Skip to main content
Erschienen in: Annals of Nuclear Medicine 9/2018

17.07.2018 | Original Article

Technical feasibility, radiation dosimetry and clinical use of 18F-sodium fluoride (NaF) in evaluation of metastatic bone disease in pediatric population

verfasst von: Sharjeel Usmani, Tim Van den Wyngaert, Najeeb Ahmed, Fahad Marafi, Abdulredha Esmail, Fareeda al kandari, Mishari al Nuaimi, Gopinath Gnanasegaran

Erschienen in: Annals of Nuclear Medicine | Ausgabe 9/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose

The role of 18F-fluoride (18F-NaF) PET-CT for the detection of bone metastases in adults is well established and is considered superior to conventional bone scintigraphy. However, data pertaining use of 18F-NaF PET-CT in pediatric oncology is relatively sparse. The aim of the present study is to retrospectively analyze and share a single-center experience of 18F-NaF PET-CT in pediatric population and to provide preliminary information regarding imaging technique, feasibility of this modality in young patients and radiation dosimetry measurements in pediatric oncology cases.

Materials and methods

Twenty-four pediatric patients (mean age 8.0 ± 3.9) were included in the study for retrospective analysis. All patients were referred for primary staging or restaging for potential osseous metastatic disease and PET-CT scan was performed by injecting 2.2 MBq/kg (0.06 mCi/kg) of 18F-NaF.

Results

Nine patients were imaged for primary staging and in all cases increase osteoblastic activity was seen in the primary tumor and of these, metastatic bone disease was identified in 2/9 patients. In the restaging group comprising 15/24 patients, metastatic deposits were identified in 3/15 whilst no disease was seen in the remaining 12 patients. Patients were injected a mean dose of 90.35 ± 22.9 MBq with an estimated mean effective absorbed doses of 2.98 ± 0.75 mSv for 18F-NaF and 3.37 ± 2.4 mSv for CT alone. Mean cumulative effective dose of 18F-NaF PET-CT scan was 5.11 ± 2.7 mSv.

Conclusions

18F-NaF PET-CT may be a feasible alternative to 99mTc MDP for radionuclide bone scintigraphy in the evaluation of pediatric bone pathology. Due to its better pharmacokinetics, there is potential that osseous staging can be achieved with relatively low doses and with a similar radiation burden as with 99mTc-MDP imaging.
Literatur
1.
Zurück zum Zitat Meyer JS, Nadel HR, Marina N, et al. Imaging guidelines for children with Ewing sarcoma and osteosarcoma: a report from the Children’s Oncology Group Bone Tumor Committee. Pediatr Blood Cancer. 2008;51:163–70.CrossRef Meyer JS, Nadel HR, Marina N, et al. Imaging guidelines for children with Ewing sarcoma and osteosarcoma: a report from the Children’s Oncology Group Bone Tumor Committee. Pediatr Blood Cancer. 2008;51:163–70.CrossRef
2.
Zurück zum Zitat Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med. 2010;51:1826–9.CrossRef Czernin J, Satyamurthy N, Schiepers C. Molecular mechanisms of bone 18F-NaF deposition. J Nucl Med. 2010;51:1826–9.CrossRef
3.
Zurück zum Zitat Derlin T, Tóth Z, Papp L, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med. 2011;52:1020–7.CrossRef Derlin T, Tóth Z, Papp L, et al. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med. 2011;52:1020–7.CrossRef
4.
Zurück zum Zitat Grant FD, Fahey FH, Packard AB, et al. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.CrossRef Grant FD, Fahey FH, Packard AB, et al. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49:68–78.CrossRef
5.
Zurück zum Zitat Behesht M, Mottaghy FM, Payche F, et al. 18 F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42:1767–77.CrossRef Behesht M, Mottaghy FM, Payche F, et al. 18 F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42:1767–77.CrossRef
6.
Zurück zum Zitat Radiation dose to patients from radiopharmaceuticals. Addendum 4 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in May 2013. Ann ICRP, 38, 1–197. Radiation dose to patients from radiopharmaceuticals. Addendum 4 to ICRP Publication 53. ICRP Publication 106. Approved by the Commission in May 2013. Ann ICRP, 38, 1–197.
7.
Zurück zum Zitat International Commission on Radiological Protection. ICRP Publication 80: radiation dose to patients from radiopharmaceuticals. Ann ICRP 2000;28(3):29. International Commission on Radiological Protection. ICRP Publication 80: radiation dose to patients from radiopharmaceuticals. Ann ICRP 2000;28(3):29.
8.
Zurück zum Zitat Christner J, Kofler J, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection Publication 103 or Dual-Energy Scanning. AJR Am J Roentgenol. 2010;194:881–9.CrossRef Christner J, Kofler J, McCollough CH. Estimating effective dose for CT using dose-length product compared with using organ doses: consequences of adopting International Commission on Radiological Protection Publication 103 or Dual-Energy Scanning. AJR Am J Roentgenol. 2010;194:881–9.CrossRef
9.
Zurück zum Zitat American Cancer Society. Global cancer facts and figs. 2nd ed. Atlanta: American Cancer Society; 2011. American Cancer Society. Global cancer facts and figs. 2nd ed. Atlanta: American Cancer Society; 2011.
10.
Zurück zum Zitat Ribeiro R, Pui CH. Treatment of acute lymphoblastic leukemia in low- and middle-income countries: challenges and opportunities. Leuk Lymphoma. 2008;49:373–6.CrossRef Ribeiro R, Pui CH. Treatment of acute lymphoblastic leukemia in low- and middle-income countries: challenges and opportunities. Leuk Lymphoma. 2008;49:373–6.CrossRef
11.
Zurück zum Zitat Voss SD. Pediatric oncology and the future of oncological imaging. Pediatr Radiol. 2011;41(Suppl 1):172–8.CrossRef Voss SD. Pediatric oncology and the future of oncological imaging. Pediatr Radiol. 2011;41(Suppl 1):172–8.CrossRef
12.
Zurück zum Zitat Weiser DA, Kaste SC, Siegel MJ, Adamson PC. Imaging in childhood cancer: a Society for Pediatric Radiology and Children’s Oncology Group Joint Task Force Report. Pediatr Blood Cancer. 2013;60:1253–60.CrossRef Weiser DA, Kaste SC, Siegel MJ, Adamson PC. Imaging in childhood cancer: a Society for Pediatric Radiology and Children’s Oncology Group Joint Task Force Report. Pediatr Blood Cancer. 2013;60:1253–60.CrossRef
13.
Zurück zum Zitat Roberts CC, Daffner RH, Weissman BN, et al. ACR appropriateness criteria® on metastatic bone disease. J Am Coll Radiol. 2010;7:400–9.CrossRef Roberts CC, Daffner RH, Weissman BN, et al. ACR appropriateness criteria® on metastatic bone disease. J Am Coll Radiol. 2010;7:400–9.CrossRef
14.
Zurück zum Zitat Löfgren J, Mortensen J, Rasmussen SH, et al. A prospective study comparing 99mTc-hydroxyethylene-diphosphonate planar bone scintigraphy and whole-body SPECT/CT with 18F-fluoride PET/CT and 18F-fluoride PET/MRI for diagnosing bone metastases. Nucl Med. 2017;58:1778–85.CrossRef Löfgren J, Mortensen J, Rasmussen SH, et al. A prospective study comparing 99mTc-hydroxyethylene-diphosphonate planar bone scintigraphy and whole-body SPECT/CT with 18F-fluoride PET/CT and 18F-fluoride PET/MRI for diagnosing bone metastases. Nucl Med. 2017;58:1778–85.CrossRef
15.
Zurück zum Zitat Frost ML, Blake GM, Cook GJ, et al. Differences in regional bone perfusion and turnover between lumbar spine and distal humerus: 18F-fluoride PET study of treatment-naive and treated postmenopausal women. Bone. 2009;45:942–8.CrossRef Frost ML, Blake GM, Cook GJ, et al. Differences in regional bone perfusion and turnover between lumbar spine and distal humerus: 18F-fluoride PET study of treatment-naive and treated postmenopausal women. Bone. 2009;45:942–8.CrossRef
16.
Zurück zum Zitat Blake GM, Park-Holohan SJ, Cook GJ, et al. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28–49.CrossRef Blake GM, Park-Holohan SJ, Cook GJ, et al. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med. 2001;31:28–49.CrossRef
17.
Zurück zum Zitat Drubach LA, Sapp MV, Laffin S, Kleinman PK. Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol. 2008;38:776–9.CrossRef Drubach LA, Sapp MV, Laffin S, Kleinman PK. Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol. 2008;38:776–9.CrossRef
18.
Zurück zum Zitat Laverick S, Bounds G, Wong WL. [18F]-Fluoride positron emission tomography for imaging condylar hyperplasia. Br J Oral Maxillofac Surg. 2009;47:196–9.CrossRef Laverick S, Bounds G, Wong WL. [18F]-Fluoride positron emission tomography for imaging condylar hyperplasia. Br J Oral Maxillofac Surg. 2009;47:196–9.CrossRef
19.
Zurück zum Zitat Small GR, Ruddy TD, Simion O, et al. Lessons from the Tc-99m shortage: implications of substituting Tl-201 for Tc-99m single-photon emission computed tomography. Circ Cardiovasc Imaging. 2013;6:683–91.CrossRef Small GR, Ruddy TD, Simion O, et al. Lessons from the Tc-99m shortage: implications of substituting Tl-201 for Tc-99m single-photon emission computed tomography. Circ Cardiovasc Imaging. 2013;6:683–91.CrossRef
20.
Zurück zum Zitat Lassmann M, Biassoni L, Monsieurs M, EANM Dosimetry and Paediatrics Committees, et al. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging. 2009;36:540–1.CrossRef Lassmann M, Biassoni L, Monsieurs M, EANM Dosimetry and Paediatrics Committees, et al. The new EANM paediatric dosage card. Eur J Nucl Med Mol Imaging. 2009;36:540–1.CrossRef
21.
Zurück zum Zitat Lim R, Fahey FH, Drubach LA, et al. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop. 2007;27:277–82.CrossRef Lim R, Fahey FH, Drubach LA, et al. Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J Pediatr Orthop. 2007;27:277–82.CrossRef
22.
Zurück zum Zitat Segall G, Delbeke D, Stabin MG, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.CrossRef Segall G, Delbeke D, Stabin MG, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.CrossRef
23.
Zurück zum Zitat Marafi F, Esmail A, Rasheed R, et al. Novel weight-based dose threshold for 18F-NaF PET-CT imaging using advanced PET-CT systems: a potential tool for reducing radiation burden. Nucl Med Commun. 2017;38:764–70.CrossRef Marafi F, Esmail A, Rasheed R, et al. Novel weight-based dose threshold for 18F-NaF PET-CT imaging using advanced PET-CT systems: a potential tool for reducing radiation burden. Nucl Med Commun. 2017;38:764–70.CrossRef
24.
Zurück zum Zitat Chavhan GB, Caro-Dominguez P. Diffusion-weighted imaging in pediatric body magnetic resonance imaging. Pediatr Radiol. 2016;46:847–57.CrossRef Chavhan GB, Caro-Dominguez P. Diffusion-weighted imaging in pediatric body magnetic resonance imaging. Pediatr Radiol. 2016;46:847–57.CrossRef
25.
Zurück zum Zitat Messiou C, Cook G, de Souza NM. Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer. 2009;101:1225–32.CrossRef Messiou C, Cook G, de Souza NM. Imaging metastatic bone disease from carcinoma of the prostate. Br J Cancer. 2009;101:1225–32.CrossRef
26.
Zurück zum Zitat Jambor I, Kuisma A, Ramadan S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2016;55:59–67.CrossRef Jambor I, Kuisma A, Ramadan S, et al. Prospective evaluation of planar bone scintigraphy, SPECT, SPECT/CT, 18F-NaF PET/CT and whole body 1.5T MRI, including DWI, for the detection of bone metastases in high risk breast and prostate cancer patients: SKELETA clinical trial. Acta Oncol. 2016;55:59–67.CrossRef
27.
Zurück zum Zitat Saif MW, Tzannou I, Makrilia N, et al. Role and cost effectiveness of PET/CT in management of patients with cancer. Yale J Biol Med. 2010;83:53–65.PubMedPubMedCentral Saif MW, Tzannou I, Makrilia N, et al. Role and cost effectiveness of PET/CT in management of patients with cancer. Yale J Biol Med. 2010;83:53–65.PubMedPubMedCentral
28.
Zurück zum Zitat Jones T, Townsend D. History and future technical innovation in positron emission tomography. J Med Imaging. 2017;4:011013.CrossRef Jones T, Townsend D. History and future technical innovation in positron emission tomography. J Med Imaging. 2017;4:011013.CrossRef
Metadaten
Titel
Technical feasibility, radiation dosimetry and clinical use of 18F-sodium fluoride (NaF) in evaluation of metastatic bone disease in pediatric population
verfasst von
Sharjeel Usmani
Tim Van den Wyngaert
Najeeb Ahmed
Fahad Marafi
Abdulredha Esmail
Fareeda al kandari
Mishari al Nuaimi
Gopinath Gnanasegaran
Publikationsdatum
17.07.2018
Verlag
Springer Japan
Erschienen in
Annals of Nuclear Medicine / Ausgabe 9/2018
Print ISSN: 0914-7187
Elektronische ISSN: 1864-6433
DOI
https://doi.org/10.1007/s12149-018-1279-3

Weitere Artikel der Ausgabe 9/2018

Annals of Nuclear Medicine 9/2018 Zur Ausgabe