zitat Richter M, Zech S. Matrix-associated stem cell transplantation (MAST) in chondral defects of foot and ankle is effective. Foot Ankle Surg. 2013;19:84–90.CrossRefPubMed Richter M, Zech S. Matrix-associated stem cell transplantation (MAST) in chondral defects of foot and ankle is effective. Foot Ankle Surg. 2013;19:84–90.CrossRefPubMed
36.
Zurück zum Zitat Varma HS, Dadarya B, Vidyarthi A. The new avenues in the management of osteo-arthritis of knee—stem cells. J Indian Med Assoc. 2010;108:583–5.PubMed Varma HS, Dadarya B, Vidyarthi A. The new avenues in the management of osteo-arthritis of knee—stem cells. J Indian Med Assoc. 2010;108:583–5.PubMed
37.
Zurück zum Zitat Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467:3307–20.CrossRefPubMedPubMedCentral Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. One-step bone marrow-derived cell transplantation in talar osteochondral lesions. Clin Orthop Relat Res. 2009;467:3307–20.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Vannini F. One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med. 2013;41:511–8.CrossRefPubMed Giannini S, Buda R, Battaglia M, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Vannini F. One-step repair in talar osteochondral lesions: 4-year clinical results and t2-mapping capability in outcome prediction. Am J Sports Med. 2013;41:511–8.CrossRefPubMed
39.
Zurück zum Zitat Buda R, Cavallo M, Castagnini F, Cenacchi A, Natali S, Vannini F, Giannini S. Treatment of hemophilic ankle arthropathy with one-step arthroscopic bone marrow-derived cells transplantation. Cartilage. 2015;6:150–5.CrossRefPubMed Buda R, Cavallo M, Castagnini F, Cenacchi A, Natali S, Vannini F, Giannini S. Treatment of hemophilic ankle arthropathy with one-step arthroscopic bone marrow-derived cells transplantation. Cartilage. 2015;6:150–5.CrossRefPubMed
40.
Zurück zum Zitat Buda R, Castagnini F, Cavallo M, Ramponi L, Vannini F, Giannini S. “One-step” bone marrow-derived cells transplantation and joint debridement for osteochondral lesions of the talus in ankle osteoarthritis: clinical and radiological outcomes at 36 months. Arch Orthop Trauma Surg. 2015. Buda R, Castagnini F, Cavallo M, Ramponi L, Vannini F, Giannini S. “One-step” bone marrow-derived cells transplantation and joint debridement for osteochondral lesions of the talus in ankle osteoarthritis: clinical and radiological outcomes at 36 months. Arch Orthop Trauma Surg. 2015.
41.
Zurück zum Zitat Buda R, Vannini F, Cavallo M, Baldassarri M, Natali S, Castagnini F, Giannini S. One-step bone marrow-derived cell transplantation in talarosteochondral lesions: mid-term results. Joints. 2013;1:102–7.PubMedPubMedCentral Buda R, Vannini F, Cavallo M, Baldassarri M, Natali S, Castagnini F, Giannini S. One-step bone marrow-derived cell transplantation in talarosteochondral lesions: mid-term results. Joints. 2013;1:102–7.PubMedPubMedCentral
42.
Zurück zum Zitat Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C, Vannini F. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury. 2010;41:1196–203.CrossRefPubMed Giannini S, Buda R, Cavallo M, Ruffilli A, Cenacchi A, Cavallo C, Vannini F. Cartilage repair evolution in post-traumatic osteochondral lesions of the talus: from open field autologous chondrocyte to bone-marrow-derived cells transplantation. Injury. 2010;41:1196–203.CrossRefPubMed
43.
Zurück zum Zitat Buda R, Vannini F, Castagnini F, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Giannini S. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop. 2015;39:893–900.CrossRefPubMed Buda R, Vannini F, Castagnini F, Cavallo M, Ruffilli A, Ramponi L, Pagliazzi G, Giannini S. Regenerative treatment in osteochondral lesions of the talus: autologous chondrocyte implantation versus one-step bone marrow derived cells transplantation. Int Orthop. 2015;39:893–900.CrossRefPubMed
44.
Zurück zum Zitat Cadossi M, Buda RE, Ramponi L, Sambri A, Natali S, Giannini S. Bone marrow-derived cells and biophysical stimulation for talar osteochondral lesions: a randomized controlled study. Foot Ankle Int. 2014;35:981–7.CrossRefPubMed Cadossi M, Buda RE, Ramponi L, Sambri A, Natali S, Giannini S. Bone marrow-derived cells and biophysical stimulation for talar osteochondral lesions: a randomized controlled study. Foot Ankle Int. 2014;35:981–7.CrossRefPubMed
45.
Zurück zum Zitat Buda R, Vannini F, Cavallo M, Grigolo B, Cenacchi A, Giannini S. Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells. J Bone Joint Surg Am. 2010;92 Suppl 2:2–11.CrossRefPubMed Buda R, Vannini F, Cavallo M, Grigolo B, Cenacchi A, Giannini S. Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells. J Bone Joint Surg Am. 2010;92 Suppl 2:2–11.CrossRefPubMed
46.
Zurück zum Zitat Buda R, Vannini F, Cavallo M, Baldassarri M, Luciani D, Mazzotti A, Pungetti C, Olivieri A, Giannini S. One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskelet Surg. 2013;97:145–51.CrossRefPubMed Buda R, Vannini F, Cavallo M, Baldassarri M, Luciani D, Mazzotti A, Pungetti C, Olivieri A, Giannini S. One-step arthroscopic technique for the treatment of osteochondral lesions of the knee with bone-marrow-derived cells: three years results. Musculoskelet Surg. 2013;97:145–51.CrossRefPubMed
47.
Zurück zum Zitat Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage. 2015;6:82–97.CrossRefPubMedPubMedCentral Gobbi A, Chaurasia S, Karnatzikos G, Nakamura N. Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions: a nonrandomized prospective trial. Cartilage. 2015;6:82–97.CrossRefPubMedPubMedCentral
48.
Zurück zum Zitat Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Tech. 2012;1:e175–80.CrossRefPubMedPubMedCentral Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Tech. 2012;1:e175–80.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Gigante A, Calcagno S, Cecconi S, Ramazzotti D, Manzotti S, Enea D. Use of collagen scaffold and autologous bone marrow concentrate as a one-step cartilage repair in the knee: histological results of second-look biopsies at 1 year follow-up. Int J Immunopathol Pharmacol. 2011;24:69–72.PubMed Gigante A, Calcagno S, Cecconi S, Ramazzotti D, Manzotti S, Enea D. Use of collagen scaffold and autologous bone marrow concentrate as a one-step cartilage repair in the knee: histological results of second-look biopsies at 1 year follow-up. Int J Immunopathol Pharmacol. 2011;24:69–72.PubMed
50.
Zurück zum Zitat Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42:648–57.CrossRefPubMed Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42:648–57.CrossRefPubMed
51.
Zurück zum Zitat Skowronski J, Skowronski R, Rutka M. Large cartilage lesions of the knee treated with bone marrow concentrate and collagen membrane—results. Ortop Traumatol Rehabil. 2013;15:69–76.CrossRefPubMed Skowronski J, Skowronski R, Rutka M. Large cartilage lesions of the knee treated with bone marrow concentrate and collagen membrane—results. Ortop Traumatol Rehabil. 2013;15:69–76.CrossRefPubMed
52.
Zurück zum Zitat Saw KY, Anz A, Merican S, Tay YG, Ragavanaidu K, Jee CS, McGuire DA. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy. 2011;27:493–506.CrossRefPubMed Saw KY, Anz A, Merican S, Tay YG, Ragavanaidu K, Jee CS, McGuire DA. Articular cartilage regeneration with autologous peripheral blood progenitor cells and hyaluronic acid after arthroscopic subchondral drilling: a report of 5 cases with histology. Arthroscopy. 2011;27:493–506.CrossRefPubMed
53.
Zurück zum Zitat Turajane T, Chaweewannakorn U, Larbpaiboonpong V, Aojanepong J, Thitiset T, Honsawek S, Fongsarun J, Papadopoulos KI. Combination of intra-articular autologous activated peripheral blood stem cells with growth factor addition/ preservation and hyaluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation Improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease. J Med Assoc Thai. 2013;96:580–8.PubMed Turajane T, Chaweewannakorn U, Larbpaiboonpong V, Aojanepong J, Thitiset T, Honsawek S, Fongsarun J, Papadopoulos KI. Combination of intra-articular autologous activated peripheral blood stem cells with growth factor addition/ preservation and hyaluronic acid in conjunction with arthroscopic microdrilling mesenchymal cell stimulation Improves quality of life and regenerates articular cartilage in early osteoarthritic knee disease. J Med Assoc Thai. 2013;96:580–8.PubMed
54.
Zurück zum Zitat Saw KY, Anz A, Siew-Yoke Jee C, Merican S, Ching-Soong Ng R, Roohi SA, Ragavanaidu K. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29:684–94.CrossRefPubMed Saw KY, Anz A, Siew-Yoke Jee C, Merican S, Ching-Soong Ng R, Roohi SA, Ragavanaidu K. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy. 2013;29:684–94.CrossRefPubMed
55.
Zurück zum Zitat Fu WL, Ao YF, Ke XY, Zheng ZZ, Gong X, Jiang D, Yu JK. Repair of large full-thickness cartilage defect by activating endogenous peripheral blood stem cells and autologous periosteum flap transplantation combined with patellofemoral realignment. Knee. 2014;21:609–12.CrossRefPubMed Fu WL, Ao YF, Ke XY, Zheng ZZ, Gong X, Jiang D, Yu JK. Repair of large full-thickness cartilage defect by activating endogenous peripheral blood stem cells and autologous periosteum flap transplantation combined with patellofemoral realignment. Knee. 2014;21:609–12.CrossRefPubMed
56.
Zurück zum Zitat Skowronski J, Skowronski R, Rutka M. Cartilage lesions of the knee treated with blood mesenchymal stem cells—results. Ortop Traumatol Rehabil. 2012;14:569–77.PubMed Skowronski J, Skowronski R, Rutka M. Cartilage lesions of the knee treated with blood mesenchymal stem cells—results. Ortop Traumatol Rehabil. 2012;14:569–77.PubMed
57.
Zurück zum Zitat Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res. 2008;333:207–15.CrossRefPubMed Koga H, Muneta T, Nagase T, Nimura A, Ju YJ, Mochizuki T, Sekiya I. Comparison of mesenchymal tissues-derived stem cells for in vivo chondrogenesis: suitable conditions for cell therapy of cartilage defects in rabbit. Cell Tissue Res. 2008;333:207–15.CrossRefPubMed
58.
Zurück zum Zitat Jang Y, Koh YG, Choi YJ, Kim SH, Yoon DS, Lee M, Lee JW. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. In Vitro Cell Dev Biol Anim. 2015;51:142–50.CrossRefPubMed Jang Y, Koh YG, Choi YJ, Kim SH, Yoon DS, Lee M, Lee JW. Characterization of adipose tissue-derived stromal vascular fraction for clinical application to cartilage regeneration. In Vitro Cell Dev Biol Anim. 2015;51:142–50.CrossRefPubMed
59.
Zurück zum Zitat Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254–66.CrossRefPubMed Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, Kim JE, Shim H, Shin JS, Shin IS, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254–66.CrossRefPubMed
60.
Zurück zum Zitat Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. J Med Case Rep. 2011;5:296.CrossRefPubMedPubMedCentral Pak J. Regeneration of human bones in hip osteonecrosis and human cartilage in knee osteoarthritis with autologous adipose-tissue-derived stem cells: a case series. J Med Case Rep. 2011;5:296.CrossRefPubMedPubMedCentral
61.
Zurück zum Zitat Pak J, Chang JJ, Lee JH, Lee SH. Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints. BMC Musculoskelet Disord. 2013;14:337.CrossRefPubMedPubMedCentral Pak J, Chang JJ, Lee JH, Lee SH. Safety reporting on implantation of autologous adipose tissue-derived stem cells with platelet-rich plasma into human articular joints. BMC Musculoskelet Disord. 2013;14:337.CrossRefPubMedPubMedCentral
62.
Zurück zum Zitat Bui K, Duong T, Nguyen N, Nguyen T, Le V, Thanh Mai V, Lu-Chinh Phan N, Le Minh D, Ngoc N, Van Pham P. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study. Biomedical Research and Therapy. 2014;1:02–8.CrossRef Bui K, Duong T, Nguyen N, Nguyen T, Le V, Thanh Mai V, Lu-Chinh Phan N, Le Minh D, Ngoc N, Van Pham P. Symptomatic knee osteoarthritis treatment using autologous adipose derived stem cells and platelet-rich plasma: a clinical study. Biomedical Research and Therapy. 2014;1:02–8.CrossRef
63.
Zurück zum Zitat Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012;19:902–7.CrossRefPubMed Koh YG, Choi YJ. Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee. 2012;19:902–7.CrossRefPubMed
64.
Zurück zum Zitat Koh YG, Jo SB, Kwon OR, Suh DS, Lee SW, Park SH, Choi YJ. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy. 2013;29:748–55.CrossRefPubMed Koh YG, Jo SB, Kwon OR, Suh DS, Lee SW, Park SH, Choi YJ. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy. 2013;29:748–55.CrossRefPubMed
65.
Zurück zum Zitat Koh YG, Choi YJ, Kwon SK, Kim YS, Yeo JE. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2015;23:1308–16.CrossRefPubMed Koh YG, Choi YJ, Kwon SK, Kim YS, Yeo JE. Clinical results and second-look arthroscopic findings after treatment with adipose-derived stem cells for knee osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2015;23:1308–16.CrossRefPubMed
66.
Zurück zum Zitat Koh YG, Kwon OR, Kim YS, Choi YJ. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study. Arthroscopy. 2014;30:1453–60.CrossRefPubMed Koh YG, Kwon OR, Kim YS, Choi YJ. Comparative outcomes of open-wedge high tibial osteotomy with platelet-rich plasma alone or in combination with mesenchymal stem cell treatment: a prospective study. Arthroscopy. 2014;30:1453–60.CrossRefPubMed
67.
Zurück zum Zitat Michalek J, Moster R, Lukac L, Proefrock K, Petrasovic M, Rybar J, et al. Autologous adipose tissue-derived stromal vascular fraction cells application in patients with osteoarthritis. Cell Transplant. 2015. Michalek J, Moster R, Lukac L, Proefrock K, Petrasovic M, Rybar J, et al. Autologous adipose tissue-derived stromal vascular fraction cells application in patients with osteoarthritis. Cell Transplant. 2015.
68.
Zurück zum Zitat Kim YS, Park EH, Kim YC, Koh YG. Clinical outcomes of mesenchymal stem cell injection with arthroscopic treatment in older patients with osteochondral lesions of the talus. Am J Sports Med. 2013;41:1090–9.CrossRefPubMed Kim YS, Park EH, Kim YC, Koh YG. Clinical outcomes of mesenchymal stem cell injection with arthroscopic treatment in older patients with osteochondral lesions of the talus. Am J Sports Med. 2013;41:1090–9.CrossRefPubMed
69.
Zurück zum Zitat Kim YS, Lee HJ, Choi YJ, Kim YI, Koh YG. Does an injection of a stromal vascular fraction containing adipose-derived mesenchymal stem cells influence the outcomes of marrow stimulation in osteochondral lesions of the talus? A clinical and magnetic resonance imaging study. Am J Sports Med. 2014;42:2424–34.CrossRefPubMed Kim YS, Lee HJ, Choi YJ, Kim YI, Koh YG. Does an injection of a stromal vascular fraction containing adipose-derived mesenchymal stem cells influence the outcomes of marrow stimulation in osteochondral lesions of the talus? A clinical and magnetic resonance imaging study. Am J Sports Med. 2014;42:2424–34.CrossRefPubMed
70.
Zurück zum Zitat Koh YG, Choi YJ, Kwon OR, Kim YS. Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees. Am J Sports Med. 2014;42:1628–37.CrossRefPubMed Koh YG, Choi YJ, Kwon OR, Kim YS. Second-look arthroscopic evaluation of cartilage lesions after mesenchymal stem cell implantation in osteoarthritic knees. Am J Sports Med. 2014;42:1628–37.CrossRefPubMed
71.
Zurück zum Zitat Kim YS, Choi YJ, Suh DS, Heo DB, Kim YI, Ryu JS, Koh YG. Mesenchymal stem cell implantation in osteoarthritic knees: is fibrin glue effective as a scaffold? Am J Sports Med. 2015;43:176–85.CrossRefPubMed Kim YS, Choi YJ, Suh DS, Heo DB, Kim YI, Ryu JS, Koh YG. Mesenchymal stem cell implantation in osteoarthritic knees: is fibrin glue effective as a scaffold? Am J Sports Med. 2015;43:176–85.CrossRefPubMed
72.
Zurück zum Zitat Kim YS, Choi YJ, Lee SW, Kwon OR, Suh DS, Heo DB, Koh YG. Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study. Osteoarthritis Cartilage. 2016;24:237–45.CrossRefPubMed Kim YS, Choi YJ, Lee SW, Kwon OR, Suh DS, Heo DB, Koh YG. Assessment of clinical and MRI outcomes after mesenchymal stem cell implantation in patients with knee osteoarthritis: a prospective study. Osteoarthritis Cartilage. 2016;24:237–45.CrossRefPubMed
73.
Zurück zum Zitat Kim YS, Choi YJ, Koh YG. Mesenchymal stem cell implantation in knee osteoarthritis: an assessment of the factors influencing clinical outcomes. Am J Sports Med. 2015;43:2293–301.CrossRefPubMed Kim YS, Choi YJ, Koh YG. Mesenchymal stem cell implantation in knee osteoarthritis: an assessment of the factors influencing clinical outcomes. Am J Sports Med. 2015;43:2293–301.CrossRefPubMed
74.
Zurück zum Zitat Koh YG, Kwon OR, Kim YS, Choi YJ, Tak DH. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy. 2016;32:97–109.CrossRefPubMed Koh YG, Kwon OR, Kim YS, Choi YJ, Tak DH. Adipose-derived mesenchymal stem cells with microfracture versus microfracture alone: 2-year follow-up of a prospective randomized trial. Arthroscopy. 2016;32:97–109.CrossRefPubMed
75.
Zurück zum Zitat Kim YS, Kwon OR, Choi YJ, Suh DS, Heo DB, Koh YG. Comparative matched-pair analysis of the injection versus implantation of mesenchymal stem cells for knee osteoarthritis. Am J Sports Med. 2015;43:2738–46.CrossRefPubMed Kim YS, Kwon OR, Choi YJ, Suh DS, Heo DB, Koh YG. Comparative matched-pair analysis of the injection versus implantation of mesenchymal stem cells for knee osteoarthritis. Am J Sports Med. 2015;43:2738–46.CrossRefPubMed
76.
Zurück zum Zitat Sekiya I, Muneta T, Horie M, Koga H. Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res. 2015;473:2316–26.CrossRefPubMedPubMedCentral Sekiya I, Muneta T, Horie M, Koga H. Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clin Orthop Relat Res. 2015;473:2316–26.CrossRefPubMedPubMedCentral
77.
Zurück zum Zitat Skowronski J, Rutka M. Osteochondral lesions of the knee reconstructed with mesenchymal stem cells—results. Ortop Traumatol Rehabil. 2013;15:195–204.CrossRefPubMed Skowronski J, Rutka M. Osteochondral lesions of the knee reconstructed with mesenchymal stem cells—results. Ortop Traumatol Rehabil. 2013;15:195–204.CrossRefPubMed
Metadaten
Titel
Stem cells in articular cartilage regeneration
verfasst von
Giuseppe Filardo
Francesco Perdisa
Alice Roffi
Maurilio Marcacci
Elizaveta Kon
Publikationsdatum
01.12.2016
Verlag
BioMed Central
Erschienen in
Journal of Orthopaedic Surgery and Research / Ausgabe 1/2016
Elektronische ISSN: 1749-799X
DOI
https://doi.org/10.1186/s13018-016-0378-x

Weitere Artikel der Ausgabe 1/2016

Journal of Orthopaedic Surgery and Research 1/2016 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.