Skip to main content
Erschienen in: Tumor Biology 9/2016

22.07.2016 | Original Article

The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins

verfasst von: G. J. Mizejewski

Erschienen in: Tumor Biology | Ausgabe 9/2016

Einloggen, um Zugang zu erhalten

Abstract

The carboxy-terminal third domain of alpha-fetoprotein (AFP-3D) is known to harbor binding and/or interaction sites for hydrophobic ligands, receptors, and binding proteins. Such reports have established that AFP-3D consists of amino acid (AA) sequence stretches on the AFP polypeptide that engages in protein-to-protein interactions with various ligands and receptors. Using a computer software program specifically designed for such interactions, the present report identified AA sequence fragments on AFP-3D that could potentially interact with a variety of cell cycle proteins. The cell cycle proteins identified were (1) cyclins, (2) cyclin-dependent kinases, (3) cell cycle-associated proteins (inhibitors, checkpoints, initiators), and (4) ubiquitin ligases. Following detection of the AFP-3D to cell cycle protein interaction sites, the computer-derived AFP localization AA sequences were compared and aligned with previously reported hydrophobic ligand and receptor interaction sites on AFP-3D. A literature survey of the association of cell cycle proteins with AFP showed both positive relationships and correlations. Previous reports of experimental AFP-derived peptides effects on various cell cycle proteins served to confirm and verify the present computer cell cycle protein identifications. Cell cycle protein interactions with AFP-CD peptides have been reported in cultured MCF-7 breast cancer cells subjected to mRNA microarray analysis. After 7 days in culture with MCF-7 cells, the AFP-derived peptides were shown to downregulate cyclin E, SKP2, checkpoint suppressors, cyclin-dependent kinases, and ubiquitin ligases that modulate cyclin E/CdK2 transition from the G1 to the S-phase of the cell cycle. Thus, the experimental data on AFP-CD interaction with cell cycle proteins were consistent with the “in silico” findings.
Literatur
1.
Zurück zum Zitat Mizejewski GJ. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med (Maywood). 2001;226:377–408. Mizejewski GJ. Alpha-fetoprotein structure and function: relevance to isoforms, epitopes, and conformational variants. Exp Biol Med (Maywood). 2001;226:377–408.
2.
Zurück zum Zitat Naidu S, Peterson ML, Spear BT. Alpha-fetoprotein related gene (ARG): a new member of the albumin gene family that is no longer functional in primates. Gene. 2010;449:95–102.PubMedCrossRef Naidu S, Peterson ML, Spear BT. Alpha-fetoprotein related gene (ARG): a new member of the albumin gene family that is no longer functional in primates. Gene. 2010;449:95–102.PubMedCrossRef
3.
Zurück zum Zitat Mizejewski GJ. Alpha-fetoprotein as a biologic response modifier: relevance to domain and subdomain structure. Proc Soc Exp Biol Med. 1997;215:333–62.PubMedCrossRef Mizejewski GJ. Alpha-fetoprotein as a biologic response modifier: relevance to domain and subdomain structure. Proc Soc Exp Biol Med. 1997;215:333–62.PubMedCrossRef
4.
Zurück zum Zitat Mizejewski GJ. Biological role of alpha-fetoprotein in cancer: prospects for anticancer therapy. Expert Rev Anticancer Ther. 2002;2:709–35.PubMedCrossRef Mizejewski GJ. Biological role of alpha-fetoprotein in cancer: prospects for anticancer therapy. Expert Rev Anticancer Ther. 2002;2:709–35.PubMedCrossRef
5.
Zurück zum Zitat Luft AJ, Lorscheider FL. Structural analysis of human and bovine alpha-fetoprotein by electron microscopy, image processing, and circular dichroism. Biochemistry. 1983;22:5978–81.PubMedCrossRef Luft AJ, Lorscheider FL. Structural analysis of human and bovine alpha-fetoprotein by electron microscopy, image processing, and circular dichroism. Biochemistry. 1983;22:5978–81.PubMedCrossRef
6.
Zurück zum Zitat Strop P, Zizkovsky V, Korcakova J, Havranova M, Mikes F. Conformational transitions of human alpha-1 fetoprotein and serum albumin at acid and alkaline pH. Int J Biochem. 1984;16:805–13.PubMedCrossRef Strop P, Zizkovsky V, Korcakova J, Havranova M, Mikes F. Conformational transitions of human alpha-1 fetoprotein and serum albumin at acid and alkaline pH. Int J Biochem. 1984;16:805–13.PubMedCrossRef
7.
Zurück zum Zitat Laderoute M, Willans D, Wegmann T, Longenecker M. The identification, isolation and characterization of a 67 kilodalton, PNA-reactive autoantigen commonly expressed in human adenocarcinomas. Anticancer Res. 1994;14:1233–45.PubMed Laderoute M, Willans D, Wegmann T, Longenecker M. The identification, isolation and characterization of a 67 kilodalton, PNA-reactive autoantigen commonly expressed in human adenocarcinomas. Anticancer Res. 1994;14:1233–45.PubMed
8.
Zurück zum Zitat Suzuki Y, Zeng CQ, Alpert E. Isolation and partial characterization of a specific alpha-fetoprotein receptor on human monocytes. J Clin Invest. 1992;90:1530–6.PubMedPubMedCentralCrossRef Suzuki Y, Zeng CQ, Alpert E. Isolation and partial characterization of a specific alpha-fetoprotein receptor on human monocytes. J Clin Invest. 1992;90:1530–6.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Moro R, Tamaoki T, Wegmann TG, Longenecker BM, Laderoute MP. Monoclonal antibodies directed against a widespread oncofetal antigen: the alpha-fetoprotein receptor. Tumour Biol. 1993;14:116–30.PubMedCrossRef Moro R, Tamaoki T, Wegmann TG, Longenecker BM, Laderoute MP. Monoclonal antibodies directed against a widespread oncofetal antigen: the alpha-fetoprotein receptor. Tumour Biol. 1993;14:116–30.PubMedCrossRef
10.
Zurück zum Zitat Torres JM, Darracq N, Uriel J. Membrane proteins from lymphoblastoid cells showing cross-affinity for alpha-fetoprotein and albumin. Isolation Charact Biochim Biophys Acta. 1992;1159:60–6.CrossRef Torres JM, Darracq N, Uriel J. Membrane proteins from lymphoblastoid cells showing cross-affinity for alpha-fetoprotein and albumin. Isolation Charact Biochim Biophys Acta. 1992;1159:60–6.CrossRef
11.
Zurück zum Zitat Atemezem A, Mbemba E, Marfaing R, Vaysse J, Pontet M, Saffar L, Charnaux N, Gattegno L. Human alpha-fetoprotein binds to primary macrophages. Biochem Biophys Res Commun. 2002;296:507–14.PubMedCrossRef Atemezem A, Mbemba E, Marfaing R, Vaysse J, Pontet M, Saffar L, Charnaux N, Gattegno L. Human alpha-fetoprotein binds to primary macrophages. Biochem Biophys Res Commun. 2002;296:507–14.PubMedCrossRef
12.
Zurück zum Zitat Mizejewski GJ. Review of the putative cell-surface receptors for alpha-fetoprotein: identification of a candidate receptor protein family. Tumour Biol. 2011;32:241–58.PubMedCrossRef Mizejewski GJ. Review of the putative cell-surface receptors for alpha-fetoprotein: identification of a candidate receptor protein family. Tumour Biol. 2011;32:241–58.PubMedCrossRef
13.
Zurück zum Zitat Mizejewski GJ. The adenocarcinoma cell surface mucin receptor for alpha-fetoprotein: is the same receptor present on circulating monocytes and macrophages? A commentary. Tumour Biol. 2014;35:7397–402.PubMedCrossRef Mizejewski GJ. The adenocarcinoma cell surface mucin receptor for alpha-fetoprotein: is the same receptor present on circulating monocytes and macrophages? A commentary. Tumour Biol. 2014;35:7397–402.PubMedCrossRef
14.
Zurück zum Zitat Mizejewski GJ. Nonsecreted cytoplasmic alpha-fetoprotein: a newly discovered role in intracellular signaling and regulation. An update and commentary. Tumor Biol. 2015:1–8. Mizejewski GJ. Nonsecreted cytoplasmic alpha-fetoprotein: a newly discovered role in intracellular signaling and regulation. An update and commentary. Tumor Biol. 2015:1–8.
15.
Zurück zum Zitat Posypanova GA, Gorokhovets NV, Makarov VA, Savvateeva LV, Kireeva NN, Severin SE, Severin ES. Recombinant alpha-fetoprotein C-terminal fragment: the new recombinant vector for targeted delivery. J Drug Target. 2008;16:321–8.PubMedCrossRef Posypanova GA, Gorokhovets NV, Makarov VA, Savvateeva LV, Kireeva NN, Severin SE, Severin ES. Recombinant alpha-fetoprotein C-terminal fragment: the new recombinant vector for targeted delivery. J Drug Target. 2008;16:321–8.PubMedCrossRef
16.
Zurück zum Zitat Godovannyi AV, Vorontsov EA, Gukasova NV, Pozdnyakova NV, Vasilenko EA, Yabbarov NG, Dubovik EG, Severin SE, Severin ES, Gnuchev NV. Targeted delivery of paclitaxel-loaded recombinant alpha-fetoprotein fragment-conjugated nanoparticles to tumor cells. Dokl Biochem Biophys. 2011;439:158–60.PubMedCrossRef Godovannyi AV, Vorontsov EA, Gukasova NV, Pozdnyakova NV, Vasilenko EA, Yabbarov NG, Dubovik EG, Severin SE, Severin ES, Gnuchev NV. Targeted delivery of paclitaxel-loaded recombinant alpha-fetoprotein fragment-conjugated nanoparticles to tumor cells. Dokl Biochem Biophys. 2011;439:158–60.PubMedCrossRef
17.
Zurück zum Zitat Posypanova GA, Makarov VA, Savvateeva MV, Bereznikova AV, Severin ES. The receptor binding fragment of alpha-fetoprotein is a promising new vector for the selective delivery of antineoplastic agents. J Drug Target. 2013;21:458–65.PubMedCrossRef Posypanova GA, Makarov VA, Savvateeva MV, Bereznikova AV, Severin ES. The receptor binding fragment of alpha-fetoprotein is a promising new vector for the selective delivery of antineoplastic agents. J Drug Target. 2013;21:458–65.PubMedCrossRef
18.
Zurück zum Zitat Yabbarov NG, Posypanova GA, Vorontsov EA, Obydenny SI, Severin ES. A new system for targeted delivery of doxorubicin into tumor cells. J Control Release. 2013;168:135–41.PubMedCrossRef Yabbarov NG, Posypanova GA, Vorontsov EA, Obydenny SI, Severin ES. A new system for targeted delivery of doxorubicin into tumor cells. J Control Release. 2013;168:135–41.PubMedCrossRef
19.
Zurück zum Zitat Mizejewski GJ, Mirowski M, Garnuszek P, Maurin M, Cohen BD, Poiesz BJ, Posypanova GA, Makarov VA, Severin ES, Severin SE. Targeted delivery of anti-cancer growth inhibitory peptides derived from human alpha-fetoprotein: review of an international multi-center collaborative study. J Drug Target. 2010;18:575–88.PubMedCrossRef Mizejewski GJ, Mirowski M, Garnuszek P, Maurin M, Cohen BD, Poiesz BJ, Posypanova GA, Makarov VA, Severin ES, Severin SE. Targeted delivery of anti-cancer growth inhibitory peptides derived from human alpha-fetoprotein: review of an international multi-center collaborative study. J Drug Target. 2010;18:575–88.PubMedCrossRef
20.
Zurück zum Zitat Mizejewski GJ. The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets. J Drug Target. 2015:1–14. Mizejewski GJ. The alpha-fetoprotein third domain receptor binding fragment: in search of scavenger and associated receptor targets. J Drug Target. 2015:1–14.
21.
Zurück zum Zitat Aussel C, Masseyeff R. Interaction of retinoids and bilirubin with the binding of arachidonic acid to human alpha-fetoprotein. Biochem Biophys Res Commun. 1984;119:1122–7.PubMedCrossRef Aussel C, Masseyeff R. Interaction of retinoids and bilirubin with the binding of arachidonic acid to human alpha-fetoprotein. Biochem Biophys Res Commun. 1984;119:1122–7.PubMedCrossRef
22.
Zurück zum Zitat Benassayag C, Savu L, Vallette G, Delorme J, Nunez EA. Relations between fatty acids and oestrogen binding properties of pure rat alpha 1-foetoprotein. Biochim Biophys Acta. 1979;587:227–37.PubMedCrossRef Benassayag C, Savu L, Vallette G, Delorme J, Nunez EA. Relations between fatty acids and oestrogen binding properties of pure rat alpha 1-foetoprotein. Biochim Biophys Acta. 1979;587:227–37.PubMedCrossRef
23.
Zurück zum Zitat Li C, Wang S, Jiang W, Li H, Liu Z, Zhang C, McNutt MA, Li G. Impact of intracellular alpha fetoprotein on retinoic acid receptors-mediated expression of GADD153 in human hepatoma cell lines. Int J Cancer. 2012;130:754–64.PubMedCrossRef Li C, Wang S, Jiang W, Li H, Liu Z, Zhang C, McNutt MA, Li G. Impact of intracellular alpha fetoprotein on retinoic acid receptors-mediated expression of GADD153 in human hepatoma cell lines. Int J Cancer. 2012;130:754–64.PubMedCrossRef
24.
Zurück zum Zitat Mizejewski GJ. Review of the adenocarcinoma cell surface receptor for human alpha-fetoprotein; proposed identification of a widespread mucin as the tumor cell receptor. Tumour Biol. 2013;34:1317–36.PubMedCrossRef Mizejewski GJ. Review of the adenocarcinoma cell surface receptor for human alpha-fetoprotein; proposed identification of a widespread mucin as the tumor cell receptor. Tumour Biol. 2013;34:1317–36.PubMedCrossRef
25.
Zurück zum Zitat Pardee AD, Hiroshi Y, Aaron P, Normolle DP, Vujanovic L, Mizejewski GJ, Watkins SC, Butterfield LH. Route of antigen delivery dictates the immunostimulatory activity of dendritic cell-based vaccines for hepatocellular carcinoma. J Immunother Cancer. 2015; In press. Pardee AD, Hiroshi Y, Aaron P, Normolle DP, Vujanovic L, Mizejewski GJ, Watkins SC, Butterfield LH. Route of antigen delivery dictates the immunostimulatory activity of dendritic cell-based vaccines for hepatocellular carcinoma. J Immunother Cancer. 2015; In press.
26.
Zurück zum Zitat Cooper GM. Chapter 14: the eukaryotic cell cycle; the cell: a molecular approach. Washington, DC: ASM Press; 2000. Cooper GM. Chapter 14: the eukaryotic cell cycle; the cell: a molecular approach. Washington, DC: ASM Press; 2000.
27.
Zurück zum Zitat Morgan DO. The cell cycle: principles of control. London: New Science Press in association with Oxford University Press; 2007. Morgan DO. The cell cycle: principles of control. London: New Science Press in association with Oxford University Press; 2007.
28.
Zurück zum Zitat Nigg EA. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays. 1995;17:471–80.PubMedCrossRef Nigg EA. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays. 1995;17:471–80.PubMedCrossRef
29.
Zurück zum Zitat Lilly MA, Duronio RJ. New insights into cell cycle control from the Drosophila endocycle. Oncogene. 2005;24:2765–75.PubMedCrossRef Lilly MA, Duronio RJ. New insights into cell cycle control from the Drosophila endocycle. Oncogene. 2005;24:2765–75.PubMedCrossRef
30.
Zurück zum Zitat Brown NR, Noble ME, Endicott JA, Johnson LN. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol. 1999;1:438–43.PubMedCrossRef Brown NR, Noble ME, Endicott JA, Johnson LN. The structural basis for specificity of substrate and recruitment peptides for cyclin-dependent kinases. Nat Cell Biol. 1999;1:438–43.PubMedCrossRef
31.
Zurück zum Zitat Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JE, Iversen ES, Hartemink AJ, Haase SB. Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature. 2008;453:944–7.PubMedPubMedCentralCrossRef Orlando DA, Lin CY, Bernard A, Wang JY, Socolar JE, Iversen ES, Hartemink AJ, Haase SB. Global control of cell-cycle transcription by coupled CDK and network oscillators. Nature. 2008;453:944–7.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Lazareva MN. Alpha-fetoprotein production by the synchronized regenerating murine liver. Its independence on the phases of the mitotic cycle. Oncodev Biol Med. 1981;2:89–99.PubMed Lazareva MN. Alpha-fetoprotein production by the synchronized regenerating murine liver. Its independence on the phases of the mitotic cycle. Oncodev Biol Med. 1981;2:89–99.PubMed
33.
Zurück zum Zitat Mizejewski GJ. Mechanism of cancer growth suppression of alpha-fetoprotein derived growth inhibitory peptides (GIP): comparison of GIP-34 versus GIP-8 (AFPep). Updates and prospects. Cancers (Basel). 2011;3:2709–33.CrossRef Mizejewski GJ. Mechanism of cancer growth suppression of alpha-fetoprotein derived growth inhibitory peptides (GIP): comparison of GIP-34 versus GIP-8 (AFPep). Updates and prospects. Cancers (Basel). 2011;3:2709–33.CrossRef
34.
Zurück zum Zitat Carter DC, He XM, Munson SH, Twigg PD, Gernert KM, Broom MB, Miller TY. Three-dimensional structure of human serum albumin. Science. 1989;244:1195–8.PubMedCrossRef Carter DC, He XM, Munson SH, Twigg PD, Gernert KM, Broom MB, Miller TY. Three-dimensional structure of human serum albumin. Science. 1989;244:1195–8.PubMedCrossRef
35.
Zurück zum Zitat Osmond RI, Das S, Crouch MF. Development of cell-based assays for cytokine receptor signaling, using an AlphaScreen SureFire assay format. Anal Biochem. 2010;403:94–101.PubMedCrossRef Osmond RI, Das S, Crouch MF. Development of cell-based assays for cytokine receptor signaling, using an AlphaScreen SureFire assay format. Anal Biochem. 2010;403:94–101.PubMedCrossRef
36.
Zurück zum Zitat Galderisi U, Jori FP, Giordano A. Cell cycle regulation and neural differentiation. Oncogene. 2003;22:5208–19.PubMedCrossRef Galderisi U, Jori FP, Giordano A. Cell cycle regulation and neural differentiation. Oncogene. 2003;22:5208–19.PubMedCrossRef
37.
Zurück zum Zitat Rahman MM, Kipreos ET. The specific roles of mitotic cyclins revealed. Cell Cycle. 2010;9:22–3.PubMedCrossRef Rahman MM, Kipreos ET. The specific roles of mitotic cyclins revealed. Cell Cycle. 2010;9:22–3.PubMedCrossRef
38.
Zurück zum Zitat Fung TK, Poon RY. A roller coaster ride with the mitotic cyclins. Semin Cell Dev Biol. 2005;16:335–42.PubMedCrossRef Fung TK, Poon RY. A roller coaster ride with the mitotic cyclins. Semin Cell Dev Biol. 2005;16:335–42.PubMedCrossRef
39.
Zurück zum Zitat Monty Krieger MPS, Matsudaira PT, Lodish HF, Darnell JE, LZipursky L, Kaiser C, Berk A. Molecular cell biology. Fifth ed. New York: W.H. Freeman and Co.; 2004. Monty Krieger MPS, Matsudaira PT, Lodish HF, Darnell JE, LZipursky L, Kaiser C, Berk A. Molecular cell biology. Fifth ed. New York: W.H. Freeman and Co.; 2004.
40.
Zurück zum Zitat Yang J, Song H, Walsh S, Bardes ES, Kornbluth S. Combinatorial control of cyclin B1 nuclear trafficking through phosphorylation at multiple sites. J Biol Chem. 2001;276:3604–9.PubMedCrossRef Yang J, Song H, Walsh S, Bardes ES, Kornbluth S. Combinatorial control of cyclin B1 nuclear trafficking through phosphorylation at multiple sites. J Biol Chem. 2001;276:3604–9.PubMedCrossRef
41.
Zurück zum Zitat Brown NR, Noble ME, Endicott JA, Garman EF, Wakatsuki S, Mitchell E, Rasmussen B, Hunt T, Johnson LN. The crystal structure of cyclin A. Structure. 1995;3:1235–47.PubMedCrossRef Brown NR, Noble ME, Endicott JA, Garman EF, Wakatsuki S, Mitchell E, Rasmussen B, Hunt T, Johnson LN. The crystal structure of cyclin A. Structure. 1995;3:1235–47.PubMedCrossRef
42.
Zurück zum Zitat Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble ME. Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. Structure. 2001;9:389–97.PubMedCrossRef Davies TG, Tunnah P, Meijer L, Marko D, Eisenbrand G, Endicott JA, Noble ME. Inhibitor binding to active and inactive CDK2: the crystal structure of CDK2-cyclin A/indirubin-5-sulphonate. Structure. 2001;9:389–97.PubMedCrossRef
43.
Zurück zum Zitat Yang R, Nakamaki T, Lubbert M, Said J, Sakashita A, Freyaldenhoven BS, Spira S, Huynh V, Muller C, Koeffler HP. Cyclin A1 expression in leukemia and normal hematopoietic cells. Blood. 1999;93:2067–74.PubMed Yang R, Nakamaki T, Lubbert M, Said J, Sakashita A, Freyaldenhoven BS, Spira S, Huynh V, Muller C, Koeffler HP. Cyclin A1 expression in leukemia and normal hematopoietic cells. Blood. 1999;93:2067–74.PubMed
44.
Zurück zum Zitat Ravnik SE, Wolgemuth DJ. Regulation of meiosis during mammalian spermatogenesis: the A-type cyclins and their associated cyclin-dependent kinases are differentially expressed in the germ-cell lineage. Dev Biol. 1999;207:408–18.PubMedCrossRef Ravnik SE, Wolgemuth DJ. Regulation of meiosis during mammalian spermatogenesis: the A-type cyclins and their associated cyclin-dependent kinases are differentially expressed in the germ-cell lineage. Dev Biol. 1999;207:408–18.PubMedCrossRef
45.
Zurück zum Zitat Pines J, Hunter T. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell. 1989;58:833–46.PubMedCrossRef Pines J, Hunter T. Isolation of a human cyclin cDNA: evidence for cyclin mRNA and protein regulation in the cell cycle and for interaction with p34cdc2. Cell. 1989;58:833–46.PubMedCrossRef
46.
47.
Zurück zum Zitat Kawamoto H, Koizumi H, Uchikoshi T. Expression of the G2-M checkpoint regulators cyclin B1 and cdc2 in nonmalignant and malignant human breast lesions: immunocytochemical and quantitative image analyses. Am J Pathol. 1997;150:15–23.PubMedPubMedCentral Kawamoto H, Koizumi H, Uchikoshi T. Expression of the G2-M checkpoint regulators cyclin B1 and cdc2 in nonmalignant and malignant human breast lesions: immunocytochemical and quantitative image analyses. Am J Pathol. 1997;150:15–23.PubMedPubMedCentral
48.
Zurück zum Zitat Wang A, Yoshimi N, Ino N, Tanaka T, Mori H. Overexpression of cyclin B1 in human colorectal cancers. J Cancer Res Clin Oncol. 1997;123:124–7.PubMedCrossRef Wang A, Yoshimi N, Ino N, Tanaka T, Mori H. Overexpression of cyclin B1 in human colorectal cancers. J Cancer Res Clin Oncol. 1997;123:124–7.PubMedCrossRef
49.
Zurück zum Zitat Mashal RD, Lester S, Corless C, Richie JP, Chandra R, Propert KJ, Dutta A. Expression of cell cycle-regulated proteins in prostate cancer. Cancer Res. 1996;56:4159–63.PubMed Mashal RD, Lester S, Corless C, Richie JP, Chandra R, Propert KJ, Dutta A. Expression of cell cycle-regulated proteins in prostate cancer. Cancer Res. 1996;56:4159–63.PubMed
50.
Zurück zum Zitat Inaba T, Matsushime H, Valentine M, Roussel MF, Sherr CJ, Look AT. Genomic organization, chromosomal localization, and independent expression of human cyclin D genes. Genomics. 1992;13:565–74.PubMedCrossRef Inaba T, Matsushime H, Valentine M, Roussel MF, Sherr CJ, Look AT. Genomic organization, chromosomal localization, and independent expression of human cyclin D genes. Genomics. 1992;13:565–74.PubMedCrossRef
51.
Zurück zum Zitat Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 1993;7:812–21.PubMedCrossRef Baldin V, Lukas J, Marcote MJ, Pagano M, Draetta G. Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev. 1993;7:812–21.PubMedCrossRef
52.
Zurück zum Zitat Nakajima K, Crisma AR, Silva GB, Rogero MM, Fock RA, Borelli P. Malnutrition suppresses cell cycle progression of hematopoietic progenitor cells in mice via cyclin D1 down-regulation. Nutrition. 2014;30:82–9.PubMedCrossRef Nakajima K, Crisma AR, Silva GB, Rogero MM, Fock RA, Borelli P. Malnutrition suppresses cell cycle progression of hematopoietic progenitor cells in mice via cyclin D1 down-regulation. Nutrition. 2014;30:82–9.PubMedCrossRef
53.
Zurück zum Zitat Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007;7:750–62.PubMedCrossRef Jares P, Colomer D, Campo E. Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer. 2007;7:750–62.PubMedCrossRef
54.
Zurück zum Zitat Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997;88:405–15.PubMedCrossRef Zwijsen RM, Wientjens E, Klompmaker R, van der Sman J, Bernards R, Michalides RJ. CDK-independent activation of estrogen receptor by cyclin D1. Cell. 1997;88:405–15.PubMedCrossRef
55.
Zurück zum Zitat Morris L, Allen KE, La Thangue NB. Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP co-activators. Nat Cell Biol. 2000;2:232–9.PubMedCrossRef Morris L, Allen KE, La Thangue NB. Regulation of E2F transcription by cyclin E-Cdk2 kinase mediated through p300/CBP co-activators. Nat Cell Biol. 2000;2:232–9.PubMedCrossRef
56.
Zurück zum Zitat Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res. 1996;68:67–108.PubMedCrossRef Hall M, Peters G. Genetic alterations of cyclins, cyclin-dependent kinases, and Cdk inhibitors in human cancer. Adv Cancer Res. 1996;68:67–108.PubMedCrossRef
57.
Zurück zum Zitat Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell. 2002;3:339–50.PubMedCrossRef Chen Z, Indjeian VB, McManus M, Wang L, Dynlacht BD. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev Cell. 2002;3:339–50.PubMedCrossRef
58.
Zurück zum Zitat Cooley A, Zelivianski S, Jeruss JS. Impact of cyclin E overexpression on Smad3 activity in breast cancer cell lines. Cell Cycle. 2010;9:4900–7.PubMedPubMedCentralCrossRef Cooley A, Zelivianski S, Jeruss JS. Impact of cyclin E overexpression on Smad3 activity in breast cancer cell lines. Cell Cycle. 2010;9:4900–7.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Kitahara K, Yasui W, Kuniyasu H, Yokozaki H, Akama Y, Yunotani S, Hisatsugu T, Tahara E. Concurrent amplification of cyclin E and CDK2 genes in colorectal carcinomas. Int J Cancer. 1995;62:25–8.PubMedCrossRef Kitahara K, Yasui W, Kuniyasu H, Yokozaki H, Akama Y, Yunotani S, Hisatsugu T, Tahara E. Concurrent amplification of cyclin E and CDK2 genes in colorectal carcinomas. Int J Cancer. 1995;62:25–8.PubMedCrossRef
60.
Zurück zum Zitat Huang LN, Wang DS, Chen YQ, Li W, Hu FD, Gong BL, Zhao CL, Jia W. Meta-analysis for cyclin E in lung cancer survival. Clin Chim Acta. 2012;413:663–8.PubMedCrossRef Huang LN, Wang DS, Chen YQ, Li W, Hu FD, Gong BL, Zhao CL, Jia W. Meta-analysis for cyclin E in lung cancer survival. Clin Chim Acta. 2012;413:663–8.PubMedCrossRef
61.
Zurück zum Zitat Tassan JP, Jaquenoud M, Fry AM, Frutiger S, Hughes GJ, Nigg EA. In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 kDa RING finger protein. EMBO J. 1995;14:5608–17.PubMedPubMedCentral Tassan JP, Jaquenoud M, Fry AM, Frutiger S, Hughes GJ, Nigg EA. In vitro assembly of a functional human CDK7-cyclin H complex requires MAT1, a novel 36 kDa RING finger protein. EMBO J. 1995;14:5608–17.PubMedPubMedCentral
62.
Zurück zum Zitat Fisher RP, Morgan DO. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell. 1994;78:713–24.PubMedCrossRef Fisher RP, Morgan DO. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell. 1994;78:713–24.PubMedCrossRef
63.
Zurück zum Zitat Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell. 1994;79:1103–9.PubMedCrossRef Feaver WJ, Svejstrup JQ, Henry NL, Kornberg RD. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell. 1994;79:1103–9.PubMedCrossRef
64.
Zurück zum Zitat De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH. Crystal structure of cyclin-dependent kinase 2. Nature. 1993;363:595–602.PubMedCrossRef De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH. Crystal structure of cyclin-dependent kinase 2. Nature. 1993;363:595–602.PubMedCrossRef
65.
Zurück zum Zitat Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP. Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature. 1995;376:313–20.PubMedCrossRef Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP. Mechanism of CDK activation revealed by the structure of a cyclin A-CDK2 complex. Nature. 1995;376:313–20.PubMedCrossRef
66.
67.
Zurück zum Zitat Tsai LH, Harlow E, Meyerson M. Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature. 1991;353:174–7.PubMedCrossRef Tsai LH, Harlow E, Meyerson M. Isolation of the human cdk2 gene that encodes the cyclin A- and adenovirus E1A-associated p33 kinase. Nature. 1991;353:174–7.PubMedCrossRef
68.
Zurück zum Zitat Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science. 1992;257:1689–94.PubMedCrossRef Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM. Formation and activation of a cyclin E-cdk2 complex during the G1 phase of the human cell cycle. Science. 1992;257:1689–94.PubMedCrossRef
69.
Zurück zum Zitat Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG, Melchior F, Hengst L, Slingerland JM. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell. 2003;14:201–13.PubMedPubMedCentralCrossRef Connor MK, Kotchetkov R, Cariou S, Resch A, Lupetti R, Beniston RG, Melchior F, Hengst L, Slingerland JM. CRM1/Ran-mediated nuclear export of p27(Kip1) involves a nuclear export signal and links p27 export and proteolysis. Mol Biol Cell. 2003;14:201–13.PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993;7:331–42.PubMedCrossRef Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev. 1993;7:331–42.PubMedCrossRef
71.
Zurück zum Zitat Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, Slingerland JM. Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci U S A. 2000;97:9042–6.PubMedPubMedCentralCrossRef Cariou S, Donovan JC, Flanagan WM, Milic A, Bhattacharya N, Slingerland JM. Down-regulation of p21WAF1/CIP1 or p27Kip1 abrogates antiestrogen-mediated cell cycle arrest in human breast cancer cells. Proc Natl Acad Sci U S A. 2000;97:9042–6.PubMedPubMedCentralCrossRef
72.
Zurück zum Zitat Xiong Y, Zhang H, Beach D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 1993;7:1572–83.PubMedCrossRef Xiong Y, Zhang H, Beach D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 1993;7:1572–83.PubMedCrossRef
74.
75.
Zurück zum Zitat Lin J, Jinno S, Okayama H. Cdk6-cyclin D3 complex evades inhibition by inhibitor proteins and uniquely controls cell’s proliferation competence. Oncogene. 2001;20:2000–9.PubMedCrossRef Lin J, Jinno S, Okayama H. Cdk6-cyclin D3 complex evades inhibition by inhibitor proteins and uniquely controls cell’s proliferation competence. Oncogene. 2001;20:2000–9.PubMedCrossRef
76.
Zurück zum Zitat Chen P, Luo C, Deng Y, Ryan K, Register J, Margosiak S, Tempczyk-Russell A, Nguyen B, Myers P, Lundgren K, Kan CC, O’Connor PM. The 1.7 A crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation. Cell. 2000;100:681–92.PubMedCrossRef Chen P, Luo C, Deng Y, Ryan K, Register J, Margosiak S, Tempczyk-Russell A, Nguyen B, Myers P, Lundgren K, Kan CC, O’Connor PM. The 1.7 A crystal structure of human cell cycle checkpoint kinase Chk1: implications for Chk1 regulation. Cell. 2000;100:681–92.PubMedCrossRef
77.
Zurück zum Zitat Cai L, Struk B, Adams MD, Ji W, Haaf T, Kang HL, Dho SH, Xu X, Ringpfeil F, Nancarrow J, Zach S, Schaen L, Stumm M, Niu T, Chung J, Lunze K, Verrecchia B, Goldsmith LA, Viljoen D, Figuera LE, Fuchs W, Lebwohl M, Uitto J, Richards R, Hohl D, Ramesar R. A 500-kb region on chromosome 16p13.1 contains the pseudoxanthoma elasticum locus: high-resolution mapping and genomic structure. J Mol Med (Berl). 2000;78:36–46.CrossRef Cai L, Struk B, Adams MD, Ji W, Haaf T, Kang HL, Dho SH, Xu X, Ringpfeil F, Nancarrow J, Zach S, Schaen L, Stumm M, Niu T, Chung J, Lunze K, Verrecchia B, Goldsmith LA, Viljoen D, Figuera LE, Fuchs W, Lebwohl M, Uitto J, Richards R, Hohl D, Ramesar R. A 500-kb region on chromosome 16p13.1 contains the pseudoxanthoma elasticum locus: high-resolution mapping and genomic structure. J Mol Med (Berl). 2000;78:36–46.CrossRef
78.
Zurück zum Zitat le Sage C, Nagel R, Agami R. Diverse ways to control p27Kip1 function: miRNAs come into play. Cell Cycle. 2007;6:2742–9.PubMedCrossRef le Sage C, Nagel R, Agami R. Diverse ways to control p27Kip1 function: miRNAs come into play. Cell Cycle. 2007;6:2742–9.PubMedCrossRef
79.
Zurück zum Zitat Fujita M, Yamada C, Goto H, Yokoyama N, Kuzushima K, Inagaki M, Tsurumi T. Cell cycle regulation of human CDC6 protein. Intracellular localization, interaction with the human mcm complex, and CDC2 kinase-mediated hyperphosphorylation. J Biol Chem. 1999;274:25927–32.PubMedCrossRef Fujita M, Yamada C, Goto H, Yokoyama N, Kuzushima K, Inagaki M, Tsurumi T. Cell cycle regulation of human CDC6 protein. Intracellular localization, interaction with the human mcm complex, and CDC2 kinase-mediated hyperphosphorylation. J Biol Chem. 1999;274:25927–32.PubMedCrossRef
80.
Zurück zum Zitat Madine MA, Khoo CY, Mills AD, Laskey RA. MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells. Nature. 1995;375:421–4.PubMedCrossRef Madine MA, Khoo CY, Mills AD, Laskey RA. MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells. Nature. 1995;375:421–4.PubMedCrossRef
82.
Zurück zum Zitat Kimura Y, Tanaka K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem. 2010;147:793–8.PubMedCrossRef Kimura Y, Tanaka K. Regulatory mechanisms involved in the control of ubiquitin homeostasis. J Biochem. 2010;147:793–8.PubMedCrossRef
83.
Zurück zum Zitat Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82:373–428.PubMedCrossRef Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82:373–428.PubMedCrossRef
84.
Zurück zum Zitat Peters JM, Franke WW, Kleinschmidt JA. Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem. 1994;269:7709–18.PubMed Peters JM, Franke WW, Kleinschmidt JA. Distinct 19 S and 20 S subcomplexes of the 26 S proteasome and their distribution in the nucleus and the cytoplasm. J Biol Chem. 1994;269:7709–18.PubMed
86.
Zurück zum Zitat Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell. 2003;115:71–82.PubMedCrossRef Bloom J, Amador V, Bartolini F, DeMartino G, Pagano M. Proteasome-mediated degradation of p21 via N-terminal ubiquitinylation. Cell. 2003;115:71–82.PubMedCrossRef
87.
Zurück zum Zitat Chang L, Zhang Z, Yang J, McLaughlin SH, Barford D. Molecular architecture and mechanism of the anaphase-promoting complex. Nature. 2014;513:388–93.PubMedPubMedCentralCrossRef Chang L, Zhang Z, Yang J, McLaughlin SH, Barford D. Molecular architecture and mechanism of the anaphase-promoting complex. Nature. 2014;513:388–93.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit Cullin-dependent ubiquitin ligases. Cell. 2004;119:517–28.PubMedCrossRef Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J, Xiong Y, Zheng N. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit Cullin-dependent ubiquitin ligases. Cell. 2004;119:517–28.PubMedCrossRef
89.
Zurück zum Zitat Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002;416:703–9.PubMedCrossRef Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD, Wang P, Chu C, Koepp DM, Elledge SJ, Pagano M, Conaway RC, Conaway JW, Harper JW, Pavletich NP. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature. 2002;416:703–9.PubMedCrossRef
90.
Zurück zum Zitat Lisztwan J, Marti A, Sutterluty H, Gstaiger M, Wirbelauer C, Krek W. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J. 1998;17:368–83.PubMedPubMedCentralCrossRef Lisztwan J, Marti A, Sutterluty H, Gstaiger M, Wirbelauer C, Krek W. Association of human CUL-1 and ubiquitin-conjugating enzyme CDC34 with the F-box protein p45(SKP2): evidence for evolutionary conservation in the subunit composition of the CDC34-SCF pathway. EMBO J. 1998;17:368–83.PubMedPubMedCentralCrossRef
91.
Zurück zum Zitat Tsukada Y, Hirai H. Alpha-fetoprotein and albumin synthesis during the cell cycle. Ann N Y Acad Sci. 1975;259:37–44.PubMedCrossRef Tsukada Y, Hirai H. Alpha-fetoprotein and albumin synthesis during the cell cycle. Ann N Y Acad Sci. 1975;259:37–44.PubMedCrossRef
92.
Zurück zum Zitat Sell S, Skelly H, Leffert HL, Muller-Eberhard U, Kida S. Relationship of the biosynthesis of alpha-fetoprotein, albumin, hemopexin, and haptoglobin to the growth state of fetal rat hepatocyte cultures. Ann N Y Acad Sci. 1975;259:45–58.PubMedCrossRef Sell S, Skelly H, Leffert HL, Muller-Eberhard U, Kida S. Relationship of the biosynthesis of alpha-fetoprotein, albumin, hemopexin, and haptoglobin to the growth state of fetal rat hepatocyte cultures. Ann N Y Acad Sci. 1975;259:45–58.PubMedCrossRef
93.
Zurück zum Zitat Tuczek HV, Fritz P, Wagner T, Grau A, Braun U, Wegner G. Investigations concerning the correlation between liver cell proliferation, production of alpha-fetoprotein, and DNA-synthesis of lymphocytes in the spleen of NMRI-mice. An autoradiographic and immunohistochemical study. Pathol Res Pract. 1984;178:335–8.PubMedCrossRef Tuczek HV, Fritz P, Wagner T, Grau A, Braun U, Wegner G. Investigations concerning the correlation between liver cell proliferation, production of alpha-fetoprotein, and DNA-synthesis of lymphocytes in the spleen of NMRI-mice. An autoradiographic and immunohistochemical study. Pathol Res Pract. 1984;178:335–8.PubMedCrossRef
94.
Zurück zum Zitat Tuczek HV, Fritz P, Wagner T, Braun U, Grau A, Wegner G. Synthesis of alpha-fetoprotein (AFP) and cell proliferation in regenerating livers of NMRI mice after partial hepatectomy. An immunohistochemical and autoradiographic study with 3H-thymidine. Virchows Arch B Cell Pathol Incl Mol Pathol. 1981;38:229–37.PubMedCrossRef Tuczek HV, Fritz P, Wagner T, Braun U, Grau A, Wegner G. Synthesis of alpha-fetoprotein (AFP) and cell proliferation in regenerating livers of NMRI mice after partial hepatectomy. An immunohistochemical and autoradiographic study with 3H-thymidine. Virchows Arch B Cell Pathol Incl Mol Pathol. 1981;38:229–37.PubMedCrossRef
95.
Zurück zum Zitat Sasaki K, Murakami T, Kawasaki S, Okita K, Takemoto T, Takahashi M. Change of alpha-fetoprotein content during cell cycle of human hepatoma cells in vitro: flow cytometric analysis. Tumour Biol. 1986;6:483–9.PubMed Sasaki K, Murakami T, Kawasaki S, Okita K, Takemoto T, Takahashi M. Change of alpha-fetoprotein content during cell cycle of human hepatoma cells in vitro: flow cytometric analysis. Tumour Biol. 1986;6:483–9.PubMed
96.
Zurück zum Zitat Iida H, Honda M, Kawai HF, Yamashita T, Shirota Y, Wang BC, Miao H, Kaneko S. Ephrin-A1 expression contributes to the malignant characteristics of {alpha}-fetoprotein producing hepatocellular carcinoma. Gut. 2005;54:843–51.PubMedPubMedCentralCrossRef Iida H, Honda M, Kawai HF, Yamashita T, Shirota Y, Wang BC, Miao H, Kaneko S. Ephrin-A1 expression contributes to the malignant characteristics of {alpha}-fetoprotein producing hepatocellular carcinoma. Gut. 2005;54:843–51.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Tang H, Tang XY, Liu M, Li X. Targeting alpha-fetoprotein represses the proliferation of hepatoma cells via regulation of the cell cycle. Clin Chim Acta. 2008;394:81–8.PubMedCrossRef Tang H, Tang XY, Liu M, Li X. Targeting alpha-fetoprotein represses the proliferation of hepatoma cells via regulation of the cell cycle. Clin Chim Acta. 2008;394:81–8.PubMedCrossRef
98.
Zurück zum Zitat Li MS, Li PF, Li G, Du GG. Enhancement of proliferation of HeLa cells by the alpha-fetoprotein. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2002;34:769–74. Li MS, Li PF, Li G, Du GG. Enhancement of proliferation of HeLa cells by the alpha-fetoprotein. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2002;34:769–74.
99.
Zurück zum Zitat Allen RP, Ledford BE. The influence of antisera specific for alpha-fetoprotein and mouse serum albumin on the viability and protein synthesis of cultured mouse hepatoma cells. Cancer Res. 1977;37:696–701.PubMed Allen RP, Ledford BE. The influence of antisera specific for alpha-fetoprotein and mouse serum albumin on the viability and protein synthesis of cultured mouse hepatoma cells. Cancer Res. 1977;37:696–701.PubMed
100.
Zurück zum Zitat Ohkawa K, Tsukada Y, Hirai H. Effect of antibody to rat alpha-fetoprotein (AFP) on protein and DNA synthesis of rat ascites hepatoma AH66 cells. Gan To Kagaku Ryoho. 1984;11:227–34.PubMed Ohkawa K, Tsukada Y, Hirai H. Effect of antibody to rat alpha-fetoprotein (AFP) on protein and DNA synthesis of rat ascites hepatoma AH66 cells. Gan To Kagaku Ryoho. 1984;11:227–34.PubMed
101.
Zurück zum Zitat Zeleny M, Navratilova A, Kamycek Z, Vlk Z. Relation of hearing disorders to the acoustic composition of the working environment of musicians in a wind orchestra. Cesk Otolaryngol. 1975;24:295–9.PubMed Zeleny M, Navratilova A, Kamycek Z, Vlk Z. Relation of hearing disorders to the acoustic composition of the working environment of musicians in a wind orchestra. Cesk Otolaryngol. 1975;24:295–9.PubMed
102.
Zurück zum Zitat Yano H, Basaki Y, Oie S, Ogasawara S, Momosaki S, Akiba J, Nishida N, Kojiro S, Ishizaki H, Moriya F, Kuratomi K, Fukahori S, Kuwano M, Kojiro M. Effects of IFN-alpha on alpha-fetoprotein expressions in hepatocellular carcinoma cells. J Interf Cytokine Res. 2007;27:231–8.CrossRef Yano H, Basaki Y, Oie S, Ogasawara S, Momosaki S, Akiba J, Nishida N, Kojiro S, Ishizaki H, Moriya F, Kuratomi K, Fukahori S, Kuwano M, Kojiro M. Effects of IFN-alpha on alpha-fetoprotein expressions in hepatocellular carcinoma cells. J Interf Cytokine Res. 2007;27:231–8.CrossRef
103.
Zurück zum Zitat Cook JR, Schwartz CE, Fausel ED, Chiu JF. Effect of sodium butyrate on alpha-fetoprotein gene expression in rat hepatoma cells in vitro. Cancer Res. 1985;45:3215–9.PubMed Cook JR, Schwartz CE, Fausel ED, Chiu JF. Effect of sodium butyrate on alpha-fetoprotein gene expression in rat hepatoma cells in vitro. Cancer Res. 1985;45:3215–9.PubMed
104.
Zurück zum Zitat Hida D, Nakata K, Shima Y, Migita K, Nakao K, Kato Y, Ishii N, Eguchi K. Suppression of albumin and alpha-fetoprotein gene expression by butyrolactone I, a selective inhibitor of the cdk family, in HuH-7 human hepatoma cells. Anticancer Res. 1998;18:4317–22.PubMed Hida D, Nakata K, Shima Y, Migita K, Nakao K, Kato Y, Ishii N, Eguchi K. Suppression of albumin and alpha-fetoprotein gene expression by butyrolactone I, a selective inhibitor of the cdk family, in HuH-7 human hepatoma cells. Anticancer Res. 1998;18:4317–22.PubMed
105.
Zurück zum Zitat Motavaf M, Safari S, Saffari Jourshari M, Alavian SM. Hepatitis B virus-induced hepatocellular carcinoma: the role of the virus × protein. Acta Virol. 2013;57:389–96.PubMedCrossRef Motavaf M, Safari S, Saffari Jourshari M, Alavian SM. Hepatitis B virus-induced hepatocellular carcinoma: the role of the virus × protein. Acta Virol. 2013;57:389–96.PubMedCrossRef
106.
Zurück zum Zitat Zhu M, Guo J, Li W, Lu Y, Fu S, Xie X, Xia H, Dong X, Chen Y, Quan M, Zheng S, Xie K, Li M. Hepatitis B virus X protein induces expression of alpha-fetoprotein and activates PI3K/mTOR signaling pathway in liver cells. Oncotarget 2015; Zhu M, Guo J, Li W, Lu Y, Fu S, Xie X, Xia H, Dong X, Chen Y, Quan M, Zheng S, Xie K, Li M. Hepatitis B virus X protein induces expression of alpha-fetoprotein and activates PI3K/mTOR signaling pathway in liver cells. Oncotarget 2015;
107.
Zurück zum Zitat Zhang C, Chen X, Liu H, Li H, Jiang W, Hou W, McNutt MA, Lu F, Li G. Alpha fetoprotein mediates HBx induced carcinogenesis in the hepatocyte cytoplasm. Int J Cancer. 2015; Zhang C, Chen X, Liu H, Li H, Jiang W, Hou W, McNutt MA, Lu F, Li G. Alpha fetoprotein mediates HBx induced carcinogenesis in the hepatocyte cytoplasm. Int J Cancer. 2015;
109.
Zurück zum Zitat Saxena N, Kumar V. The HBx oncoprotein of hepatitis B virus deregulates the cell cycle by promoting the intracellular accumulation and re-compartmentalization of the cellular deubiquitinase USP37. PLoS One. 2014;9:e111256.PubMedPubMedCentralCrossRef Saxena N, Kumar V. The HBx oncoprotein of hepatitis B virus deregulates the cell cycle by promoting the intracellular accumulation and re-compartmentalization of the cellular deubiquitinase USP37. PLoS One. 2014;9:e111256.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Muehlemann M, Miller KD, Dauphinee M, Mizejewski GJ. Review of growth inhibitory peptide as a biotherapeutic agent for tumor growth, adhesion, and metastasis. Cancer Metastasis Rev. 2005;24:441–67.PubMedCrossRef Muehlemann M, Miller KD, Dauphinee M, Mizejewski GJ. Review of growth inhibitory peptide as a biotherapeutic agent for tumor growth, adhesion, and metastasis. Cancer Metastasis Rev. 2005;24:441–67.PubMedCrossRef
111.
Zurück zum Zitat Mizejewski GJ, MacColl R. Alpha-fetoprotein growth inhibitory peptides: potential leads for cancer therapeutics. Mol Cancer Ther. 2003;2:1243–55.PubMed Mizejewski GJ, MacColl R. Alpha-fetoprotein growth inhibitory peptides: potential leads for cancer therapeutics. Mol Cancer Ther. 2003;2:1243–55.PubMed
112.
Zurück zum Zitat Mizejewski GJ. The alpha-fetoprotein-derived growth inhibitory peptide 8-mer fragment: review of a novel anticancer agent. Cancer Biother Radiopharm. 2007;22:73–98.PubMedCrossRef Mizejewski GJ. The alpha-fetoprotein-derived growth inhibitory peptide 8-mer fragment: review of a novel anticancer agent. Cancer Biother Radiopharm. 2007;22:73–98.PubMedCrossRef
113.
Zurück zum Zitat Mizejewski GJ, King M, Wonderlin WF, Wondergem R, Arcaro K. Cancer cell targeted delivery of growth inhibitory peptides derived from alpha-fetoprotein: review of an international multi-center collaborative study. Troy, NY: New Frontiers in Breast Cancer Research and Prevention; 2010. p. 8. Mizejewski GJ, King M, Wonderlin WF, Wondergem R, Arcaro K. Cancer cell targeted delivery of growth inhibitory peptides derived from alpha-fetoprotein: review of an international multi-center collaborative study. Troy, NY: New Frontiers in Breast Cancer Research and Prevention; 2010. p. 8.
114.
Zurück zum Zitat Turk C, Wong CH, Gozgit JM, Fagen-Solis K, Mizejewski GJ, Arcaro JM. Alpha-fetoprotein-derived peptide decreases cyclin-E expression, and p27 (KIP1) degradation in MCF-7 breast cancer cells. Troy, NY: Conference on Cancer Genomics; 2008. p. 29. Turk C, Wong CH, Gozgit JM, Fagen-Solis K, Mizejewski GJ, Arcaro JM. Alpha-fetoprotein-derived peptide decreases cyclin-E expression, and p27 (KIP1) degradation in MCF-7 breast cancer cells. Troy, NY: Conference on Cancer Genomics; 2008. p. 29.
115.
Zurück zum Zitat Turk C, Wong C, Gozgit JM, Muehlemann M, Reece MT, Mizejewski JJ, Arcaro KF. Alpha-fetoprotein derived growth inhibitory peptide (GIP) inhibits expression of cyclin E1. Proc Amer Assoc Cancer Res. 2006;47:66. Turk C, Wong C, Gozgit JM, Muehlemann M, Reece MT, Mizejewski JJ, Arcaro KF. Alpha-fetoprotein derived growth inhibitory peptide (GIP) inhibits expression of cyclin E1. Proc Amer Assoc Cancer Res. 2006;47:66.
116.
Zurück zum Zitat Sierralta WD, Epunan MJ, Reyes JM, Valladares LE, Pino AM. A synthetic peptide derived from alpha-fetoprotein inhibits the estradiol-induced proliferation of mammary tumor cells in culture through the modulation of p21. Adv Exp Med Biol. 2008;617:463–8.PubMedCrossRef Sierralta WD, Epunan MJ, Reyes JM, Valladares LE, Pino AM. A synthetic peptide derived from alpha-fetoprotein inhibits the estradiol-induced proliferation of mammary tumor cells in culture through the modulation of p21. Adv Exp Med Biol. 2008;617:463–8.PubMedCrossRef
117.
Zurück zum Zitat Mizejewski GJ. Alpha-fetoprotein (AFP) third domain fragments: Mapping AFP interaction sites with selective and non-selective cation channels. Current Topics in Peptide and Protein Research. 2016;(in press): Mizejewski GJ. Alpha-fetoprotein (AFP) third domain fragments: Mapping AFP interaction sites with selective and non-selective cation channels. Current Topics in Peptide and Protein Research. 2016;(in press):
118.
Zurück zum Zitat Mizejewski GJ. Review of third domain receptor binding fragment of AFP: plausible binding to lysophosliplipid receptor target. Curr Drug Targets. (in press); Mizejewski GJ. Review of third domain receptor binding fragment of AFP: plausible binding to lysophosliplipid receptor target. Curr Drug Targets. (in press);
Metadaten
Titel
The alpha-fetoprotein (AFP) third domain: a search for AFP interaction sites of cell cycle proteins
verfasst von
G. J. Mizejewski
Publikationsdatum
22.07.2016
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 9/2016
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-016-5131-x

Weitere Artikel der Ausgabe 9/2016

Tumor Biology 9/2016 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.