Skip to main content
Erschienen in: Sports Medicine 9/2016

01.09.2016 | Review Article

Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through Exercise Training

verfasst von: Joshua Denham, Brendan J. O’Brien, Fadi J. Charchar

Erschienen in: Sports Medicine | Ausgabe 9/2016

Einloggen, um Zugang zu erhalten

Abstract

Telomeres are tandem repeat DNA sequences located at distal ends of chromosomes that protect against genomic DNA degradation and chromosomal instability. Excessive telomere shortening leads to cellular senescence and for this reason telomere length is a marker of biological age. Abnormally short telomeres may culminate in the manifestation of a number of cardio-metabolic diseases. Age-related cardio-metabolic diseases attributable to an inactive lifestyle, such as obesity, type 2 diabetes mellitus and cardiovascular disease, are associated with short leukocyte telomeres. Exercise training prevents and manages the symptoms of many cardio-metabolic diseases whilst concurrently maintaining telomere length. The positive relationship between exercise training, physical fitness and telomere length raises the possibility of a mediating role of telomeres in chronic disease prevention via exercise. Further elucidation of the underpinning molecular mechanisms of how exercise maintains telomere length should provide crucial information on how physical activity can be best structured to combat the chronic disease epidemic and improve the human health span. Here, we synthesise and discuss the current evidence on the impact of physical activity and cardiorespiratory fitness on telomere dynamics. We provide the molecular mechanisms with a known role in exercise-induced telomere length maintenance and highlight unexplored, alternative pathways ripe for future investigations.
Literatur
3.
Zurück zum Zitat Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52.PubMedCrossRef Bodnar AG, Ouellette M, Frolkis M, et al. Extension of life-span by introduction of telomerase into normal human cells. Science. 1998;279(5349):349–52.PubMedCrossRef
5.
Zurück zum Zitat Brouilette S, Singh RK, Thompson JR, et al. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol. 2003;23(5):842–6.PubMedCrossRef Brouilette S, Singh RK, Thompson JR, et al. White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol. 2003;23(5):842–6.PubMedCrossRef
6.
Zurück zum Zitat Samani NJ, Boultby R, Butler R, et al. Telomere shortening in atherosclerosis. Lancet. 2001;358(9280):472–3.PubMedCrossRef Samani NJ, Boultby R, Butler R, et al. Telomere shortening in atherosclerosis. Lancet. 2001;358(9280):472–3.PubMedCrossRef
7.
Zurück zum Zitat Mainous AG 3rd, Codd V, Diaz VA, et al. Leukocyte telomere length and coronary artery calcification. Atherosclerosis. 2010;210(1):262–7.PubMedCrossRef Mainous AG 3rd, Codd V, Diaz VA, et al. Leukocyte telomere length and coronary artery calcification. Atherosclerosis. 2010;210(1):262–7.PubMedCrossRef
8.
Zurück zum Zitat Zee RY, Castonguay AJ, Barton NS, et al. Mean leukocyte telomere length shortening and type 2 diabetes mellitus: a case-control study. Transl Res. 2010;155(4):166–9.PubMedCrossRef Zee RY, Castonguay AJ, Barton NS, et al. Mean leukocyte telomere length shortening and type 2 diabetes mellitus: a case-control study. Transl Res. 2010;155(4):166–9.PubMedCrossRef
9.
Zurück zum Zitat Salpea KD, Talmud PJ, Cooper JA, et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2010;209(1):42–50.PubMedPubMedCentralCrossRef Salpea KD, Talmud PJ, Cooper JA, et al. Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation. Atherosclerosis. 2010;209(1):42–50.PubMedPubMedCentralCrossRef
10.
11.
12.
Zurück zum Zitat Puterman E, Lin J, Krauss J, et al. Determinants of telomere attrition over 1 year in healthy older women: stress and health behaviors matter. Mol Psychiatry. 2014;20(4):529–35.PubMedPubMedCentralCrossRef Puterman E, Lin J, Krauss J, et al. Determinants of telomere attrition over 1 year in healthy older women: stress and health behaviors matter. Mol Psychiatry. 2014;20(4):529–35.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Thompson PD, Buchner D, Pina IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107(24):3109–16.PubMedCrossRef Thompson PD, Buchner D, Pina IL, et al. Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the Council on Clinical Cardiology (Subcommittee on Exercise, Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity). Circulation. 2003;107(24):3109–16.PubMedCrossRef
15.
Zurück zum Zitat Sigal RJ, Kenny GP, Wasserman DH, et al. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(6):1433–8.PubMedCrossRef Sigal RJ, Kenny GP, Wasserman DH, et al. Physical activity/exercise and type 2 diabetes: a consensus statement from the American Diabetes Association. Diabetes Care. 2006;29(6):1433–8.PubMedCrossRef
16.
Zurück zum Zitat Lemanne D, Cassileth B, Gubili J. The role of physical activity in cancer prevention, treatment, recovery, and survivorship. Oncology (Williston Park). 2013;27(6):580–5.PubMed Lemanne D, Cassileth B, Gubili J. The role of physical activity in cancer prevention, treatment, recovery, and survivorship. Oncology (Williston Park). 2013;27(6):580–5.PubMed
17.
Zurück zum Zitat Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA. 1988;85(18):6622–6.PubMedPubMedCentralCrossRef Moyzis RK, Buckingham JM, Cram LS, et al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA. 1988;85(18):6622–6.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Chen W, Kimura M, Kim S, et al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011;66(3):312–9.PubMedCrossRef Chen W, Kimura M, Kim S, et al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci. 2011;66(3):312–9.PubMedCrossRef
19.
Zurück zum Zitat Verdun RE, Karlseder J. Replication and protection of telomeres. Nature. 2007;447(7147):924–31.PubMedCrossRef Verdun RE, Karlseder J. Replication and protection of telomeres. Nature. 2007;447(7147):924–31.PubMedCrossRef
20.
Zurück zum Zitat Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 1999;453(3):365–8.PubMedCrossRef Oikawa S, Kawanishi S. Site-specific DNA damage at GGG sequence by oxidative stress may accelerate telomere shortening. FEBS Lett. 1999;453(3):365–8.PubMedCrossRef
21.
Zurück zum Zitat Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci. 2004;1019:278–84.PubMedCrossRef Kawanishi S, Oikawa S. Mechanism of telomere shortening by oxidative stress. Ann N Y Acad Sci. 2004;1019:278–84.PubMedCrossRef
22.
Zurück zum Zitat von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.CrossRef von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci. 2002;27(7):339–44.CrossRef
23.
Zurück zum Zitat Herbig U, Jobling WA, Chen BP, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004;14(4):501–13.PubMedCrossRef Herbig U, Jobling WA, Chen BP, et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell. 2004;14(4):501–13.PubMedCrossRef
24.
Zurück zum Zitat de Lange T. How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol. 2010;75:167–77.PubMedCrossRef de Lange T. How shelterin solves the telomere end-protection problem. Cold Spring Harb Symp Quant Biol. 2010;75:167–77.PubMedCrossRef
25.
Zurück zum Zitat Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999;97(4):527–38.PubMedCrossRef Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell. 1999;97(4):527–38.PubMedCrossRef
27.
Zurück zum Zitat Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell. 1999;97(4):503–14.PubMedCrossRef Griffith JD, Comeau L, Rosenfield S, et al. Mammalian telomeres end in a large duplex loop. Cell. 1999;97(4):503–14.PubMedCrossRef
28.
Zurück zum Zitat Broccoli D, Smogorzewska A, Chong L, et al. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet. 1997;17(2):231–5.PubMedCrossRef Broccoli D, Smogorzewska A, Chong L, et al. Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2. Nat Genet. 1997;17(2):231–5.PubMedCrossRef
29.
Zurück zum Zitat Takai KK, Hooper S, Blackwood S, et al. In vivo stoichiometry of shelterin components. J Biol Chem. 2010;285(2):1457–67.PubMedCrossRef Takai KK, Hooper S, Blackwood S, et al. In vivo stoichiometry of shelterin components. J Biol Chem. 2010;285(2):1457–67.PubMedCrossRef
30.
Zurück zum Zitat van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997;385(6618):740–3.PubMedCrossRef van Steensel B, de Lange T. Control of telomere length by the human telomeric protein TRF1. Nature. 1997;385(6618):740–3.PubMedCrossRef
31.
Zurück zum Zitat van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92(3):401–13.PubMedCrossRef van Steensel B, Smogorzewska A, de Lange T. TRF2 protects human telomeres from end-to-end fusions. Cell. 1998;92(3):401–13.PubMedCrossRef
32.
Zurück zum Zitat Kim SH, Beausejour C, Davalos AR, et al. TIN2 mediates functions of TRF2 at human telomeres. J Biol Chem. 2004;279(42):43799–804.PubMedCrossRef Kim SH, Beausejour C, Davalos AR, et al. TIN2 mediates functions of TRF2 at human telomeres. J Biol Chem. 2004;279(42):43799–804.PubMedCrossRef
33.
Zurück zum Zitat Zhang Y, Chen LY, Han X, et al. Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment. Proc Natl Acad Sci USA. 2013;110(14):5457–62.PubMedPubMedCentralCrossRef Zhang Y, Chen LY, Han X, et al. Phosphorylation of TPP1 regulates cell cycle-dependent telomerase recruitment. Proc Natl Acad Sci USA. 2013;110(14):5457–62.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Wang F, Podell ER, Zaug AJ, et al. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature. 2007;445(7127):506–10.PubMedCrossRef Wang F, Podell ER, Zaug AJ, et al. The POT1-TPP1 telomere complex is a telomerase processivity factor. Nature. 2007;445(7127):506–10.PubMedCrossRef
35.
Zurück zum Zitat Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007;448(7157):1068–71.PubMedCrossRef Denchi EL, de Lange T. Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature. 2007;448(7157):1068–71.PubMedCrossRef
36.
Zurück zum Zitat Bae NS, Baumann P. A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell. 2007;26(3):323–34.PubMedCrossRef Bae NS, Baumann P. A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. Mol Cell. 2007;26(3):323–34.PubMedCrossRef
38.
Zurück zum Zitat Martinez P, Thanasoula M, Carlos AR, et al. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol. 2010;12(8):768–80.PubMedPubMedCentralCrossRef Martinez P, Thanasoula M, Carlos AR, et al. Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites. Nat Cell Biol. 2010;12(8):768–80.PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Martinez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011;11(3):161–76.PubMedCrossRef Martinez P, Blasco MA. Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer. 2011;11(3):161–76.PubMedCrossRef
42.
Zurück zum Zitat Benetti R, Garcia-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet. 2007;39(2):243–50.PubMedCrossRef Benetti R, Garcia-Cao M, Blasco MA. Telomere length regulates the epigenetic status of mammalian telomeres and subtelomeres. Nat Genet. 2007;39(2):243–50.PubMedCrossRef
43.
Zurück zum Zitat Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007;8(4):299–309.PubMedCrossRef Blasco MA. The epigenetic regulation of mammalian telomeres. Nat Rev Genet. 2007;8(4):299–309.PubMedCrossRef
44.
Zurück zum Zitat Gonzalo S, Jaco I, Fraga MF, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol. 2006;8(4):416–24.PubMedCrossRef Gonzalo S, Jaco I, Fraga MF, et al. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol. 2006;8(4):416–24.PubMedCrossRef
45.
Zurück zum Zitat Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 2010;38(17):5797–806.PubMedPubMedCentralCrossRef Redon S, Reichenbach P, Lingner J. The non-coding RNA TERRA is a natural ligand and direct inhibitor of human telomerase. Nucleic Acids Res. 2010;38(17):5797–806.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43(2 Pt 1):405–13.PubMedCrossRef Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in Tetrahymena extracts. Cell. 1985;43(2 Pt 1):405–13.PubMedCrossRef
47.
Zurück zum Zitat Wright WE, Piatyszek MA, Rainey WE, et al. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18(2):173–9.PubMedCrossRef Wright WE, Piatyszek MA, Rainey WE, et al. Telomerase activity in human germline and embryonic tissues and cells. Dev Genet. 1996;18(2):173–9.PubMedCrossRef
48.
49.
Zurück zum Zitat Wernig A, Schafer R, Knauf U, et al. On the regenerative capacity of human skeletal muscle. Artif Organs. 2005;29(3):192–8.PubMedCrossRef Wernig A, Schafer R, Knauf U, et al. On the regenerative capacity of human skeletal muscle. Artif Organs. 2005;29(3):192–8.PubMedCrossRef
50.
Zurück zum Zitat Chen CH, Chen RJ. Prevalence of telomerase activity in human cancer. J Formos Med Assoc. 2011;110(5):275–89.PubMedCrossRef Chen CH, Chen RJ. Prevalence of telomerase activity in human cancer. J Formos Med Assoc. 2011;110(5):275–89.PubMedCrossRef
51.
Zurück zum Zitat Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.PubMedCrossRef Kim NW, Piatyszek MA, Prowse KR, et al. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994;266(5193):2011–5.PubMedCrossRef
52.
Zurück zum Zitat Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol. 1998;8(5):279–82.PubMedCrossRef Vaziri H, Benchimol S. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr Biol. 1998;8(5):279–82.PubMedCrossRef
53.
Zurück zum Zitat Wojtyla A, Gladych M, Rubis B. Human telomerase activity regulation. Mol Biol Rep. 2011;38(5):3339–49.PubMedCrossRef Wojtyla A, Gladych M, Rubis B. Human telomerase activity regulation. Mol Biol Rep. 2011;38(5):3339–49.PubMedCrossRef
54.
Zurück zum Zitat Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem. 2004;73:177–208.PubMedCrossRef Smogorzewska A, de Lange T. Regulation of telomerase by telomeric proteins. Annu Rev Biochem. 2004;73:177–208.PubMedCrossRef
55.
Zurück zum Zitat Wang F, Lei M. Human telomere POT1-TPP1 complex and its role in telomerase activity regulation. Methods Mol Biol. 2011;735:173–87.PubMedCrossRef Wang F, Lei M. Human telomere POT1-TPP1 complex and its role in telomerase activity regulation. Methods Mol Biol. 2011;735:173–87.PubMedCrossRef
56.
Zurück zum Zitat Liu JP, Chen SM, Cong YS, et al. Regulation of telomerase activity by apparently opposing elements. Ageing Res Rev. 2010;9(3):245–56.PubMedCrossRef Liu JP, Chen SM, Cong YS, et al. Regulation of telomerase activity by apparently opposing elements. Ageing Res Rev. 2010;9(3):245–56.PubMedCrossRef
58.
Zurück zum Zitat Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11(5):319–30.PubMedCrossRef Cesare AJ, Reddel RR. Alternative lengthening of telomeres: models, mechanisms and implications. Nat Rev Genet. 2010;11(5):319–30.PubMedCrossRef
59.
Zurück zum Zitat Nabetani A, Ishikawa F. Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J Biochem. 2011;149(1):5–14.PubMedCrossRef Nabetani A, Ishikawa F. Alternative lengthening of telomeres pathway: recombination-mediated telomere maintenance mechanism in human cells. J Biochem. 2011;149(1):5–14.PubMedCrossRef
60.
Zurück zum Zitat Heaphy CM, Subhawong AP, Hong SM, et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol. 2011;179(4):1608–15.PubMedPubMedCentralCrossRef Heaphy CM, Subhawong AP, Hong SM, et al. Prevalence of the alternative lengthening of telomeres telomere maintenance mechanism in human cancer subtypes. Am J Pathol. 2011;179(4):1608–15.PubMedPubMedCentralCrossRef
62.
Zurück zum Zitat Silvestre DC, Pineda JR, Hoffschir F, et al. Alternative lengthening of telomeres in human glioma stem cells. Stem Cells. 2011;29(3):440–51.PubMedCrossRef Silvestre DC, Pineda JR, Hoffschir F, et al. Alternative lengthening of telomeres in human glioma stem cells. Stem Cells. 2011;29(3):440–51.PubMedCrossRef
63.
65.
Zurück zum Zitat Zijlmans JM, Martens UM, Poon SS, et al. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA. 1997;94(14):7423–8.PubMedPubMedCentralCrossRef Zijlmans JM, Martens UM, Poon SS, et al. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA. 1997;94(14):7423–8.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Wright WE, Shay JW. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med. 2000;6(8):849–51.PubMedCrossRef Wright WE, Shay JW. Telomere dynamics in cancer progression and prevention: fundamental differences in human and mouse telomere biology. Nat Med. 2000;6(8):849–51.PubMedCrossRef
67.
Zurück zum Zitat Vina J, Sanchis-Gomar F, Martinez-Bello V, et al. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167(1):1–12.PubMedPubMedCentralCrossRef Vina J, Sanchis-Gomar F, Martinez-Bello V, et al. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167(1):1–12.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Powell KE, Paluch AE, Blair SN. Physical activity for health: what kind? How much? How intense? On top of what? Annu Rev Public Health. 2011;32:349–65.PubMedCrossRef Powell KE, Paluch AE, Blair SN. Physical activity for health: what kind? How much? How intense? On top of what? Annu Rev Public Health. 2011;32:349–65.PubMedCrossRef
70.
71.
Zurück zum Zitat Shiels PG, McGlynn LM, MacIntyre A, et al. Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PLoS One. 2011;6(7):e22521.PubMedPubMedCentralCrossRef Shiels PG, McGlynn LM, MacIntyre A, et al. Accelerated telomere attrition is associated with relative household income, diet and inflammation in the pSoBid cohort. PLoS One. 2011;6(7):e22521.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Nettleton JA, Diez-Roux A, Jenny NS, et al. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12.PubMedPubMedCentral Nettleton JA, Diez-Roux A, Jenny NS, et al. Dietary patterns, food groups, and telomere length in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr. 2008;88(5):1405–12.PubMedPubMedCentral
73.
Zurück zum Zitat Lee M, Martin H, Firpo MA, et al. Inverse association between adiposity and telomere length: the Fels Longitudinal Study. Am J Hum Biol. 2011;23(1):100–6.PubMedPubMedCentralCrossRef Lee M, Martin H, Firpo MA, et al. Inverse association between adiposity and telomere length: the Fels Longitudinal Study. Am J Hum Biol. 2011;23(1):100–6.PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Garcia-Calzon S, Gea A, Razquin C, et al. Longitudinal association of telomere length and obesity indices in an intervention study with a Mediterranean diet: the PREDIMED-NAVARRA trial. Int J Obes (Lond). 2014;38(2):177–82.CrossRef Garcia-Calzon S, Gea A, Razquin C, et al. Longitudinal association of telomere length and obesity indices in an intervention study with a Mediterranean diet: the PREDIMED-NAVARRA trial. Int J Obes (Lond). 2014;38(2):177–82.CrossRef
75.
Zurück zum Zitat Buxton JL, Das S, Rodriguez A, et al. Multiple measures of adiposity are associated with mean leukocyte telomere length in the northern Finland birth cohort 1966. PLoS One. 2014;9(6):e99133.PubMedPubMedCentralCrossRef Buxton JL, Das S, Rodriguez A, et al. Multiple measures of adiposity are associated with mean leukocyte telomere length in the northern Finland birth cohort 1966. PLoS One. 2014;9(6):e99133.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Kim S, Parks CG, DeRoo LA, et al. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol Biomark Prev. 2009;18(3):816–20.CrossRef Kim S, Parks CG, DeRoo LA, et al. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol Biomark Prev. 2009;18(3):816–20.CrossRef
77.
Zurück zum Zitat Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.PubMedCrossRef Valdes AM, Andrew T, Gardner JP, et al. Obesity, cigarette smoking, and telomere length in women. Lancet. 2005;366(9486):662–4.PubMedCrossRef
78.
Zurück zum Zitat Chen S, Yeh F, Lin J, et al. Short leukocyte telomere length is associated with obesity in American Indians: the Strong Heart Family study. Aging (Albany NY). 2014;6(5):380–9.PubMedPubMedCentralCrossRef Chen S, Yeh F, Lin J, et al. Short leukocyte telomere length is associated with obesity in American Indians: the Strong Heart Family study. Aging (Albany NY). 2014;6(5):380–9.PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Bekaert S, De Meyer T, Rietzschel ER, et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell. 2007;6(5):639–47.PubMedCrossRef Bekaert S, De Meyer T, Rietzschel ER, et al. Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell. 2007;6(5):639–47.PubMedCrossRef
80.
Zurück zum Zitat Diaz VA, Mainous AG, Player MS, et al. Telomere length and adiposity in a racially diverse sample. Int J Obes (Lond). 2010;34(2):261–5.CrossRef Diaz VA, Mainous AG, Player MS, et al. Telomere length and adiposity in a racially diverse sample. Int J Obes (Lond). 2010;34(2):261–5.CrossRef
81.
Zurück zum Zitat Buxton JL, Walters RG, Visvikis-Siest S, et al. Childhood obesity is associated with shorter leukocyte telomere length. J Clin Endocrinol Metab. 2011;96(5):1500–5.PubMedPubMedCentralCrossRef Buxton JL, Walters RG, Visvikis-Siest S, et al. Childhood obesity is associated with shorter leukocyte telomere length. J Clin Endocrinol Metab. 2011;96(5):1500–5.PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Al-Attas OS, Al-Daghri N, Bamakhramah A, et al. Telomere length in relation to insulin resistance, inflammation and obesity among Arab youth. Acta Paediatr. 2010;99(6):896–9.PubMedCrossRef Al-Attas OS, Al-Daghri N, Bamakhramah A, et al. Telomere length in relation to insulin resistance, inflammation and obesity among Arab youth. Acta Paediatr. 2010;99(6):896–9.PubMedCrossRef
83.
Zurück zum Zitat Nordfjall K, Eliasson M, Stegmayr B, et al. Telomere length is associated with obesity parameters but with a gender difference. Obesity (Silver Spring). 2008;16(12):2682–9.PubMedCrossRef Nordfjall K, Eliasson M, Stegmayr B, et al. Telomere length is associated with obesity parameters but with a gender difference. Obesity (Silver Spring). 2008;16(12):2682–9.PubMedCrossRef
84.
Zurück zum Zitat Garcia-Calzon S, Moleres A, Marcos A, et al. Telomere length as a biomarker for adiposity changes after a multidisciplinary intervention in overweight/obese adolescents: the EVASYON study. PLoS One. 2014;9(2):e89828.PubMedPubMedCentralCrossRef Garcia-Calzon S, Moleres A, Marcos A, et al. Telomere length as a biomarker for adiposity changes after a multidisciplinary intervention in overweight/obese adolescents: the EVASYON study. PLoS One. 2014;9(2):e89828.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Shen Q, Zhao X, Yu L, et al. Association of leukocyte telomere length with type 2 diabetes in mainland Chinese populations. J Clin Endocrinol Metab. 2012;97(4):1371–4.PubMedCrossRef Shen Q, Zhao X, Yu L, et al. Association of leukocyte telomere length with type 2 diabetes in mainland Chinese populations. J Clin Endocrinol Metab. 2012;97(4):1371–4.PubMedCrossRef
86.
Zurück zum Zitat Testa R, Olivieri F, Sirolla C, et al. Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med. 2011;28(11):1388–94.PubMedCrossRef Testa R, Olivieri F, Sirolla C, et al. Leukocyte telomere length is associated with complications of type 2 diabetes mellitus. Diabet Med. 2011;28(11):1388–94.PubMedCrossRef
87.
Zurück zum Zitat Olivieri F, Lorenzi M, Antonicelli R, et al. Leukocyte telomere shortening in elderly Type2DM patients with previous myocardial infarction. Atherosclerosis. 2009;206(2):588–93.PubMedCrossRef Olivieri F, Lorenzi M, Antonicelli R, et al. Leukocyte telomere shortening in elderly Type2DM patients with previous myocardial infarction. Atherosclerosis. 2009;206(2):588–93.PubMedCrossRef
88.
Zurück zum Zitat Sampson MJ, Winterbone MS, Hughes JC, et al. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006;29(2):283–9.PubMedCrossRef Sampson MJ, Winterbone MS, Hughes JC, et al. Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care. 2006;29(2):283–9.PubMedCrossRef
89.
Zurück zum Zitat Gardner JP, Li S, Srinivasan SR, et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005;111(17):2171–7.PubMedCrossRef Gardner JP, Li S, Srinivasan SR, et al. Rise in insulin resistance is associated with escalated telomere attrition. Circulation. 2005;111(17):2171–7.PubMedCrossRef
90.
Zurück zum Zitat Zhao J, Zhu Y, Lin J, et al. Short leukocyte telomere length predicts risk of diabetes in American Indians: the strong heart family study. Diabetes. 2014;63(1):354–62.PubMedCrossRef Zhao J, Zhu Y, Lin J, et al. Short leukocyte telomere length predicts risk of diabetes in American Indians: the strong heart family study. Diabetes. 2014;63(1):354–62.PubMedCrossRef
91.
Zurück zum Zitat You NC, Chen BH, Song Y, et al. A prospective study of leukocyte telomere length and risk of type 2 diabetes in postmenopausal women. Diabetes. 2012;61(11):2998–3004.PubMedPubMedCentralCrossRef You NC, Chen BH, Song Y, et al. A prospective study of leukocyte telomere length and risk of type 2 diabetes in postmenopausal women. Diabetes. 2012;61(11):2998–3004.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Panayiotou AG, Nicolaides AN, Griffin M, et al. Leukocyte telomere length is associated with measures of subclinical atherosclerosis. Atherosclerosis. 2010;211(1):176–81.PubMedCrossRef Panayiotou AG, Nicolaides AN, Griffin M, et al. Leukocyte telomere length is associated with measures of subclinical atherosclerosis. Atherosclerosis. 2010;211(1):176–81.PubMedCrossRef
93.
Zurück zum Zitat Fitzpatrick AL, Kronmal RA, Gardner JP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.PubMedCrossRef Fitzpatrick AL, Kronmal RA, Gardner JP, et al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol. 2007;165(1):14–21.PubMedCrossRef
94.
95.
Zurück zum Zitat Demissie S, Levy D, Benjamin EJ, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell. 2006;5(4):325–30.PubMedCrossRef Demissie S, Levy D, Benjamin EJ, et al. Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell. 2006;5(4):325–30.PubMedCrossRef
96.
Zurück zum Zitat van der Harst P, van der Steege G, de Boer RA, et al. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol. 2007;49(13):1459–64.PubMedCrossRef van der Harst P, van der Steege G, de Boer RA, et al. Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol. 2007;49(13):1459–64.PubMedCrossRef
97.
Zurück zum Zitat Willeit P, Willeit J, Brandstatter A, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010;30(8):1649–56.PubMedCrossRef Willeit P, Willeit J, Brandstatter A, et al. Cellular aging reflected by leukocyte telomere length predicts advanced atherosclerosis and cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2010;30(8):1649–56.PubMedCrossRef
98.
Zurück zum Zitat Farzaneh-Far R, Cawthon RM, Na B, et al. Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the Heart and Soul Study. Arterioscler Thromb Vasc Biol. 2008;28(7):1379–84.PubMedPubMedCentralCrossRef Farzaneh-Far R, Cawthon RM, Na B, et al. Prognostic value of leukocyte telomere length in patients with stable coronary artery disease: data from the Heart and Soul Study. Arterioscler Thromb Vasc Biol. 2008;28(7):1379–84.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Brouilette SW, Moore JS, McMahon AD, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet. 2007;369(9556):107–14.PubMedCrossRef Brouilette SW, Moore JS, McMahon AD, et al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet. 2007;369(9556):107–14.PubMedCrossRef
100.
Zurück zum Zitat Haycock PC, Heydon EE, Kaptoge S, et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349:g4227.PubMedPubMedCentralCrossRef Haycock PC, Heydon EE, Kaptoge S, et al. Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis. BMJ. 2014;349:g4227.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Zee RY, Castonguay AJ, Barton NS, et al. Relative leukocyte telomere length and risk of incident ischemic stroke in men: a prospective, nested case-control approach. Rejuvenation Res. 2010;13(4):411–4.PubMedPubMedCentralCrossRef Zee RY, Castonguay AJ, Barton NS, et al. Relative leukocyte telomere length and risk of incident ischemic stroke in men: a prospective, nested case-control approach. Rejuvenation Res. 2010;13(4):411–4.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Perez-Rivera JA, Pabon-Osuna P, Cieza-Borrella C, et al. Effect of telomere length on prognosis in men with acute coronary syndrome. Am J Cardiol. 2014;113(3):418–21.PubMedCrossRef Perez-Rivera JA, Pabon-Osuna P, Cieza-Borrella C, et al. Effect of telomere length on prognosis in men with acute coronary syndrome. Am J Cardiol. 2014;113(3):418–21.PubMedCrossRef
103.
Zurück zum Zitat Cawthon RM, Smith KR, O’Brien E, et al. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.PubMedCrossRef Cawthon RM, Smith KR, O’Brien E, et al. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet. 2003;361(9355):393–5.PubMedCrossRef
104.
Zurück zum Zitat Epel ES, Merkin SS, Cawthon R, et al. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY). 2009;1(1):81–8.CrossRef Epel ES, Merkin SS, Cawthon R, et al. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY). 2009;1(1):81–8.CrossRef
105.
Zurück zum Zitat Lee HW, Blasco MA, Gottlieb GJ, et al. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392(6676):569–74.PubMedCrossRef Lee HW, Blasco MA, Gottlieb GJ, et al. Essential role of mouse telomerase in highly proliferative organs. Nature. 1998;392(6676):569–74.PubMedCrossRef
106.
Zurück zum Zitat Herrera E, Samper E, Martin-Caballero J, et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 1999;18(11):2950–60.PubMedPubMedCentralCrossRef Herrera E, Samper E, Martin-Caballero J, et al. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J. 1999;18(11):2950–60.PubMedPubMedCentralCrossRef
107.
Zurück zum Zitat Rudolph KL, Chang S, Lee HW, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96(5):701–12.PubMedCrossRef Rudolph KL, Chang S, Lee HW, et al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell. 1999;96(5):701–12.PubMedCrossRef
108.
Zurück zum Zitat Perez-Rivero G, Ruiz-Torres MP, Rivas-Elena JV, et al. Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production. Circulation. 2006;114(4):309–17.PubMedCrossRef Perez-Rivero G, Ruiz-Torres MP, Rivas-Elena JV, et al. Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production. Circulation. 2006;114(4):309–17.PubMedCrossRef
109.
Zurück zum Zitat Wong KK, Maser RS, Bachoo RM, et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature. 2003;421(6923):643–8.PubMedCrossRef Wong KK, Maser RS, Bachoo RM, et al. Telomere dysfunction and Atm deficiency compromises organ homeostasis and accelerates ageing. Nature. 2003;421(6923):643–8.PubMedCrossRef
110.
Zurück zum Zitat Chang S, Multani AS, Cabrera NG, et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet. 2004;36(8):877–82.PubMedCrossRef Chang S, Multani AS, Cabrera NG, et al. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet. 2004;36(8):877–82.PubMedCrossRef
111.
Zurück zum Zitat Bhayadia R, Schmidt BM, Melk A, et al. Senescence-induced oxidative stress causes endothelial dysfunction. J Gerontol A Biol Sci Med Sci. 2016;71(2):161–9.PubMedCrossRef Bhayadia R, Schmidt BM, Melk A, et al. Senescence-induced oxidative stress causes endothelial dysfunction. J Gerontol A Biol Sci Med Sci. 2016;71(2):161–9.PubMedCrossRef
112.
113.
Zurück zum Zitat Li H, Horke S, Forstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014;237(1):208–19.PubMedCrossRef Li H, Horke S, Forstermann U. Vascular oxidative stress, nitric oxide and atherosclerosis. Atherosclerosis. 2014;237(1):208–19.PubMedCrossRef
114.
116.
Zurück zum Zitat Salpea KD, Maubaret CG, Kathagen A, et al. The effect of pro-inflammatory conditioning and/or high glucose on telomere shortening of aging fibroblasts. PLoS One. 2013;8(9):e73756.PubMedPubMedCentralCrossRef Salpea KD, Maubaret CG, Kathagen A, et al. The effect of pro-inflammatory conditioning and/or high glucose on telomere shortening of aging fibroblasts. PLoS One. 2013;8(9):e73756.PubMedPubMedCentralCrossRef
117.
Zurück zum Zitat Kurz DJ, Decary S, Hong Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117(Pt 11):2417–26.PubMedCrossRef Kurz DJ, Decary S, Hong Y, et al. Chronic oxidative stress compromises telomere integrity and accelerates the onset of senescence in human endothelial cells. J Cell Sci. 2004;117(Pt 11):2417–26.PubMedCrossRef
118.
Zurück zum Zitat Ottaviani A, Gilson E, Magdinier F. Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie. 2008;90(1):93–107.PubMedCrossRef Ottaviani A, Gilson E, Magdinier F. Telomeric position effect: from the yeast paradigm to human pathologies? Biochimie. 2008;90(1):93–107.PubMedCrossRef
119.
Zurück zum Zitat Baur JA, Zou Y, Shay JW, et al. Telomere position effect in human cells. Science. 2001;292(5524):2075–7.PubMedCrossRef Baur JA, Zou Y, Shay JW, et al. Telomere position effect in human cells. Science. 2001;292(5524):2075–7.PubMedCrossRef
120.
Zurück zum Zitat Robin JD, Ludlow AT, Batten K, et al. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 2014;28(22):2464–76.PubMedPubMedCentralCrossRef Robin JD, Ludlow AT, Batten K, et al. Telomere position effect: regulation of gene expression with progressive telomere shortening over long distances. Genes Dev. 2014;28(22):2464–76.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Koering CE, Pollice A, Zibella MP, et al. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep. 2002;3(11):1055–61.PubMedPubMedCentralCrossRef Koering CE, Pollice A, Zibella MP, et al. Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Rep. 2002;3(11):1055–61.PubMedPubMedCentralCrossRef
122.
Zurück zum Zitat Hernandez-Caballero E, Herrera-Gonzalez NE, Salamanca-Gomez F, et al. Role of telomere length in subtelomeric gene expression and its possible relation to cellular senescence. BMB Rep. 2009;42(11):747–51.PubMedCrossRef Hernandez-Caballero E, Herrera-Gonzalez NE, Salamanca-Gomez F, et al. Role of telomere length in subtelomeric gene expression and its possible relation to cellular senescence. BMB Rep. 2009;42(11):747–51.PubMedCrossRef
123.
Zurück zum Zitat Ning Y, Xu JF, Li Y, et al. Telomere length and the expression of natural telomeric genes in human fibroblasts. Hum Mol Genet. 2003;12(11):1329–36.PubMedCrossRef Ning Y, Xu JF, Li Y, et al. Telomere length and the expression of natural telomeric genes in human fibroblasts. Hum Mol Genet. 2003;12(11):1329–36.PubMedCrossRef
124.
Zurück zum Zitat Codd V, Nelson CP, Albrecht E, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45(4):422–7 (7e1–2).PubMedPubMedCentralCrossRef Codd V, Nelson CP, Albrecht E, et al. Identification of seven loci affecting mean telomere length and their association with disease. Nat Genet. 2013;45(4):422–7 (7e1–2).PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Masi S, D’Aiuto F, Martin-Ruiz C, et al. Rate of telomere shortening and cardiovascular damage: a longitudinal study in the 1946 British Birth Cohort. Eur Heart J. 2014;35(46):3296–303.PubMedPubMedCentralCrossRef Masi S, D’Aiuto F, Martin-Ruiz C, et al. Rate of telomere shortening and cardiovascular damage: a longitudinal study in the 1946 British Birth Cohort. Eur Heart J. 2014;35(46):3296–303.PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Baragetti A, Palmen J, Garlaschelli K, et al. Telomere shortening over 6 years is associated with increased subclinical carotid vascular damage and worse cardiovascular prognosis in the general population. J Intern Med. 2015;277(4):478–87.PubMedCrossRef Baragetti A, Palmen J, Garlaschelli K, et al. Telomere shortening over 6 years is associated with increased subclinical carotid vascular damage and worse cardiovascular prognosis in the general population. J Intern Med. 2015;277(4):478–87.PubMedCrossRef
127.
Zurück zum Zitat Cherkas LF, Hunkin JL, Kato BS, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154–8.PubMedCrossRef Cherkas LF, Hunkin JL, Kato BS, et al. The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med. 2008;168(2):154–8.PubMedCrossRef
128.
Zurück zum Zitat Du M, Prescott J, Kraft P, et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012;175(5):414–22.PubMedPubMedCentralCrossRef Du M, Prescott J, Kraft P, et al. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol. 2012;175(5):414–22.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Ludlow AT, Zimmerman JB, Witkowski S, et al. Relationship between physical activity level, telomere length, and telomerase activity. Med Sci Sports Exerc. 2008;40(10):1764–71.PubMedPubMedCentralCrossRef Ludlow AT, Zimmerman JB, Witkowski S, et al. Relationship between physical activity level, telomere length, and telomerase activity. Med Sci Sports Exerc. 2008;40(10):1764–71.PubMedPubMedCentralCrossRef
130.
Zurück zum Zitat Savela S, Saijonmaa O, Strandberg TE, et al. Physical activity in midlife and telomere length measured in old age. Exp Gerontol. 2013;48(1):81–4.PubMedCrossRef Savela S, Saijonmaa O, Strandberg TE, et al. Physical activity in midlife and telomere length measured in old age. Exp Gerontol. 2013;48(1):81–4.PubMedCrossRef
131.
Zurück zum Zitat Song Z, von Figura G, Liu Y, et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010;9(4):607–15.PubMedPubMedCentralCrossRef Song Z, von Figura G, Liu Y, et al. Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010;9(4):607–15.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Cassidy A, De Vivo I, Liu Y, et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010;91(5):1273–80.PubMedPubMedCentralCrossRef Cassidy A, De Vivo I, Liu Y, et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010;91(5):1273–80.PubMedPubMedCentralCrossRef
133.
Zurück zum Zitat Diaz VA, Mainous AG 3rd, Everett CJ, et al. Effect of healthy lifestyle behaviors on the association between leukocyte telomere length and coronary artery calcium. Am J Cardiol. 2010;106(5):659–63.PubMedCrossRef Diaz VA, Mainous AG 3rd, Everett CJ, et al. Effect of healthy lifestyle behaviors on the association between leukocyte telomere length and coronary artery calcium. Am J Cardiol. 2010;106(5):659–63.PubMedCrossRef
134.
Zurück zum Zitat Fujishiro K, Diez-Roux AV, Landsbergis PA, et al. Current employment status, occupational category, occupational hazard exposure and job stress in relation to telomere length: the Multiethnic Study of Atherosclerosis (MESA). Occup Environ Med. 2013;70(8):552–60.PubMedPubMedCentralCrossRef Fujishiro K, Diez-Roux AV, Landsbergis PA, et al. Current employment status, occupational category, occupational hazard exposure and job stress in relation to telomere length: the Multiethnic Study of Atherosclerosis (MESA). Occup Environ Med. 2013;70(8):552–60.PubMedPubMedCentralCrossRef
135.
Zurück zum Zitat Kim JH, Ko JH, Lee DC, et al. Habitual physical exercise has beneficial effects on telomere length in postmenopausal women. Menopause. 2012;19(10):1109–15.PubMedCrossRef Kim JH, Ko JH, Lee DC, et al. Habitual physical exercise has beneficial effects on telomere length in postmenopausal women. Menopause. 2012;19(10):1109–15.PubMedCrossRef
136.
Zurück zum Zitat Garland SN, Johnson B, Palmer C, et al. Physical activity and telomere length in early stage breast cancer survivors. Breast Cancer Res. 2014;16(4):413.PubMedPubMedCentralCrossRef Garland SN, Johnson B, Palmer C, et al. Physical activity and telomere length in early stage breast cancer survivors. Breast Cancer Res. 2014;16(4):413.PubMedPubMedCentralCrossRef
137.
Zurück zum Zitat Loprinzi PD. Leisure-time screen-based sedentary behavior and leukocyte telomere length: implications for a new leisure-time screen-based sedentary behavior mechanism. Mayo Clin Proc. 2015;90(6):786–90.PubMedCrossRef Loprinzi PD. Leisure-time screen-based sedentary behavior and leukocyte telomere length: implications for a new leisure-time screen-based sedentary behavior mechanism. Mayo Clin Proc. 2015;90(6):786–90.PubMedCrossRef
138.
Zurück zum Zitat Sjogren P, Fisher R, Kallings L, et al. Stand up for health—avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a physical activity RCT in older people. Br J Sports Med. 2014;48(19):1407–9.PubMedCrossRef Sjogren P, Fisher R, Kallings L, et al. Stand up for health—avoiding sedentary behaviour might lengthen your telomeres: secondary outcomes from a physical activity RCT in older people. Br J Sports Med. 2014;48(19):1407–9.PubMedCrossRef
139.
Zurück zum Zitat Washburn RA, Smith KW, Jette AM, et al. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2):153–62.PubMedCrossRef Washburn RA, Smith KW, Jette AM, et al. The Physical Activity Scale for the Elderly (PASE): development and evaluation. J Clin Epidemiol. 1993;46(2):153–62.PubMedCrossRef
140.
Zurück zum Zitat Lee JY, Bang HW, Ko JH, et al. Leukocyte telomere length is independently associated with gait speed in elderly women. Maturitas. 2013;75(2):165–9.PubMedCrossRef Lee JY, Bang HW, Ko JH, et al. Leukocyte telomere length is independently associated with gait speed in elderly women. Maturitas. 2013;75(2):165–9.PubMedCrossRef
141.
Zurück zum Zitat Maeda T, Oyama J, Sasaki M, et al. The physical ability of elderly female Japanese patients with cerebrovascular disease correlates with telomere length in their peripheral blood leukocytes. Aging Clin Exp Res. 2011;23(1):22–8.PubMedCrossRef Maeda T, Oyama J, Sasaki M, et al. The physical ability of elderly female Japanese patients with cerebrovascular disease correlates with telomere length in their peripheral blood leukocytes. Aging Clin Exp Res. 2011;23(1):22–8.PubMedCrossRef
142.
Zurück zum Zitat Maeda T, Oyama J, Higuchi Y, et al. The physical ability of Japanese female elderly with cerebrovascular disease correlates with the telomere length and subtelomeric methylation status in their peripheral blood leukocytes. Gerontology. 2011;57(2):137–43.PubMedCrossRef Maeda T, Oyama J, Higuchi Y, et al. The physical ability of Japanese female elderly with cerebrovascular disease correlates with the telomere length and subtelomeric methylation status in their peripheral blood leukocytes. Gerontology. 2011;57(2):137–43.PubMedCrossRef
143.
Zurück zum Zitat Bendix L, Gade MM, Staun PW, et al. Leukocyte telomere length and physical ability among Danish twins age 70+. Mech Ageing Dev. 2011;132(11–12):568–72.PubMedPubMedCentralCrossRef Bendix L, Gade MM, Staun PW, et al. Leukocyte telomere length and physical ability among Danish twins age 70+. Mech Ageing Dev. 2011;132(11–12):568–72.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Baylis D, Ntani G, Edwards MH, et al. Inflammation, telomere length, and grip strength: a 10-year longitudinal study. Calcif Tissue Int. 2014;95(1):54–63.PubMedPubMedCentralCrossRef Baylis D, Ntani G, Edwards MH, et al. Inflammation, telomere length, and grip strength: a 10-year longitudinal study. Calcif Tissue Int. 2014;95(1):54–63.PubMedPubMedCentralCrossRef
145.
Zurück zum Zitat Soares-Miranda L, Imamura F, Siscovick D, et al. Physical activity, physical fitness, and leukocyte telomere length. Med Sci Sports Exerc. 2015;47(12):2525–34.PubMedPubMedCentralCrossRef Soares-Miranda L, Imamura F, Siscovick D, et al. Physical activity, physical fitness, and leukocyte telomere length. Med Sci Sports Exerc. 2015;47(12):2525–34.PubMedPubMedCentralCrossRef
146.
Zurück zum Zitat Zhu H, Wang X, Gutin B, et al. Leukocyte telomere length in healthy Caucasian and African-American adolescents: relationships with race, sex, adiposity, adipokines, and physical activity. J Pediatr. 2011;158(2):215–20.PubMedCrossRef Zhu H, Wang X, Gutin B, et al. Leukocyte telomere length in healthy Caucasian and African-American adolescents: relationships with race, sex, adiposity, adipokines, and physical activity. J Pediatr. 2011;158(2):215–20.PubMedCrossRef
147.
Zurück zum Zitat Garatachea N, Santos-Lozano A, Sanchis-Gomar F, et al. Elite athletes live longer than the general population: a meta-analysis. Mayo Clin Proc. 2014;89(9):1195–200.PubMedCrossRef Garatachea N, Santos-Lozano A, Sanchis-Gomar F, et al. Elite athletes live longer than the general population: a meta-analysis. Mayo Clin Proc. 2014;89(9):1195–200.PubMedCrossRef
148.
Zurück zum Zitat Werner C, Furster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120(24):2438–47.PubMedCrossRef Werner C, Furster T, Widmann T, et al. Physical exercise prevents cellular senescence in circulating leukocytes and in the vessel wall. Circulation. 2009;120(24):2438–47.PubMedCrossRef
149.
Zurück zum Zitat LaRocca TJ, Seals DR, Pierce GL. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mech Ageing Dev. 2010;131(2):165–7.PubMedPubMedCentralCrossRef LaRocca TJ, Seals DR, Pierce GL. Leukocyte telomere length is preserved with aging in endurance exercise-trained adults and related to maximal aerobic capacity. Mech Ageing Dev. 2010;131(2):165–7.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Denham J, Nelson CP, O’Brien BJ, et al. Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS One. 2013;8(7):e69377.PubMedPubMedCentralCrossRef Denham J, Nelson CP, O’Brien BJ, et al. Longer leukocyte telomeres are associated with ultra-endurance exercise independent of cardiovascular risk factors. PLoS One. 2013;8(7):e69377.PubMedPubMedCentralCrossRef
151.
Zurück zum Zitat Denham J, O’Brien BJ, Prestes PR, et al. Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. J Appl Physiol (1985). 2015;120(2):148–58.CrossRef Denham J, O’Brien BJ, Prestes PR, et al. Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. J Appl Physiol (1985). 2015;120(2):148–58.CrossRef
152.
Zurück zum Zitat Mathur S, Ardestani A, Parker B, et al. Telomere length and cardiorespiratory fitness in marathon runners. J Investig Med. 2013;61(3):613–5.PubMedCrossRef Mathur S, Ardestani A, Parker B, et al. Telomere length and cardiorespiratory fitness in marathon runners. J Investig Med. 2013;61(3):613–5.PubMedCrossRef
153.
Zurück zum Zitat Laine MK, Eriksson JG, Kujala UM, et al. Effect of intensive exercise in early adult life on telomere length in later life in men. J Sports Sci Med. 2015;14(2):239–45.PubMedPubMedCentral Laine MK, Eriksson JG, Kujala UM, et al. Effect of intensive exercise in early adult life on telomere length in later life in men. J Sports Sci Med. 2015;14(2):239–45.PubMedPubMedCentral
154.
Zurück zum Zitat Mason C, Risques RA, Xiao L, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity (Silver Spring). 2013;21(12):E549–54.PubMedPubMedCentralCrossRef Mason C, Risques RA, Xiao L, et al. Independent and combined effects of dietary weight loss and exercise on leukocyte telomere length in postmenopausal women. Obesity (Silver Spring). 2013;21(12):E549–54.PubMedPubMedCentralCrossRef
155.
Zurück zum Zitat Krauss J, Farzaneh-Far R, Puterman E, et al. Physical fitness and telomere length in patients with coronary heart disease: findings from the Heart and Soul Study. PLoS One. 2011;6(11):e26983.PubMedPubMedCentralCrossRef Krauss J, Farzaneh-Far R, Puterman E, et al. Physical fitness and telomere length in patients with coronary heart disease: findings from the Heart and Soul Study. PLoS One. 2011;6(11):e26983.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Osthus IB, Sgura A, Berardinelli F, et al. Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study. PLoS One. 2012;7(12):e52769.PubMedPubMedCentralCrossRef Osthus IB, Sgura A, Berardinelli F, et al. Telomere length and long-term endurance exercise: does exercise training affect biological age? A pilot study. PLoS One. 2012;7(12):e52769.PubMedPubMedCentralCrossRef
157.
Zurück zum Zitat Ponsot E, Lexell J, Kadi F. Skeletal muscle telomere length is not impaired in healthy physically active old women and men. Muscle Nerve. 2008;37(4):467–72.PubMedCrossRef Ponsot E, Lexell J, Kadi F. Skeletal muscle telomere length is not impaired in healthy physically active old women and men. Muscle Nerve. 2008;37(4):467–72.PubMedCrossRef
158.
Zurück zum Zitat Venturelli M, Morgan GR, Donato AJ, et al. Cellular aging of skeletal muscle: telomeric and free radical evidence that physical inactivity is responsible and not age. Clin Sci (Lond). 2014;127(6):415–21.PubMedPubMedCentralCrossRef Venturelli M, Morgan GR, Donato AJ, et al. Cellular aging of skeletal muscle: telomeric and free radical evidence that physical inactivity is responsible and not age. Clin Sci (Lond). 2014;127(6):415–21.PubMedPubMedCentralCrossRef
159.
Zurück zum Zitat Collins M, Renault V, Grobler LA, et al. Athletes with exercise-associated fatigue have abnormally short muscle DNA telomeres. Med Sci Sports Exerc. 2003;35(9):1524–8.PubMedCrossRef Collins M, Renault V, Grobler LA, et al. Athletes with exercise-associated fatigue have abnormally short muscle DNA telomeres. Med Sci Sports Exerc. 2003;35(9):1524–8.PubMedCrossRef
160.
Zurück zum Zitat Rae DE, Vignaud A, Butler-Browne GS, et al. Skeletal muscle telomere length in healthy, experienced, endurance runners. Eur J Appl Physiol. 2010;109(2):323–30.PubMedCrossRef Rae DE, Vignaud A, Butler-Browne GS, et al. Skeletal muscle telomere length in healthy, experienced, endurance runners. Eur J Appl Physiol. 2010;109(2):323–30.PubMedCrossRef
161.
Zurück zum Zitat Kadi F, Ponsot E, Piehl-Aulin K, et al. The effects of regular strength training on telomere length in human skeletal muscle. Med Sci Sports Exerc. 2008;40(1):82–7.PubMedCrossRef Kadi F, Ponsot E, Piehl-Aulin K, et al. The effects of regular strength training on telomere length in human skeletal muscle. Med Sci Sports Exerc. 2008;40(1):82–7.PubMedCrossRef
162.
Zurück zum Zitat Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57.PubMedCrossRef Ornish D, Lin J, Daubenmier J, et al. Increased telomerase activity and comprehensive lifestyle changes: a pilot study. Lancet Oncol. 2008;9(11):1048–57.PubMedCrossRef
163.
Zurück zum Zitat Ornish D, Lin J, Chan JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112–20.PubMedCrossRef Ornish D, Lin J, Chan JM, et al. Effect of comprehensive lifestyle changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112–20.PubMedCrossRef
164.
Zurück zum Zitat Melk A, Tegtbur U, Hilfiker-Kleiner D, et al. Improvement of biological age by physical activity. Int J Cardiol. 2014;176(3):1187–9.PubMedCrossRef Melk A, Tegtbur U, Hilfiker-Kleiner D, et al. Improvement of biological age by physical activity. Int J Cardiol. 2014;176(3):1187–9.PubMedCrossRef
165.
Zurück zum Zitat Puterman E, Lin J, Blackburn E, et al. The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One. 2010;5(5):e10837.PubMedPubMedCentralCrossRef Puterman E, Lin J, Blackburn E, et al. The power of exercise: buffering the effect of chronic stress on telomere length. PLoS One. 2010;5(5):e10837.PubMedPubMedCentralCrossRef
166.
167.
Zurück zum Zitat Aviv A. The epidemiology of human telomeres: faults and promises. J Gerontol A Biol Sci Med Sci. 2008;63(9):979–83.PubMedCrossRef Aviv A. The epidemiology of human telomeres: faults and promises. J Gerontol A Biol Sci Med Sci. 2008;63(9):979–83.PubMedCrossRef
168.
Zurück zum Zitat Aviv A, Hunt SC, Lin J, et al. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res. 2011;39(20):e134.PubMedPubMedCentralCrossRef Aviv A, Hunt SC, Lin J, et al. Impartial comparative analysis of measurement of leukocyte telomere length/DNA content by Southern blots and qPCR. Nucleic Acids Res. 2011;39(20):e134.PubMedPubMedCentralCrossRef
169.
Zurück zum Zitat Martin-Ruiz CM, Baird D, Roger L, et al. Reproducibility of telomere length assessment: an international collaborative study. Int J Epidemiol. 2015;44(5):1673–83.PubMedCrossRef Martin-Ruiz CM, Baird D, Roger L, et al. Reproducibility of telomere length assessment: an international collaborative study. Int J Epidemiol. 2015;44(5):1673–83.PubMedCrossRef
170.
Zurück zum Zitat Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998;30(2):252–8.PubMedCrossRef Bouchard C, Daw EW, Rice T, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998;30(2):252–8.PubMedCrossRef
171.
Zurück zum Zitat Bouchard C, An P, Rice T, et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol (1985). 1999;87(3):1003–8. Bouchard C, An P, Rice T, et al. Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. J Appl Physiol (1985). 1999;87(3):1003–8.
172.
Zurück zum Zitat Dyrstad SM, Hansen BH, Holme IM, et al. Comparison of self-reported versus accelerometer-measured physical activity. Med Sci Sports Exerc. 2014;46(1):99–106.PubMedCrossRef Dyrstad SM, Hansen BH, Holme IM, et al. Comparison of self-reported versus accelerometer-measured physical activity. Med Sci Sports Exerc. 2014;46(1):99–106.PubMedCrossRef
173.
Zurück zum Zitat Garriguet D, Colley RC. A comparison of self-reported leisure-time physical activity and measured moderate-to-vigorous physical activity in adolescents and adults. Health Rep. 2014;25(7):3–11.PubMed Garriguet D, Colley RC. A comparison of self-reported leisure-time physical activity and measured moderate-to-vigorous physical activity in adolescents and adults. Health Rep. 2014;25(7):3–11.PubMed
174.
Zurück zum Zitat Tully MA, Panter J, Ogilvie D. Individual characteristics associated with mismatches between self-reported and accelerometer-measured physical activity. PLoS One. 2014;9(6):e99636.PubMedPubMedCentralCrossRef Tully MA, Panter J, Ogilvie D. Individual characteristics associated with mismatches between self-reported and accelerometer-measured physical activity. PLoS One. 2014;9(6):e99636.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Ludlow AT, Witkowski S, Marshall MR, et al. Chronic exercise modifies age-related telomere dynamics in a tissue-specific fashion. J Gerontol A Biol Sci Med Sci. 2012;67(9):911–26.PubMedPubMedCentralCrossRef Ludlow AT, Witkowski S, Marshall MR, et al. Chronic exercise modifies age-related telomere dynamics in a tissue-specific fashion. J Gerontol A Biol Sci Med Sci. 2012;67(9):911–26.PubMedPubMedCentralCrossRef
176.
Zurück zum Zitat Werner C, Hanhoun M, Widmann T, et al. Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol. 2008;52(6):470–82.PubMedCrossRef Werner C, Hanhoun M, Widmann T, et al. Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol. 2008;52(6):470–82.PubMedCrossRef
177.
Zurück zum Zitat Wolf SA, Melnik A, Kempermann G. Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav Immun. 2011;25(5):971–80.PubMedCrossRef Wolf SA, Melnik A, Kempermann G. Physical exercise increases adult neurogenesis and telomerase activity, and improves behavioral deficits in a mouse model of schizophrenia. Brain Behav Immun. 2011;25(5):971–80.PubMedCrossRef
178.
Zurück zum Zitat Chilton WL, Marques FZ, West J, et al. Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells. PLoS One. 2014;9(4):e92088.PubMedPubMedCentralCrossRef Chilton WL, Marques FZ, West J, et al. Acute exercise leads to regulation of telomere-associated genes and microRNA expression in immune cells. PLoS One. 2014;9(4):e92088.PubMedPubMedCentralCrossRef
179.
Zurück zum Zitat Laye MJ, Solomon TP, Karstoft K, et al. Increased shelterin mRNA expression in peripheral blood mononuclear cells and skeletal muscle following an ultra-long-distance running event. J Appl Physiol (1985). 2012;112(5):773–81.CrossRef Laye MJ, Solomon TP, Karstoft K, et al. Increased shelterin mRNA expression in peripheral blood mononuclear cells and skeletal muscle following an ultra-long-distance running event. J Appl Physiol (1985). 2012;112(5):773–81.CrossRef
180.
Zurück zum Zitat Ludlow AT, Lima LC, Wang J, et al. Exercise alters mRNA expression of telomere-repeat binding factor 1 in skeletal muscle via p38 MAPK. J Appl Physiol (1985). 2012;113(11):1737–46.PubMedCentralCrossRef Ludlow AT, Lima LC, Wang J, et al. Exercise alters mRNA expression of telomere-repeat binding factor 1 in skeletal muscle via p38 MAPK. J Appl Physiol (1985). 2012;113(11):1737–46.PubMedCentralCrossRef
181.
Zurück zum Zitat Schuler G, Adams V, Goto Y. Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J. 2013;34(24):1790–9.PubMedCrossRef Schuler G, Adams V, Goto Y. Role of exercise in the prevention of cardiovascular disease: results, mechanisms, and new perspectives. Eur Heart J. 2013;34(24):1790–9.PubMedCrossRef
182.
Zurück zum Zitat Sanz C, Gautier JF, Hanaire H. Physical exercise for the prevention and treatment of type 2 diabetes. Diabetes Metab. 2010;36(5):346–51.PubMedCrossRef Sanz C, Gautier JF, Hanaire H. Physical exercise for the prevention and treatment of type 2 diabetes. Diabetes Metab. 2010;36(5):346–51.PubMedCrossRef
183.
Zurück zum Zitat Slentz CA, Houmard JA, Kraus WE. Modest exercise prevents the progressive disease associated with physical inactivity. Exerc Sport Sci Rev. 2007;35(1):18–23.PubMedCrossRef Slentz CA, Houmard JA, Kraus WE. Modest exercise prevents the progressive disease associated with physical inactivity. Exerc Sport Sci Rev. 2007;35(1):18–23.PubMedCrossRef
184.
Zurück zum Zitat Oeseburg H, de Boer RA, van Gilst WH, et al. Telomere biology in healthy aging and disease. Pflugers Arch. 2010;459(2):259–68.PubMedCrossRef Oeseburg H, de Boer RA, van Gilst WH, et al. Telomere biology in healthy aging and disease. Pflugers Arch. 2010;459(2):259–68.PubMedCrossRef
185.
Zurück zum Zitat Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3(1):73–80.PubMedCrossRef Khansari N, Shakiba Y, Mahmoudi M. Chronic inflammation and oxidative stress as a major cause of age-related diseases and cancer. Recent Pat Inflamm Allergy Drug Discov. 2009;3(1):73–80.PubMedCrossRef
186.
Zurück zum Zitat Ludlow AT, Spangenburg EE, Chin ER, et al. Telomeres shorten in response to oxidative stress in mouse skeletal muscle fibers. J Gerontol A Biol Sci Med Sci. 2014;69(7):821–30.PubMedPubMedCentralCrossRef Ludlow AT, Spangenburg EE, Chin ER, et al. Telomeres shorten in response to oxidative stress in mouse skeletal muscle fibers. J Gerontol A Biol Sci Med Sci. 2014;69(7):821–30.PubMedPubMedCentralCrossRef
187.
Zurück zum Zitat Gleeson M, Bishop NC, Stensel DJ, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.PubMedCrossRef Gleeson M, Bishop NC, Stensel DJ, et al. The anti-inflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol. 2011;11(9):607–15.PubMedCrossRef
188.
Zurück zum Zitat Leeuwenburgh C, Heinecke JW. Oxidative stress and antioxidants in exercise. Curr Med Chem. 2001;8(7):829–38.PubMedCrossRef Leeuwenburgh C, Heinecke JW. Oxidative stress and antioxidants in exercise. Curr Med Chem. 2001;8(7):829–38.PubMedCrossRef
189.
Zurück zum Zitat Shin YA, Lee JH, Song W, et al. Exercise training improves the antioxidant enzyme activity with no changes of telomere length. Mech Ageing Dev. 2008;129(5):254–60.PubMedCrossRef Shin YA, Lee JH, Song W, et al. Exercise training improves the antioxidant enzyme activity with no changes of telomere length. Mech Ageing Dev. 2008;129(5):254–60.PubMedCrossRef
190.
Zurück zum Zitat Dinami R, Ercolani C, Petti E, et al. miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res. 2014;74(15):4145–56.PubMedCrossRef Dinami R, Ercolani C, Petti E, et al. miR-155 drives telomere fragility in human breast cancer by targeting TRF1. Cancer Res. 2014;74(15):4145–56.PubMedCrossRef
192.
Zurück zum Zitat Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol. 2008;15(9):998.PubMedCrossRef Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol. 2008;15(9):998.PubMedCrossRef
193.
Zurück zum Zitat Yamada Y, Nishida T, Horibe H, et al. Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation. Int J Mol Med. 2014;33(5):1355–63.PubMed Yamada Y, Nishida T, Horibe H, et al. Identification of hypo- and hypermethylated genes related to atherosclerosis by a genome-wide analysis of DNA methylation. Int J Mol Med. 2014;33(5):1355–63.PubMed
194.
Zurück zum Zitat Ribel-Madsen R, Fraga MF, Jacobsen S, et al. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One. 2012;7(12):e51302.PubMedPubMedCentralCrossRef Ribel-Madsen R, Fraga MF, Jacobsen S, et al. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for type 2 diabetes. PLoS One. 2012;7(12):e51302.PubMedPubMedCentralCrossRef
195.
Zurück zum Zitat Denham J, Marques FZ, O’Brien BJ, et al. Exercise: putting action into our epigenome. Sports Med. 2014;44(2):189–209.PubMedCrossRef Denham J, Marques FZ, O’Brien BJ, et al. Exercise: putting action into our epigenome. Sports Med. 2014;44(2):189–209.PubMedCrossRef
196.
Zurück zum Zitat Voisin S, Eynon N, Yan X, et al. Exercise training and DNA methylation in humans. Acta Physiol (Oxf). 2015;213(1):39–59.PubMedCrossRef Voisin S, Eynon N, Yan X, et al. Exercise training and DNA methylation in humans. Acta Physiol (Oxf). 2015;213(1):39–59.PubMedCrossRef
197.
Zurück zum Zitat McGee SL, Hargreaves M. Histone modifications and exercise adaptations. J Appl Physiol (1985). 2011;110(1):258–63.CrossRef McGee SL, Hargreaves M. Histone modifications and exercise adaptations. J Appl Physiol (1985). 2011;110(1):258–63.CrossRef
198.
Zurück zum Zitat Denham J, O’Brien BJ, Marques FZ, et al. Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. J Appl Physiol (1985). 2015;118(4):475–88.CrossRef Denham J, O’Brien BJ, Marques FZ, et al. Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. J Appl Physiol (1985). 2015;118(4):475–88.CrossRef
199.
Zurück zum Zitat Guilleret I, Benhattar J. Unusual distribution of DNA methylation within the hTERT CpG island in tissues and cell lines. Biochem Biophys Res Commun. 2004;325(3):1037–43.PubMedCrossRef Guilleret I, Benhattar J. Unusual distribution of DNA methylation within the hTERT CpG island in tissues and cell lines. Biochem Biophys Res Commun. 2004;325(3):1037–43.PubMedCrossRef
200.
201.
Zurück zum Zitat Renaud S, Loukinov D, Bosman FT, et al. CTCF binds the proximal exonic region of hTERT and inhibits its transcription. Nucleic Acids Res. 2005;33(21):6850–60.PubMedPubMedCentralCrossRef Renaud S, Loukinov D, Bosman FT, et al. CTCF binds the proximal exonic region of hTERT and inhibits its transcription. Nucleic Acids Res. 2005;33(21):6850–60.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat Liu L, Saldanha SN, Pate MS, et al. Epigenetic regulation of human telomerase reverse transcriptase promoter activity during cellular differentiation. Genes Chromosomes Cancer. 2004;41(1):26–37.PubMedCrossRef Liu L, Saldanha SN, Pate MS, et al. Epigenetic regulation of human telomerase reverse transcriptase promoter activity during cellular differentiation. Genes Chromosomes Cancer. 2004;41(1):26–37.PubMedCrossRef
203.
Zurück zum Zitat Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol. 2008;15(3):268–79.PubMedPubMedCentralCrossRef Benetti R, Gonzalo S, Jaco I, et al. A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol. 2008;15(3):268–79.PubMedPubMedCentralCrossRef
204.
Zurück zum Zitat Borghini A, Giardini G, Tonacci A, et al. Chronic and acute effects of endurance training on telomere length. Mutagenesis. 2015;30(5):711–6.PubMedCrossRef Borghini A, Giardini G, Tonacci A, et al. Chronic and acute effects of endurance training on telomere length. Mutagenesis. 2015;30(5):711–6.PubMedCrossRef
205.
Zurück zum Zitat Loprinzi PD, Loenneke JP, Blackburn EH. Movement-based behaviors and leukocyte telomere length among US adults. Med Sci Sports Exerc. 2015;47(11):2347–52.PubMedCrossRef Loprinzi PD, Loenneke JP, Blackburn EH. Movement-based behaviors and leukocyte telomere length among US adults. Med Sci Sports Exerc. 2015;47(11):2347–52.PubMedCrossRef
206.
Zurück zum Zitat Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4576 general population individuals with repeat measurements 10 years apart. PLoS Genet. 2014;10(3):e1004191.PubMedPubMedCentralCrossRef Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4576 general population individuals with repeat measurements 10 years apart. PLoS Genet. 2014;10(3):e1004191.PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Yang JH, Han H, Jang SY, et al. A comparison of the Ghent and revised Ghent nosologies for the diagnosis of Marfan syndrome in an adult Korean population. Am J Med Genet A. 2012;158A(5):989–95.PubMedCrossRef Yang JH, Han H, Jang SY, et al. A comparison of the Ghent and revised Ghent nosologies for the diagnosis of Marfan syndrome in an adult Korean population. Am J Med Genet A. 2012;158A(5):989–95.PubMedCrossRef
208.
Zurück zum Zitat Kingma EM, de Jonge P, van der Harst P, et al. The association between intelligence and telomere length: a longitudinal population based study. PLoS One. 2012;7(11):e49356.PubMedPubMedCentralCrossRef Kingma EM, de Jonge P, van der Harst P, et al. The association between intelligence and telomere length: a longitudinal population based study. PLoS One. 2012;7(11):e49356.PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Mirabello L, Huang WY, Wong JY, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009;8(4):405–13.PubMedPubMedCentralCrossRef Mirabello L, Huang WY, Wong JY, et al. The association between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of prostate cancer. Aging Cell. 2009;8(4):405–13.PubMedPubMedCentralCrossRef
210.
Zurück zum Zitat Woo J, Tang N, Leung J. No association between physical activity and telomere length in an elderly Chinese population 65 years and older. Arch Intern Med. 2008;168(19):2163–4.PubMedCrossRef Woo J, Tang N, Leung J. No association between physical activity and telomere length in an elderly Chinese population 65 years and older. Arch Intern Med. 2008;168(19):2163–4.PubMedCrossRef
211.
Zurück zum Zitat Loprinzi PD. Cardiorespiratory capacity and leukocyte telomere length among adults in the United States. Am J Epidemiol. 2015;182(3):198–201.PubMedCrossRef Loprinzi PD. Cardiorespiratory capacity and leukocyte telomere length among adults in the United States. Am J Epidemiol. 2015;182(3):198–201.PubMedCrossRef
212.
Zurück zum Zitat Maynard S, Keijzers G, Hansen AM, et al. Associations of subjective vitality with DNA damage, cardiovascular risk factors and physical performance. Acta Physiol (Oxf). 2015;213(1):156–70.PubMedCrossRef Maynard S, Keijzers G, Hansen AM, et al. Associations of subjective vitality with DNA damage, cardiovascular risk factors and physical performance. Acta Physiol (Oxf). 2015;213(1):156–70.PubMedCrossRef
213.
Zurück zum Zitat Simpson RJ, Cosgrove C, Chee MM, et al. Senescent phenotypes and telomere lengths of peripheral blood T-cells mobilized by acute exercise in humans. Exerc Immunol Rev. 2010;16:40–55.PubMed Simpson RJ, Cosgrove C, Chee MM, et al. Senescent phenotypes and telomere lengths of peripheral blood T-cells mobilized by acute exercise in humans. Exerc Immunol Rev. 2010;16:40–55.PubMed
214.
Zurück zum Zitat Bruunsgaard H, Jensen MS, Schjerling P, et al. Exercise induces recruitment of lymphocytes with an activated phenotype and short telomeres in young and elderly humans. Life Sci. 1999;65(24):2623–33.PubMedCrossRef Bruunsgaard H, Jensen MS, Schjerling P, et al. Exercise induces recruitment of lymphocytes with an activated phenotype and short telomeres in young and elderly humans. Life Sci. 1999;65(24):2623–33.PubMedCrossRef
215.
216.
Zurück zum Zitat Botha M, Grace L, Bugarith K, et al. The impact of voluntary exercise on relative telomere length in a rat model of developmental stress. BMC Res Notes. 2012;5:697.PubMedPubMedCentralCrossRef Botha M, Grace L, Bugarith K, et al. The impact of voluntary exercise on relative telomere length in a rat model of developmental stress. BMC Res Notes. 2012;5:697.PubMedPubMedCentralCrossRef
Metadaten
Titel
Telomere Length Maintenance and Cardio-Metabolic Disease Prevention Through Exercise Training
verfasst von
Joshua Denham
Brendan J. O’Brien
Fadi J. Charchar
Publikationsdatum
01.09.2016
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 9/2016
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-016-0482-4

Weitere Artikel der Ausgabe 9/2016

Sports Medicine 9/2016 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.