Skip to main content
Erschienen in: BMC Neurology 1/2014

Open Access 01.12.2014 | Case report

Subarachnoid hemorrhage secondary to a ruptured middle cerebral aneurysm in a patient with osteogenesis imperfecta: a case report

verfasst von: Toshio Hirohata, Satoru Miyawaki, Akiko Mizutani, Takayuki Iwakami, So Yamada, Hajime Nishido, Yasutaka Suzuki, Shinya Miyamoto, Katsumi Hoya, Mineko Murakami, Akira Matsuno

Erschienen in: BMC Neurology | Ausgabe 1/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

Osteogenesis imperfecta (OI) is a heterogeneous group of inherited disorders that occur owing to the abnormalities in type 1 collagen, and is characterized by increased bone fragility and other extraskeletal manifestations. We report the case of a patient who was diagnosed with OI following subarachnoid hemorrhage (SAH) secondary to a ruptured saccular intracranial aneurysm (IA).

Case Presentation

A 37-year-old woman was referred to our hospital because of sudden headache and vomiting. She was diagnosed with SAH (World Federation of Neurosurgical Society grade 2) owing to an aneurysm of the middle cerebral artery. She then underwent surgical clipping of the aneurysm successfully. She had blue sclerae, a history of several fractures of the extremities, and a family history of bone fragility and blue sclerae in her son. According to these findings, she was diagnosed with OI type 1. We performed genetic analysis for a single nucleotide G/C polymorphism (SNP) of exon 28 of the gene encoding for alpha-2 polypeptide of collagen 1, which is a potential risk factor for IA. However, this SNP was not detected in this patient or in five normal control subjects. Other genetic analyses did not reveal any mutations of the COL1A1 or COL1A2 gene. The cerebrovascular system is less frequently involved in OI. OI is associated with increased vascular weakness owing to collagen deficiency in and around the blood vessels. SAH secondary to a ruptured IA with OI has been reported in only six cases.

Conclusion

The patient followed a good clinical course after surgery. It remains controversial whether IAs are caused by OI or IAs are coincidentally complicated with OI.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2377-14-150) contains supplementary material, which is available to authorized users.

Competing interests

We have no disclosures and did not receive any financial support.

Authors’ contributions

TH participated in treatment of the patient, and drafted the all manuscript. SM, TI, SY, HN, YS, SM, KH and MM participated in treatment of the patient, and helped to draft the manuscript. AM performed the genetic analysis for a SNP of exon 28 of the COL1A2. AM conceived of the case study, and participated in its design and management. All authors read and approved the final manuscript.
Abkürzungen
OI
Osteogenesis imperfecta
COL1A2
Collagen type 1 alpha-2 gene
IA
Intracranial aneurysm
SAH
Subarachnoid hemorrhage
DSA
Digital subtraction angiography
SNP
Single nucleotide polymorphism.

Background

Osteogenesis imperfecta (OI) is a heritable connective tissue disorder, caused by abnormalities in type 1 collagen, and is characterized by bone fragility and other extraskeletal features, including hearing loss, blue sclerae, dentinongenesis imperfecta and hyperlaxity of the ligaments and skin [1]. Patients with OI show a wide range of clinical severities from being nearly asymptomatic, with individuals leading a normal life, to being severe, with individuals showing bone and connective tissue deformities resulting in perinatal death [2].
OI can cause diverse vascular complications such as aortic and carotid artery dissection, cardiac valvulopathy and coronary artery aneurysms [37]. It has been reported that the collagen type 1 alpha-2 gene (COL1A2) may predispose patients to intracranial aneurysms (IAs) [8], and that the cerebrovascular system is less frequently involved in OI. We report the case of a patient in whom OI was diagnosed following subarachnoid hemorrhage (SAH) secondary to a ruptured intracranial saccular aneurysm.

Case Presentation

A 37-year-old woman was referred to our hospital because of sudden headache and vomiting. She had no family history of aneurysms. Neurologic examination revealed slight disturbance of consciousness (Glasgow Coma Scale score, 14) and neck stiffness without any focal deficit. Brain computed tomography (CT) showed diffuse SAH (Fisher stage 3) and an arachnoid cyst of the right middle fossa (Figure 1). Subsequent cerebral digital subtraction angiography (DSA) indicated a saccular aneurysm of the middle cerebral artery (Figure 2). Because of the ruptured IA, a diagnosis of SAH (World Federation of Neurosurgical Society grade 2) was made. The patient had blue sclerae (Figure 3), hypertension, and mitral regurgitation (New York Heart Association class 2), and had sustained repeated fractures of the extremities such as left elbow joint and left ankle joint prior to puberty. Her height was 158 cm (equal to the average height of Japanese women) with no major skeletal deformities. The patient’s son also had blue sclerae and a history of multiple fractures; however there was no history of bone fragility in her parents, two brothers or daughter. According to these findings, the diagnosis of OI type 1A was made during admission [9].
Surgical clipping of the aneurysm was performed, and the patient was asymptomatic after one week. Follow-up DSA demonstrated a completely clipped aneurysm (Figure 4). The patient underwent rehabilitation and was discharged from the hospital four weeks after admission.
The patient’s left femoral bone density was 0.752 g/cm2, which was in the Japanese female average. We also measured levels of serum bone metabolism markers, and they were within normal limits found in adult women; pyridinoline cross-linked carboxyterminal telopeptide of type I collagen, 1.1 ng/mL (normal range, <4.5); intact amino-terminal propeptide of type I procollagen, 16.6 μg/L (normal range, 14.9-68.8); tartrate-resistant acid phosphatase-5b, 147 mU/dL (normal range, 120–420); osteocalcin, 10 ng/mL (normal range, 2.5-13); and bone-specific alkaline phosphatase, 9.2 μg/L (normal range, 2.9-14.5).
We performed genetic analysis for a single nucleotide G/C polymorphism (SNP) of exon 28 of the COL1A2 gene, which was reported as a potential risk factor for IAs [8]. However, this SNP was not detected in this patient or five normal control subjects (Figure 5). And no mutation of the COL1A1 or COL1A2 gene was detected with genetic analyses.

Discussion

The diagnosis of OI is based mainly on clinical signs, symptoms, and positive family history [10]. Most patients with OI have a mutation of either the COL1A1 or COL1A2 gene, which are the two genes that code for alpha-1 and alpha-2 chains of type 1 collagen, respectively. More than 2,000 different type 1 collagen mutations have been identified in patients with OI and are listed in a database [11, 12]. Type 1 collagen is the most abundant connective tissue in the vertebrate and is found in other tissues, including blood vessels [13]. Interstitial type 1 collagen was reported to be deposited on the surfaces of smooth muscle cells or along elastin filaments in the cerebrovascular wall, and thus, type 1 collagen might play a role in the rigidity and elasticity of the vascular wall. We did not identify any known mutation in COL1A1 or COL1A2 in our patient. However, OI was directly diagnosed in this patient because of the presence of bone fragility, extraskeletal features, including blue sclerae and mitral regurgitation, and a positive family history, despite her normal bone density and normal bone metabolism markers. The association between OI and an intracranial arachnoid cyst is also known [14], similarly as demonstrated in brain CT scan of this patient.
Yoneyama et al. [8] reported the association between the functional variant SNP28 of COL1A2 and Japanese familial IA. However, in that study, SNP28 was observed in only 10.4% of total IAs (n = 260) and 5.5% of control subjects (n = 291). Although SNP28 was not detected in our patient and normal control subjects, we consider these results as acceptable regarding low prevalence of the SNP. Meanwhile, most of the vascular complications in patients with OI have been reported as artery dissections [37]. A few sporadic case reports described intracranial artery dissections complicated by OI [15, 16].
To our knowledge, SAH secondary to ruptured IA in patients with OI has been reported in only six cases (Table 1) [1722]. Three case reports have described patients with a saccular anterior communicating artery aneurysm [1719], and another described a patient with a saccular aneurysm at a fenestrated basilar artery [20]; this is the only case report of SAH in a patient with OI in whom the SNP28 of the COL1A2 gene was detected. The fifth report described a patient with a ruptured dissecting-type pseudoaneurysm at the right superior cerebellar artery [21]; this is the only case in which SAH secondary to an intracranial artery dissection was reported. The sixth and most recent report described a patient with a saccular aneurysm of the vertebral artery [22]. It is difficult to determine whether ruptured, in particular saccular, IAs are truly caused by OI or accidentally complicated by OI.
Table 1
Case reports of subarachnoid hemorrhage secondary to ruptured intracranial aneurysm with osteogenesis imperfecta
 Authors (year)
Age, Sex
Location
Shape
 Supplement
Okamura T, et al. (1995) [17]
33 F
A-com A
Saccular
VA fenestration
Narváez J, et al. (1996) [18]
22 F
A-com A
Saccular
 
Havlik DM, et al. (2006) [19]
38 M
A-com A
Saccular
 
Petruzzellis M, et al. (2007) [20]
44 M
VA union
Saccular
SNP28 of COL1A2: detected VA fenestration
Matouk CC, et al. (2011) [21]
49 M
SCA
Dissection
 
Kaliaperumal C, et al. (2011) [22]
53 M
VA
Saccular
 
Our case (2013)
37 F
MCA
Saccular
SNP28 of COL1A2: not detected
SAH; subarachnoid hemorrhage, F; female, M; male, A-com A; anterior communicating artery, VA; vertebral artery, SCA; superior cerebellar artery, MCA; middle cerebral artery.

Conclusion

We described a case of SAH secondary to ruptured saccular intracranial aneurysm in a 37-year-old female patient with clinically diagnosed OI. She was successfully treated with the surgical neck clipping of the aneurysm. Although no mutation in the COL1A1 or COL1A2 gene was detected, it is obvious that this patient is clinically OI. There may be some causative relationship between OI and SAH because there are several reported cases of SAH secondary to cerebral aneurysm in patients with OI.
We obtained written informed consent from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Authors’ information

AM is the professor of Department of Neurosurgery, Teikyo University, transferred from Teikyo University Chiba Medical Center in April, 2014.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

We have no disclosures and did not receive any financial support.

Authors’ contributions

TH participated in treatment of the patient, and drafted the all manuscript. SM, TI, SY, HN, YS, SM, KH and MM participated in treatment of the patient, and helped to draft the manuscript. AM performed the genetic analysis for a SNP of exon 28 of the COL1A2. AM conceived of the case study, and participated in its design and management. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Ben Amor IM, Glorieux FH, Rauch F: Genotype-phenotype correlations in autosomal dominant osteogenesis imperfecta. J Osteoporos. 2011, 2011: 540178-CrossRefPubMedPubMedCentral Ben Amor IM, Glorieux FH, Rauch F: Genotype-phenotype correlations in autosomal dominant osteogenesis imperfecta. J Osteoporos. 2011, 2011: 540178-CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Shapiro JR, Stover ML, Burn VE, McKinstry MB, Burshell AL, Chipman SD, Rowe DW: An osteopenic nonfracture syndrome with features of mild osteogenesis imperfecta associated with the substitution of a cysteine for glycine at triple helix position 43 in the pro alpha 1(I) chain of type I collagen. J Clin Invest. 1992, 89: 567-573.CrossRefPubMedPubMedCentral Shapiro JR, Stover ML, Burn VE, McKinstry MB, Burshell AL, Chipman SD, Rowe DW: An osteopenic nonfracture syndrome with features of mild osteogenesis imperfecta associated with the substitution of a cysteine for glycine at triple helix position 43 in the pro alpha 1(I) chain of type I collagen. J Clin Invest. 1992, 89: 567-573.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Criscitiello MG, Ronan JA, Besterman EM, Schoehwetter W: Cardiovascular abnormalities in osteogenesis imperfecta. Circulation. 1965, 31: 255-262.CrossRefPubMed Criscitiello MG, Ronan JA, Besterman EM, Schoehwetter W: Cardiovascular abnormalities in osteogenesis imperfecta. Circulation. 1965, 31: 255-262.CrossRefPubMed
4.
Zurück zum Zitat Hortop JT, Sipouras P, Hanley JA: Cardiovascular involvement in osteogenesis imperfecta. Circulation. 1986, 73: 54-61.CrossRefPubMed Hortop JT, Sipouras P, Hanley JA: Cardiovascular involvement in osteogenesis imperfecta. Circulation. 1986, 73: 54-61.CrossRefPubMed
5.
Zurück zum Zitat Wong RS, Follis FM, Shively BK, Wernly JA: Osteogenesis imperfecta and cardiovascular diseases. Ann Thorac Surg. 1995, 60: 1439-1443.CrossRefPubMed Wong RS, Follis FM, Shively BK, Wernly JA: Osteogenesis imperfecta and cardiovascular diseases. Ann Thorac Surg. 1995, 60: 1439-1443.CrossRefPubMed
6.
Zurück zum Zitat Byra P, Chillag S, Petit S: Osteogenesis imperfecta and aortic dissection. Am J Med Sci. 2008, 336: 70-72.CrossRefPubMed Byra P, Chillag S, Petit S: Osteogenesis imperfecta and aortic dissection. Am J Med Sci. 2008, 336: 70-72.CrossRefPubMed
7.
Zurück zum Zitat Rouviere S, Michelini R, Sarda P, Pagès M: Spontaneous carotid artery dissection in two siblings with osteogenesis imperfecta. Cerebrovasc Dis. 2004, 17: 270-272.CrossRefPubMed Rouviere S, Michelini R, Sarda P, Pagès M: Spontaneous carotid artery dissection in two siblings with osteogenesis imperfecta. Cerebrovasc Dis. 2004, 17: 270-272.CrossRefPubMed
8.
Zurück zum Zitat Yoneyama T, Kasuya H, Onda H, Akagawa H, Hashiguchi K, Nakajima T, Hori T, Inoue I: Collagen type 1 α2 (COL1A2) is the susceptible gene for intracranial aneurysms. Stroke. 2004, 35: 443-448.CrossRefPubMed Yoneyama T, Kasuya H, Onda H, Akagawa H, Hashiguchi K, Nakajima T, Hori T, Inoue I: Collagen type 1 α2 (COL1A2) is the susceptible gene for intracranial aneurysms. Stroke. 2004, 35: 443-448.CrossRefPubMed
13.
Zurück zum Zitat Prockop DJ, Kivirikko KI: Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995, 64: 403-434.CrossRefPubMed Prockop DJ, Kivirikko KI: Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995, 64: 403-434.CrossRefPubMed
14.
Zurück zum Zitat Cole WG, Lam TP: Arachnoid cyst and chronic subdural haematoma in a child with osteogenesis imperfecta type III resulting from the substitution of glycine 1006 by alanine in the pro alpha-2(I) chain of type I procollagen. J Med Genet. 1996, 33: 193-196.CrossRefPubMedPubMedCentral Cole WG, Lam TP: Arachnoid cyst and chronic subdural haematoma in a child with osteogenesis imperfecta type III resulting from the substitution of glycine 1006 by alanine in the pro alpha-2(I) chain of type I procollagen. J Med Genet. 1996, 33: 193-196.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Albayram S, Kizilkilic O, Yilmaz H, Tuysuz B, Kocer N, Islak C: Abnormalities in the cerebral arterial system in osteogenesis imperfecta. Am J Neuroradiol. 2003, 24: 748-750.PubMed Albayram S, Kizilkilic O, Yilmaz H, Tuysuz B, Kocer N, Islak C: Abnormalities in the cerebral arterial system in osteogenesis imperfecta. Am J Neuroradiol. 2003, 24: 748-750.PubMed
16.
Zurück zum Zitat Coutouly X, Bibi R, Magni C: Isolated basilar artery dissection in a case of osteogenesis imperfecta. J Radiol. 2005, 86: 86-88.CrossRefPubMed Coutouly X, Bibi R, Magni C: Isolated basilar artery dissection in a case of osteogenesis imperfecta. J Radiol. 2005, 86: 86-88.CrossRefPubMed
17.
Zurück zum Zitat Okamura T, Yamamoto M, Ohta K, Matsuoka T, Takahashi M, Uozumi T: A case of ruptured cerebral aneurysm associated with fenestrated vertebral artery in osteogenesis imperfecta. No Shinkei Geka. 1995, 23: 451-455.PubMed Okamura T, Yamamoto M, Ohta K, Matsuoka T, Takahashi M, Uozumi T: A case of ruptured cerebral aneurysm associated with fenestrated vertebral artery in osteogenesis imperfecta. No Shinkei Geka. 1995, 23: 451-455.PubMed
18.
Zurück zum Zitat Narváez J, Narváez JA, Majós C, Clavaguera MT, Alegre-Sancho JJ: Subarachnoid haemorrhage secondary to ruptured cerebral aneurysm in a patient with osteogenesis imperfecta. Br J Rheumatol. 1996, 35 (12): 1332-1333.CrossRefPubMed Narváez J, Narváez JA, Majós C, Clavaguera MT, Alegre-Sancho JJ: Subarachnoid haemorrhage secondary to ruptured cerebral aneurysm in a patient with osteogenesis imperfecta. Br J Rheumatol. 1996, 35 (12): 1332-1333.CrossRefPubMed
19.
Zurück zum Zitat Havlik DM, Nashelsky MB: Ruptured cerebral artery aneurysm and bacterial meningitis in a man with osteogenesis imperfecta. Am J Forensic Med Pathol. 2006, 27 (2): 117-120.CrossRefPubMed Havlik DM, Nashelsky MB: Ruptured cerebral artery aneurysm and bacterial meningitis in a man with osteogenesis imperfecta. Am J Forensic Med Pathol. 2006, 27 (2): 117-120.CrossRefPubMed
20.
Zurück zum Zitat Petruzzellis M, De Blasi R, Lucivero V, Sancilio M, Prontera M, Tinelli A, Mezzapesa DM, Federico F: Cerebral aneurysms in a patient with osteogenesis imperfecta and exon 28 polymorphism of COL1A2. Am J Neuroradiol. 2007, 28 (3): 397-398.PubMed Petruzzellis M, De Blasi R, Lucivero V, Sancilio M, Prontera M, Tinelli A, Mezzapesa DM, Federico F: Cerebral aneurysms in a patient with osteogenesis imperfecta and exon 28 polymorphism of COL1A2. Am J Neuroradiol. 2007, 28 (3): 397-398.PubMed
21.
Zurück zum Zitat Matouk CC, Hanbidge A, Mandell DM, Terbrugge KG, Agid R: Osteogenesis imperfecta, multiple intra-abdominal arterial dissections and a ruptured dissecting-type intracranial aneurysm. Interv Neuroradiol. 2011, 17 (3): 371-375.PubMedPubMedCentral Matouk CC, Hanbidge A, Mandell DM, Terbrugge KG, Agid R: Osteogenesis imperfecta, multiple intra-abdominal arterial dissections and a ruptured dissecting-type intracranial aneurysm. Interv Neuroradiol. 2011, 17 (3): 371-375.PubMedPubMedCentral
22.
Zurück zum Zitat Kaliaperumal C, Walsh T, Balasubramanian C, Wyse G, Fanning N, Kaar G: Osteogenesis imperfecta presenting as aneurysmal subarachnoid haemorrhage in a 53-year-old man. BMJ Case Rep. 2011, 21: 2011- Kaliaperumal C, Walsh T, Balasubramanian C, Wyse G, Fanning N, Kaar G: Osteogenesis imperfecta presenting as aneurysmal subarachnoid haemorrhage in a 53-year-old man. BMJ Case Rep. 2011, 21: 2011-
Metadaten
Titel
Subarachnoid hemorrhage secondary to a ruptured middle cerebral aneurysm in a patient with osteogenesis imperfecta: a case report
verfasst von
Toshio Hirohata
Satoru Miyawaki
Akiko Mizutani
Takayuki Iwakami
So Yamada
Hajime Nishido
Yasutaka Suzuki
Shinya Miyamoto
Katsumi Hoya
Mineko Murakami
Akira Matsuno
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Neurology / Ausgabe 1/2014
Elektronische ISSN: 1471-2377
DOI
https://doi.org/10.1186/1471-2377-14-150

Weitere Artikel der Ausgabe 1/2014

BMC Neurology 1/2014 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.