Skip to main content
Erschienen in: Acta Neuropathologica 2/2012

01.08.2012 | Original Paper

TDP-43 regulates the mammalian spinogenesis through translational repression of Rac1

verfasst von: Pritha Majumder, Yi-Ting Chen, Jayarama Krishnan Bose, Cheng-Chun Wu, Wei-Cheng Cheng, Sin-Jhong Cheng, Yen-Hsin Fang, Ying-Ling Chen, Kuen-Jer Tsai, Cheng-Chang Lien, Che-Kun James Shen

Erschienen in: Acta Neuropathologica | Ausgabe 2/2012

Einloggen, um Zugang zu erhalten

Abstract

Impairment of learning and memory is a significant pathological feature of many neurodegenerative diseases including FTLD-TDP. Appropriate regulation and fine tuning of spinogenesis of the dendrites, which is an integral part of the learning/memory program of the mammalian brain, are essential for the normal function of the hippocampal neurons. TDP-43 is a nucleic acid-binding protein implicated in multi-cellular functions and in the pathogenesis of a range of neurodegenerative diseases including FTLD-TDP and ALS. We have combined the use of single-cell dye injection, shRNA knockdown, plasmid rescue, immunofluorescence staining, Western blot analysis and patch clamp electrophysiological measurement of primary mouse hippocampal neurons in culture to study the functional role of TDP-43 in mammalian spinogenesis. We found that depletion of TDP-43 leads to an increase in the number of protrusions/spines as well as the percentage of matured spines among the protrusions. Significantly, the knockdown of TDP-43 also increases the level of Rac1 and its activated form GTP-Rac1, a known positive regulator of spinogenesis. Clustering of the AMPA receptors on the dendritic surface and neuronal firing are also induced by depletion of TDP-43. Furthermore, use of an inhibitor of Rac1 activation negatively regulated spinogenesis of control hippocampal neurons as well as TDP-43-depleted hippocampal neurons. Mechanistically, RT-PCR assay and cycloheximide chase experiments have indicated that increases in Rac1 protein upon TDP-43 depletion is regulated at the translational level. These data together establish that TDP-43 is an upstream regulator of spinogenesis in part through its action on the Rac1 → GTP-Rac1 → AMPAR pathway. This study provides the first evidence connecting TDP-43 with the GTP-Rac1 → AMPAR regulatory pathway of spinogenesis. It establishes that mis-metabolism of TDP-43, as occurs in neurodegenerative diseases with TDP-43 proteinopathies, e.g., FTLD-TDP, would alter its homeostatic cellular concentration, thus leading to impairment of hippocampal plasticity.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611PubMedCrossRef Arai T, Hasegawa M, Akiyama H et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351:602–611PubMedCrossRef
2.
Zurück zum Zitat Bonhoeffer T, Yuste R (2002) Spine motility. Phenomenology, mechanisms, and function Neuron 35:1019–1027 Bonhoeffer T, Yuste R (2002) Spine motility. Phenomenology, mechanisms, and function Neuron 35:1019–1027
3.
Zurück zum Zitat Bose JK, Wang I-F, Li H, Tarn W-Y, Shen C-KJ (2008) TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J BiolChem 283:28852–28859 Bose JK, Wang I-F, Li H, Tarn W-Y, Shen C-KJ (2008) TDP-43 overexpression enhances exon 7 inclusion during the survival of motor neuron pre-mRNA splicing. J BiolChem 283:28852–28859
4.
Zurück zum Zitat Bose JK, Huang CC, Shen CK (2011) Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 286:44441–44448PubMedCrossRef Bose JK, Huang CC, Shen CK (2011) Regulation of autophagy by neuropathological protein TDP-43. J Biol Chem 286:44441–44448PubMedCrossRef
5.
Zurück zum Zitat Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67PubMedCrossRef Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67PubMedCrossRef
6.
Zurück zum Zitat Braun K, Segal M (2000) FMRP involvement in formation of synapses among cultured hippocampal neurons. Cereb Cortex 10:1045–1052PubMedCrossRef Braun K, Segal M (2000) FMRP involvement in formation of synapses among cultured hippocampal neurons. Cereb Cortex 10:1045–1052PubMedCrossRef
7.
Zurück zum Zitat Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878PubMedCrossRef Buratti E, Baralle FE (2008) Multiple roles of TDP-43 in gene expression, splicing regulation, and human disease. Front Biosci 13:867–878PubMedCrossRef
8.
Zurück zum Zitat Buratti E, Baralle FE (2009) The molecular links between TDP-43 dysfunction and neurodegeneration. Adv Genet 66:1–34PubMedCrossRef Buratti E, Baralle FE (2009) The molecular links between TDP-43 dysfunction and neurodegeneration. Adv Genet 66:1–34PubMedCrossRef
9.
Zurück zum Zitat Chen Y, Rex CS, Rice CJ et al (2010) Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci USA 107:13123–13128PubMedCrossRef Chen Y, Rex CS, Rice CJ et al (2010) Correlated memory defects and hippocampal dendritic spine loss after acute stress involve corticotropin-releasing hormone signaling. Proc Natl Acad Sci USA 107:13123–13128PubMedCrossRef
10.
Zurück zum Zitat Chen-Plotkin AS, Geser F, Plotkin JB et al (2008) Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum Mol Genet 17:1349–1362PubMedCrossRef Chen-Plotkin AS, Geser F, Plotkin JB et al (2008) Variations in the progranulin gene affect global gene expression in frontotemporal lobar degeneration. Hum Mol Genet 17:1349–1362PubMedCrossRef
11.
Zurück zum Zitat Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211–220PubMedCrossRef Chen-Plotkin AS, Lee VM, Trojanowski JQ (2010) TAR DNA-binding protein 43 in neurodegenerative disease. Nat Rev Neurol 6:211–220PubMedCrossRef
12.
Zurück zum Zitat Colombrita C, Onesto E, Megiorni F et al (2012) TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem 287:15635–15647PubMedCrossRef Colombrita C, Onesto E, Megiorni F et al (2012) TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem 287:15635–15647PubMedCrossRef
13.
Zurück zum Zitat de Curtis I (2008) Functions of Rac GTPases during neuronal development. Dev Neurosci 30:47–58PubMedCrossRef de Curtis I (2008) Functions of Rac GTPases during neuronal development. Dev Neurosci 30:47–58PubMedCrossRef
14.
Zurück zum Zitat Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961PubMedCrossRef Duan H, Wearne SL, Rocher AB, Macedo A, Morrison JH, Hof PR (2003) Age-related dendritic and spine changes in corticocortically projecting neurons in macaque monkeys. Cereb Cortex 13:950–961PubMedCrossRef
15.
Zurück zum Zitat Ethell IM, Pasquale EB (2005) Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 75:161–205PubMedCrossRef Ethell IM, Pasquale EB (2005) Molecular mechanisms of dendritic spine development and remodeling. Prog Neurobiol 75:161–205PubMedCrossRef
16.
Zurück zum Zitat Feiguin F, Godena VK, Romano G, D’Ambrogio A, Klima R, Baralle FE (2009) Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett 583:1586–1592PubMedCrossRef Feiguin F, Godena VK, Romano G, D’Ambrogio A, Klima R, Baralle FE (2009) Depletion of TDP-43 affects Drosophila motoneurons terminal synapsis and locomotive behavior. FEBS Lett 583:1586–1592PubMedCrossRef
17.
Zurück zum Zitat Fiesel FC, Schurr C, Weber SS, Kahle PJ (2011) TDP-43 knockdown impairs neurite outgrowth dependent on its target histone deacetylase 6. Mol Neurodegener 6:64PubMedCrossRef Fiesel FC, Schurr C, Weber SS, Kahle PJ (2011) TDP-43 knockdown impairs neurite outgrowth dependent on its target histone deacetylase 6. Mol Neurodegener 6:64PubMedCrossRef
18.
Zurück zum Zitat Giordana MT, Ferrero P, Grifoni S, Pellerino A, Naldi A, Montuschi A (2011) Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review. Neurol Sci 32:9–16PubMedCrossRef Giordana MT, Ferrero P, Grifoni S, Pellerino A, Naldi A, Montuschi A (2011) Dementia and cognitive impairment in amyotrophic lateral sclerosis: a review. Neurol Sci 32:9–16PubMedCrossRef
19.
Zurück zum Zitat Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73PubMedCrossRef Glantz LA, Lewis DA (2000) Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry 57:65–73PubMedCrossRef
20.
Zurück zum Zitat Guidetti P, Charles V, Chen EY et al (2001) Early degenerative changes in transgenic mice expressing mutant Huntington involve dendritic abnormalities but no impairment of mitochondrial energy production. Exp Neurol 169:340–350PubMedCrossRef Guidetti P, Charles V, Chen EY et al (2001) Early degenerative changes in transgenic mice expressing mutant Huntington involve dendritic abnormalities but no impairment of mitochondrial energy production. Exp Neurol 169:340–350PubMedCrossRef
21.
Zurück zum Zitat Haditsch U, Leone DP, Farinelli M et al (2009) A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci 41:409–419PubMedCrossRef Haditsch U, Leone DP, Farinelli M et al (2009) A central role for the small GTPase Rac1 in hippocampal plasticity and spatial learning and memory. Mol Cell Neurosci 41:409–419PubMedCrossRef
22.
Zurück zum Zitat Hayashi ML, Choi SY, Rao BS et al (2004) Altered cortical synaptic morphology and impaired memory consolidation in forebrain-specific dominant-negative PAK transgenic mice. Neuron 43:773–787CrossRef Hayashi ML, Choi SY, Rao BS et al (2004) Altered cortical synaptic morphology and impaired memory consolidation in forebrain-specific dominant-negative PAK transgenic mice. Neuron 43:773–787CrossRef
23.
Zurück zum Zitat Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2:880–888PubMedCrossRef Hering H, Sheng M (2001) Dendritic spines: structure, dynamics and regulation. Nat Rev Neurosci 2:880–888PubMedCrossRef
24.
Zurück zum Zitat Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441:979–983PubMedCrossRef Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K (2006) Experience-dependent and cell-type-specific spine growth in the neocortex. Nature 441:979–983PubMedCrossRef
25.
Zurück zum Zitat Iguchi Y, Katsuno M, Niwa J et al (2009) TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases. J Biol Chem 284:22059–22066PubMedCrossRef Iguchi Y, Katsuno M, Niwa J et al (2009) TDP-43 depletion induces neuronal cell damage through dysregulation of Rho family GTPases. J Biol Chem 284:22059–22066PubMedCrossRef
26.
Zurück zum Zitat Impey S, Davare M, Lasiek A et al (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43:146–156PubMedCrossRef Impey S, Davare M, Lasiek A et al (2010) An activity-induced microRNA controls dendritic spine formation by regulating Rac1-PAK signaling. Mol Cell Neurosci 43:146–156PubMedCrossRef
27.
Zurück zum Zitat Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269PubMedCrossRef Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269PubMedCrossRef
28.
Zurück zum Zitat Ji Y, Gong Y, Gan W, Beach T, Holtzman DM, Wisniewski T (2003) Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer’s disease patients. Neuroscience 122:305–315PubMedCrossRef Ji Y, Gong Y, Gan W, Beach T, Holtzman DM, Wisniewski T (2003) Apolipoprotein E isoform-specific regulation of dendritic spine morphology in apolipoprotein E transgenic mice and Alzheimer’s disease patients. Neuroscience 122:305–315PubMedCrossRef
29.
Zurück zum Zitat Kang M-G, Guo Y, Huganir RL (2009) AMPA receptor and GEF-H1/Lfc complex regulates dendritic spine development through RhoA signaling cascade. PNAS 106:3549–3554PubMedCrossRef Kang M-G, Guo Y, Huganir RL (2009) AMPA receptor and GEF-H1/Lfc complex regulates dendritic spine development through RhoA signaling cascade. PNAS 106:3549–3554PubMedCrossRef
30.
Zurück zum Zitat Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186PubMedCrossRef Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ (2008) Action potential generation requires a high sodium channel density in the axon initial segment. Nat Neurosci 11:178–186PubMedCrossRef
31.
Zurück zum Zitat Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64PubMedCrossRef Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19:R46–R64PubMedCrossRef
32.
Zurück zum Zitat Li Z, Aizenman CD, Cline HT (2002) Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33:741–750PubMedCrossRef Li Z, Aizenman CD, Cline HT (2002) Regulation of rho GTPases by crosstalk and neuronal activity in vivo. Neuron 33:741–750PubMedCrossRef
33.
Zurück zum Zitat Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068PubMed Lien CC, Jonas P (2003) Kv3 potassium conductance is necessary and kinetically optimized for high-frequency action potential generation in hippocampal interneurons. J Neurosci 23:2058–2068PubMed
34.
Zurück zum Zitat M-j Lin, Cheng C-W, Shen C-K (2011) Neuronal function and dysfunction of Drosophila dTDP. PLoS One 6:e20371CrossRef M-j Lin, Cheng C-W, Shen C-K (2011) Neuronal function and dysfunction of Drosophila dTDP. PLoS One 6:e20371CrossRef
35.
Zurück zum Zitat Linseman DA, Loucks FA (2008) Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci 13:657–676PubMedCrossRef Linseman DA, Loucks FA (2008) Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci 13:657–676PubMedCrossRef
37.
Zurück zum Zitat Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRef Mackenzie IR, Neumann M, Bigio EH et al (2010) Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol 119:1–4PubMedCrossRef
38.
Zurück zum Zitat Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766PubMedCrossRef Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766PubMedCrossRef
39.
Zurück zum Zitat Menna E, Disanza A, Cagnoli C et al (2009) Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol 7:1–17CrossRef Menna E, Disanza A, Cagnoli C et al (2009) Eps8 regulates axonal filopodia in hippocampal neurons in response to brain-derived neurotrophic factor (BDNF). PLoS Biol 7:1–17CrossRef
40.
Zurück zum Zitat Mishra M, Paunesku T, Woloschak GE et al (2007) Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropathol 114:81–94PubMedCrossRef Mishra M, Paunesku T, Woloschak GE et al (2007) Gene expression analysis of frontotemporal lobar degeneration of the motor neuron disease type with ubiquitinated inclusions. Acta Neuropathol 114:81–94PubMedCrossRef
41.
Zurück zum Zitat Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRef Neumann M, Sampathu DM, Kwong LK et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314:130–133PubMedCrossRef
42.
Zurück zum Zitat Nikonenko I, Jourdain P, Alberi S, Toni N, Muller D (2002) Activity-induced changes of spine morphology. Hippocampus 12:585–591PubMedCrossRef Nikonenko I, Jourdain P, Alberi S, Toni N, Muller D (2002) Activity-induced changes of spine morphology. Hippocampus 12:585–591PubMedCrossRef
43.
Zurück zum Zitat Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines annual review. Physiology 64:313–353CrossRef Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines annual review. Physiology 64:313–353CrossRef
44.
Zurück zum Zitat Piao Y, Lu L, de Groot J (2009) AMPA receptors promote perivascular glioma invasion via b1 integrin-dependent adhesion to the extracellular matrix. Neuro Oncol 11:260–273PubMedCrossRef Piao Y, Lu L, de Groot J (2009) AMPA receptors promote perivascular glioma invasion via b1 integrin-dependent adhesion to the extracellular matrix. Neuro Oncol 11:260–273PubMedCrossRef
45.
Zurück zum Zitat Pilpel Y, Segal M (2004) Activation of PKC induces rapid morphological plasticity in dendrites of hippocampal neurons via Rac and Rho-dependent mechanisms. Eur J Neurosci 19:3151–3164PubMedCrossRef Pilpel Y, Segal M (2004) Activation of PKC induces rapid morphological plasticity in dendrites of hippocampal neurons via Rac and Rho-dependent mechanisms. Eur J Neurosci 19:3151–3164PubMedCrossRef
46.
Zurück zum Zitat Polymenidou M, Lagier-Tourenne C, Hutt KR et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neuroscie 14:459–468CrossRef Polymenidou M, Lagier-Tourenne C, Hutt KR et al (2011) Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neuroscie 14:459–468CrossRef
47.
Zurück zum Zitat Popov VI, Davies HA, Rogachevsky VV, Patrushev IV, Errington ML et al (2004) Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetized rat. Neuroscience 128:251–262PubMedCrossRef Popov VI, Davies HA, Rogachevsky VV, Patrushev IV, Errington ML et al (2004) Remodelling of synaptic morphology but unchanged synaptic density during late phase long-term potentiation (LTP): a serial section electron micrograph study in the dentate gyrus in the anaesthetized rat. Neuroscience 128:251–262PubMedCrossRef
48.
Zurück zum Zitat Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621PubMedCrossRef Ratnavalli E, Brayne C, Dawson K, Hodges JR (2002) The prevalence of frontotemporal dementia. Neurology 58:1615–1621PubMedCrossRef
49.
50.
Zurück zum Zitat Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847PubMedCrossRef Sheng M, Hoogenraad CC (2007) The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu Rev Biochem 76:823–847PubMedCrossRef
51.
Zurück zum Zitat Spires TL, Grote HE, Garry S et al (2004) Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci 19:2799–2807PubMedCrossRef Spires TL, Grote HE, Garry S et al (2004) Dendritic spine pathology and deficits in experience-dependent dendritic plasticity in R6/1 Huntington’s disease transgenic mice. Eur J Neurosci 19:2799–2807PubMedCrossRef
52.
Zurück zum Zitat Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedCrossRef Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221PubMedCrossRef
53.
Zurück zum Zitat Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101PubMedCrossRef Tada T, Sheng M (2006) Molecular mechanisms of dendritic spine morphogenesis. Curr Opin Neurobiol 16:95–101PubMedCrossRef
54.
Zurück zum Zitat Tashiro A, Yuste R (2004) Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 26:429–440PubMedCrossRef Tashiro A, Yuste R (2004) Regulation of dendritic spine motility and stability by Rac1 and Rho kinase: evidence for two forms of spine motility. Mol Cell Neurosci 26:429–440PubMedCrossRef
55.
Zurück zum Zitat Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458PubMedCrossRef Tollervey JR, Curk T, Rogelj B et al (2011) Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci 14:452–458PubMedCrossRef
56.
Zurück zum Zitat Tsai KJ, Yang CH, Fang YH et al (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207:1661–1673PubMedCrossRef Tsai KJ, Yang CH, Fang YH et al (2010) Elevated expression of TDP-43 in the forebrain of mice is sufficient to cause neurological and pathological phenotypes mimicking FTLD-U. J Exp Med 207:1661–1673PubMedCrossRef
57.
Zurück zum Zitat von Bohlen und Halbach O, Zacher C, Gass P, Unsicker K (2006) Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice. J Neurosci Res 83:525–531PubMedCrossRef von Bohlen und Halbach O, Zacher C, Gass P, Unsicker K (2006) Age-related alterations in hippocampal spines and deficiencies in spatial memory in mice. J Neurosci Res 83:525–531PubMedCrossRef
58.
Zurück zum Zitat Wang HY, Wang IF, Bose J, Shen CK (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83:130–139PubMedCrossRef Wang HY, Wang IF, Bose J, Shen CK (2004) Structural diversity and functional implications of the eukaryotic TDP gene family. Genomics 83:130–139PubMedCrossRef
59.
Zurück zum Zitat Wang IF, Wu LS, Chang HY, Shen CK (2008) TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem 105:797–806PubMedCrossRef Wang IF, Wu LS, Chang HY, Shen CK (2008) TDP-43, the signature protein of FTLD-U, is a neuronal activity-responsive factor. J Neurochem 105:797–806PubMedCrossRef
60.
Zurück zum Zitat Wang IF, Wu LS, Shen CK (2008) TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 14:479–485PubMedCrossRef Wang IF, Wu LS, Shen CK (2008) TDP-43: an emerging new player in neurodegenerative diseases. Trends Mol Med 14:479–485PubMedCrossRef
61.
Zurück zum Zitat Wiens KM, Lin H, Liao D (2005) Rac1 Induces the Clustering of AMPA Receptors during Spinogenesis. J Neurosci 25:10627–10636PubMedCrossRef Wiens KM, Lin H, Liao D (2005) Rac1 Induces the Clustering of AMPA Receptors during Spinogenesis. J Neurosci 25:10627–10636PubMedCrossRef
62.
Zurück zum Zitat Wils HG, Kleinberger J, Janssens S et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3853–3863CrossRef Wils HG, Kleinberger J, Janssens S et al (2010) TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration. Proc Natl Acad Sci USA 107:3853–3863CrossRef
63.
Zurück zum Zitat Wu G-Y, Cline HT (1998) Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279:222–226PubMedCrossRef Wu G-Y, Cline HT (1998) Stabilization of dendritic arbor structure in vivo by CaMKII. Science 279:222–226PubMedCrossRef
64.
Zurück zum Zitat Xiao S, Sanelli T, Dib S et al (2011) RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol Cell Neurosci 47:167–180PubMedCrossRef Xiao S, Sanelli T, Dib S et al (2011) RNA targets of TDP-43 identified by UV-CLIP are deregulated in ALS. Mol Cell Neurosci 47:167–180PubMedCrossRef
65.
Zurück zum Zitat Yang C, Tan W, Whittle C et al (2010) The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS One 5:e15878PubMedCrossRef Yang C, Tan W, Whittle C et al (2010) The C-terminal TDP-43 fragments have a high aggregation propensity and harm neurons by a dominant-negative mechanism. PLoS One 5:e15878PubMedCrossRef
66.
Zurück zum Zitat Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF (2005) A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci 25:3379–3388PubMedCrossRef Zhang H, Webb DJ, Asmussen H, Niu S, Horwitz AF (2005) A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J Neurosci 25:3379–3388PubMedCrossRef
67.
Zurück zum Zitat Zito K, Scheuss V, Knott G, Hill T, Svoboda K (2009) Rapid functional maturation of nascent dendritic spines. Neuron 61:247–258PubMedCrossRef Zito K, Scheuss V, Knott G, Hill T, Svoboda K (2009) Rapid functional maturation of nascent dendritic spines. Neuron 61:247–258PubMedCrossRef
68.
Zurück zum Zitat Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91–102PubMedCrossRef Ziv NE, Smith SJ (1996) Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17:91–102PubMedCrossRef
Metadaten
Titel
TDP-43 regulates the mammalian spinogenesis through translational repression of Rac1
verfasst von
Pritha Majumder
Yi-Ting Chen
Jayarama Krishnan Bose
Cheng-Chun Wu
Wei-Cheng Cheng
Sin-Jhong Cheng
Yen-Hsin Fang
Ying-Ling Chen
Kuen-Jer Tsai
Cheng-Chang Lien
Che-Kun James Shen
Publikationsdatum
01.08.2012
Verlag
Springer-Verlag
Erschienen in
Acta Neuropathologica / Ausgabe 2/2012
Print ISSN: 0001-6322
Elektronische ISSN: 1432-0533
DOI
https://doi.org/10.1007/s00401-012-1006-4

Weitere Artikel der Ausgabe 2/2012

Acta Neuropathologica 2/2012 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.