Skip to main content
Erschienen in: Inflammation 2/2017

02.12.2016 | ORIGINAL ARTICLE

The Anti-inflammatory Activities of Two Major Withanolides from Physalis minima Via Acting on NF-κB, STAT3, and HO-1 in LPS-Stimulated RAW264.7 Cells

verfasst von: Rui-Jun Li, Cai-Yun Gao, Chao Guo, Miao-Miao Zhou, Jun Luo, Ling-Yi Kong

Erschienen in: Inflammation | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

Physalis minima has been traditionally used as a folk herbal medicine in China for the treatment of many inflammatory diseases. However, little is known about its anti-inflammatory constituents and associated molecular mechanisms. In our study, withaphysalin A (WA) and 2, 3-dihydro-withaphysalin C (WC), two major withanolide-type compounds, were obtained from the anti-inflammatory fraction of P. minima. Both WA and WC significantly inhibited the production of nitrite oxide (NO), prostaglandin E2 (PGE2), and several pro-inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) in lipopolysaccharide (LPS)-activated RAW264.7 macrophages. Further research indicated that they downregulated the LPS-induced expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, they also suppressed nuclear translocation of NF-κB p65, phosphorylation of STAT3, and upregulated HO-1 expression. Intriguingly, the activation of MAPKs was suppressed by WA but was not altered by WC. Taken together, these data provide scientific evidence for elucidating the major bioactive constituents and related molecular mechanisms for the traditional use of P. minima and suggest that WA and WC can be attractive therapeutic candidates for various inflammatory diseases.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Calder, P.C. 2010. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. American Journal of Clinical Nutrition 83: 77–109. Calder, P.C. 2010. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. American Journal of Clinical Nutrition 83: 77–109.
2.
Zurück zum Zitat Ran, S., and K.E. Montgomery. 2012. Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors. Cancers 4: 618–657.CrossRefPubMedPubMedCentral Ran, S., and K.E. Montgomery. 2012. Macrophage-mediated lymphangiogenesis: the emerging role of macrophages as lymphatic endothelial progenitors. Cancers 4: 618–657.CrossRefPubMedPubMedCentral
3.
Zurück zum Zitat Lawrence, T.D., A. Willoughby, and D.W. Gilroy. 2002. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nature Reviews Immunology 2: 787–795.CrossRefPubMed Lawrence, T.D., A. Willoughby, and D.W. Gilroy. 2002. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nature Reviews Immunology 2: 787–795.CrossRefPubMed
4.
Zurück zum Zitat Ariel, A., and C.N. Serhan. 2007. Resolvins and protectins in the termination program of acute inflammation. Trends in Immunology 28: 176–183.CrossRefPubMed Ariel, A., and C.N. Serhan. 2007. Resolvins and protectins in the termination program of acute inflammation. Trends in Immunology 28: 176–183.CrossRefPubMed
5.
Zurück zum Zitat Chen, L., H. Teng, T. Fang, and J. Xiao. 2016. Agrimonolide from Agrimonia pilosa suppresses inflammatory responses through down-regulation of COX-2/iNOS and inactivation of NF-κB in lipopolysaccharide-stimulated macrophages. Phytomedicine 23: 846–855.CrossRefPubMed Chen, L., H. Teng, T. Fang, and J. Xiao. 2016. Agrimonolide from Agrimonia pilosa suppresses inflammatory responses through down-regulation of COX-2/iNOS and inactivation of NF-κB in lipopolysaccharide-stimulated macrophages. Phytomedicine 23: 846–855.CrossRefPubMed
6.
Zurück zum Zitat Kyriakis, J.M., and J. Avruch. 2012. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiological Reviews 92: 689–737.CrossRefPubMed Kyriakis, J.M., and J. Avruch. 2012. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiological Reviews 92: 689–737.CrossRefPubMed
7.
Zurück zum Zitat Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787.CrossRefPubMed Aderem, A., and R.J. Ulevitch. 2000. Toll-like receptors in the induction of the innate immune response. Nature 406: 782–787.CrossRefPubMed
8.
Zurück zum Zitat Pinho-Ribeiro, F.A., A.C. Zarpelon, S.S. Mizokami, S.M. Borghi, J. Bordignon, R.L. Silva, T.M. Cunha, J.C. Alves-Filho, F.Q. Cunha, R. Casagrande, and W.A. Verri. 2016. The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. Journal of Nutritional Biochemistry 33: 8–14.CrossRefPubMed Pinho-Ribeiro, F.A., A.C. Zarpelon, S.S. Mizokami, S.M. Borghi, J. Bordignon, R.L. Silva, T.M. Cunha, J.C. Alves-Filho, F.Q. Cunha, R. Casagrande, and W.A. Verri. 2016. The citrus flavonone naringenin reduces lipopolysaccharide-induced inflammatory pain and leukocyte recruitment by inhibiting NF-κB activation. Journal of Nutritional Biochemistry 33: 8–14.CrossRefPubMed
9.
Zurück zum Zitat Charo, I.F., and R.M. Ransohoff. 2006. The many roles of chemokines and chemokine receptors in inflammation. New England Journal of Medicine 354: 610–621.CrossRefPubMed Charo, I.F., and R.M. Ransohoff. 2006. The many roles of chemokines and chemokine receptors in inflammation. New England Journal of Medicine 354: 610–621.CrossRefPubMed
10.
Zurück zum Zitat Ma, L., X.W. Gan, Q.P. He, H.Y. Bai, M. Arfan, F.C. Lou, and L.H. Hu. 2007. Cytotoxic withaphysalins from Physalis minima. Helvetica Chimica Acta 90: 1406–1419.CrossRef Ma, L., X.W. Gan, Q.P. He, H.Y. Bai, M. Arfan, F.C. Lou, and L.H. Hu. 2007. Cytotoxic withaphysalins from Physalis minima. Helvetica Chimica Acta 90: 1406–1419.CrossRef
11.
Zurück zum Zitat Xiao, P.G., D.P. Li, and S.L. Yang. 2002. Modern Chinese Materia Medica, 625–631. Beijing: Chemical Industry Press. Xiao, P.G., D.P. Li, and S.L. Yang. 2002. Modern Chinese Materia Medica, 625–631. Beijing: Chemical Industry Press.
12.
Zurück zum Zitat Khan, M.A., H. Khan, S. Khan, T. Mahmood, P.M. Khan, and A. Jabar. 2009. Anti-inflammatory, analgesic and antipyretic activities of Physalis minima Linn. Journal of Enzyme Inhibition and Medicinal Chemistry 24: 632–637.CrossRefPubMed Khan, M.A., H. Khan, S. Khan, T. Mahmood, P.M. Khan, and A. Jabar. 2009. Anti-inflammatory, analgesic and antipyretic activities of Physalis minima Linn. Journal of Enzyme Inhibition and Medicinal Chemistry 24: 632–637.CrossRefPubMed
13.
Zurück zum Zitat Barthel, A., H. Vogel, Y. Pauchet, G. Pauls, G. Kunert, A.T. Groot, W. Boland, D.G. Heckel, and H.M. Heidel-Fischer. 2016. Immune modulation enables a specialist insect to benefit from antibacterial withanolides in its host plant. Nature Communications 7: 12530.CrossRefPubMedPubMedCentral Barthel, A., H. Vogel, Y. Pauchet, G. Pauls, G. Kunert, A.T. Groot, W. Boland, D.G. Heckel, and H.M. Heidel-Fischer. 2016. Immune modulation enables a specialist insect to benefit from antibacterial withanolides in its host plant. Nature Communications 7: 12530.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Alali, F.Q., C.S.M. Amrine, T. El-Elimat, A. Alkofahi, K. Tawaha, M. Gharaibah, S.M. Swanson, J.O. Falkinham, M. Cabeza, A. Sánchez, M. Figueroa, and N.H. Oberlies. 2014. Bioactive withanolides from Withania obtusifolia. Phytochemistry Letters 9: 96–101.CrossRef Alali, F.Q., C.S.M. Amrine, T. El-Elimat, A. Alkofahi, K. Tawaha, M. Gharaibah, S.M. Swanson, J.O. Falkinham, M. Cabeza, A. Sánchez, M. Figueroa, and N.H. Oberlies. 2014. Bioactive withanolides from Withania obtusifolia. Phytochemistry Letters 9: 96–101.CrossRef
15.
Zurück zum Zitat Choudhary, M.I., S. Hussain, S. Yousuf, A. Dar, Mudassar, and R. Atta ur. 2010. Chlorinated and diepoxy withanolides from Withania somnifera and their cytotoxic effects against human lung cancer cell line. Phytochemistry 71: 2205–2209.CrossRefPubMed Choudhary, M.I., S. Hussain, S. Yousuf, A. Dar, Mudassar, and R. Atta ur. 2010. Chlorinated and diepoxy withanolides from Withania somnifera and their cytotoxic effects against human lung cancer cell line. Phytochemistry 71: 2205–2209.CrossRefPubMed
16.
Zurück zum Zitat Guo, C., L. Yang, J. Luo, C. Zhang, Y.Z. Xia, T. Ma, and L.Y. Kong. 2016. Sophoraflavanone G from Sophora alopecuroides inhibits lipopolysaccharide-induced inflammation in RAW264.7 cells by targeting PI3K/Akt, JAK/STAT and Nrf2/HO-1 pathways. International Immunopharmacology 38: 349–356.CrossRefPubMed Guo, C., L. Yang, J. Luo, C. Zhang, Y.Z. Xia, T. Ma, and L.Y. Kong. 2016. Sophoraflavanone G from Sophora alopecuroides inhibits lipopolysaccharide-induced inflammation in RAW264.7 cells by targeting PI3K/Akt, JAK/STAT and Nrf2/HO-1 pathways. International Immunopharmacology 38: 349–356.CrossRefPubMed
17.
Zurück zum Zitat Glotter, E., I. Kirson, A. Abraham, P.D. Sethi, and S.S. Subramanian. 1975. Steroidal constituents of Physalis minima (Solanaceae). Journal of the Chemical Society-Perkin Transactions 1(14): 1370–1374.CrossRef Glotter, E., I. Kirson, A. Abraham, P.D. Sethi, and S.S. Subramanian. 1975. Steroidal constituents of Physalis minima (Solanaceae). Journal of the Chemical Society-Perkin Transactions 1(14): 1370–1374.CrossRef
18.
Zurück zum Zitat Sahai, M., and I. Kirson. 1984. Withaphysalin D, a new withaphysalin from Physalis minima Linn. var. indica. Journal of Natural Products 47: 527–529.CrossRefPubMed Sahai, M., and I. Kirson. 1984. Withaphysalin D, a new withaphysalin from Physalis minima Linn. var. indica. Journal of Natural Products 47: 527–529.CrossRefPubMed
19.
Zurück zum Zitat Kirson, I., V. Ze’ev, and E. Glotter. 1976. Withaphysalin C, a naturally occurring 13, 14-seco-steroid. Journal of the Chemical Society-Perkin Transactions 1(11): 1244–1247.CrossRef Kirson, I., V. Ze’ev, and E. Glotter. 1976. Withaphysalin C, a naturally occurring 13, 14-seco-steroid. Journal of the Chemical Society-Perkin Transactions 1(11): 1244–1247.CrossRef
20.
Zurück zum Zitat Skidgel, R.A., X.P. Gao, V. Brovkovych, A. Rahman, D. Jho, S. Predescu, T.J. Standiford, and A.B. Malik. 2002. Nitric oxide stimulates macrophage inflammatory protein-2 expression in sepsis. The Journal of Immunology 169: 2093–2101.CrossRefPubMed Skidgel, R.A., X.P. Gao, V. Brovkovych, A. Rahman, D. Jho, S. Predescu, T.J. Standiford, and A.B. Malik. 2002. Nitric oxide stimulates macrophage inflammatory protein-2 expression in sepsis. The Journal of Immunology 169: 2093–2101.CrossRefPubMed
21.
Zurück zum Zitat Posadas, I., M.C. Terencio, I. Guillén, M.L. Ferrándiz, J. Coloma, M. Payá, and M.J. Alcaraz. 2000. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Archiv Für Experimentelle Pathologie Und Pharmakologie 361: 98–106. Posadas, I., M.C. Terencio, I. Guillén, M.L. Ferrándiz, J. Coloma, M. Payá, and M.J. Alcaraz. 2000. Co-regulation between cyclo-oxygenase-2 and inducible nitric oxide synthase expression in the time-course of murine inflammation. Archiv Für Experimentelle Pathologie Und Pharmakologie 361: 98–106.
22.
Zurück zum Zitat Qi, Z., S. Qi, L. Ling, J. Lv, and Z. Feng. 2016. Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus. International Immunopharmacology 35: 265–271.CrossRefPubMed Qi, Z., S. Qi, L. Ling, J. Lv, and Z. Feng. 2016. Salidroside attenuates inflammatory response via suppressing JAK2-STAT3 pathway activation and preventing STAT3 transfer into nucleus. International Immunopharmacology 35: 265–271.CrossRefPubMed
23.
Zurück zum Zitat Liu, C.W., H.W. Lin, D.J. Yang, S.Y. Chen, J.K. Tseng, T.J. Chang, and Y.Y. Chang. 2016. Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-κB and activation of HO-1. Free Radical Biology and Medicine 95: 180–189.CrossRefPubMed Liu, C.W., H.W. Lin, D.J. Yang, S.Y. Chen, J.K. Tseng, T.J. Chang, and Y.Y. Chang. 2016. Luteolin inhibits viral-induced inflammatory response in RAW264.7 cells via suppression of STAT1/3 dependent NF-κB and activation of HO-1. Free Radical Biology and Medicine 95: 180–189.CrossRefPubMed
24.
Zurück zum Zitat Nahar, P.P., M.V. Driscoll, L. Li, A.L. Slitt, and N.P. Seeram. 2014. Phenolic mediated anti-inflammatory properties of a maple syrup extract in RAW 264.7 murine macrophages. Journal of Functional Foods 6: 126–136.CrossRef Nahar, P.P., M.V. Driscoll, L. Li, A.L. Slitt, and N.P. Seeram. 2014. Phenolic mediated anti-inflammatory properties of a maple syrup extract in RAW 264.7 murine macrophages. Journal of Functional Foods 6: 126–136.CrossRef
25.
Zurück zum Zitat Mao, K., S. Chen, M. Chen, Y. Ma, Y. Wang, B. Huang, Z. He, Y. Zeng, Y. Hu, S. Sun, J. Li, X. Wu, X. Wang, W. Strober, C. Chen, G. Meng, and B. Sun. 2013. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Research 23: 201–212.CrossRefPubMedPubMedCentral Mao, K., S. Chen, M. Chen, Y. Ma, Y. Wang, B. Huang, Z. He, Y. Zeng, Y. Hu, S. Sun, J. Li, X. Wu, X. Wang, W. Strober, C. Chen, G. Meng, and B. Sun. 2013. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Research 23: 201–212.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Coskun, M., J. Olsen, J.B. Seidelin, and O.H. Nielsen. 2011. MAP kinases in inflammatory bowel disease. Clinica Chimica Acta 412: 513–520.CrossRef Coskun, M., J. Olsen, J.B. Seidelin, and O.H. Nielsen. 2011. MAP kinases in inflammatory bowel disease. Clinica Chimica Acta 412: 513–520.CrossRef
27.
Zurück zum Zitat Korhonen, R., A. Lahti, H. Kankaanranta, and E. Moilanen. 2005. Nitric oxide production and signaling in inflammation. Current Drug Targets. Inflammation and Allergy 4: 471–479.CrossRefPubMed Korhonen, R., A. Lahti, H. Kankaanranta, and E. Moilanen. 2005. Nitric oxide production and signaling in inflammation. Current Drug Targets. Inflammation and Allergy 4: 471–479.CrossRefPubMed
28.
Zurück zum Zitat Yao, F., L.Y. Long, Y.Z. Deng, Y.Y. Feng, G.Y. Ying, W.D. Bao, G. Li, D.X. Guan, Y.Q. Zhu, J.J. Li, and D. Xie. 2014. RACK1 modulates NF-kappaB activation by interfering with the interaction between TRAF2 and the IKK complex. Cell Research 24: 359–371.CrossRefPubMed Yao, F., L.Y. Long, Y.Z. Deng, Y.Y. Feng, G.Y. Ying, W.D. Bao, G. Li, D.X. Guan, Y.Q. Zhu, J.J. Li, and D. Xie. 2014. RACK1 modulates NF-kappaB activation by interfering with the interaction between TRAF2 and the IKK complex. Cell Research 24: 359–371.CrossRefPubMed
29.
Zurück zum Zitat Yu, Q., K. Zeng, X. Ma, F. Song, Y. Jiang, P. Tu, and X. Wang. 2016. Resokaempferol-mediated anti-inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-kappaB and JNK/p38 MAPK signaling pathways. International Immunopharmacology 38: 104–114.CrossRefPubMed Yu, Q., K. Zeng, X. Ma, F. Song, Y. Jiang, P. Tu, and X. Wang. 2016. Resokaempferol-mediated anti-inflammatory effects on activated macrophages via the inhibition of JAK2/STAT3, NF-kappaB and JNK/p38 MAPK signaling pathways. International Immunopharmacology 38: 104–114.CrossRefPubMed
30.
Zurück zum Zitat Jazwa, A., and A. Cuadrado. 2010. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Current Drug Targets 11: 1517–1531.CrossRefPubMed Jazwa, A., and A. Cuadrado. 2010. Targeting heme oxygenase-1 for neuroprotection and neuroinflammation in neurodegenerative diseases. Current Drug Targets 11: 1517–1531.CrossRefPubMed
31.
Zurück zum Zitat Xu, X.M., Y.Z. Guan, S.M. Shan, J.G. Luo, and L.Y. Kong. 2016. Withaphysalin-type withanolides from Physalis minima. Phytochemistry Letters 15: 1–6.CrossRef Xu, X.M., Y.Z. Guan, S.M. Shan, J.G. Luo, and L.Y. Kong. 2016. Withaphysalin-type withanolides from Physalis minima. Phytochemistry Letters 15: 1–6.CrossRef
32.
Zurück zum Zitat Sweet, M.J., and D.A. Hume. 1996. Endotoxin signal transduction in macrophages. Journal of Leukocyte Biology 60: 8–26.PubMed Sweet, M.J., and D.A. Hume. 1996. Endotoxin signal transduction in macrophages. Journal of Leukocyte Biology 60: 8–26.PubMed
33.
Zurück zum Zitat Kim, S., M.H. Oh, B.S. Kim, W.I. Kim, H.S. Cho, B.Y. Park, C. Park, G.W. Shin, and J. Kwon. 2015. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells. Journal of Ginseng Research 39: 365–370.CrossRefPubMedPubMedCentral Kim, S., M.H. Oh, B.S. Kim, W.I. Kim, H.S. Cho, B.Y. Park, C. Park, G.W. Shin, and J. Kwon. 2015. Upregulation of heme oxygenase-1 by ginsenoside Ro attenuates lipopolysaccharide-induced inflammation in macrophage cells. Journal of Ginseng Research 39: 365–370.CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Zhang, B., S. Xie, Z. Su, S. Song, H. Xu, G. Chen, W. Cao, S. Yin, Q. Gao, and H. Wang. 2016. Heme oxygenase-1 induction attenuates imiquimod-induced psoriasiform inflammation by negative regulation of Stat3 signaling. Scientific Reports 6. Zhang, B., S. Xie, Z. Su, S. Song, H. Xu, G. Chen, W. Cao, S. Yin, Q. Gao, and H. Wang. 2016. Heme oxygenase-1 induction attenuates imiquimod-induced psoriasiform inflammation by negative regulation of Stat3 signaling. Scientific Reports 6.
Metadaten
Titel
The Anti-inflammatory Activities of Two Major Withanolides from Physalis minima Via Acting on NF-κB, STAT3, and HO-1 in LPS-Stimulated RAW264.7 Cells
verfasst von
Rui-Jun Li
Cai-Yun Gao
Chao Guo
Miao-Miao Zhou
Jun Luo
Ling-Yi Kong
Publikationsdatum
02.12.2016
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 2/2017
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-016-0485-1

Weitere Artikel der Ausgabe 2/2017

Inflammation 2/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.