Skip to main content
Erschienen in: Journal of Experimental & Clinical Cancer Research 1/2020

Open Access 01.12.2020 | Review

The application of histone deacetylases inhibitors in glioblastoma

verfasst von: Rui Chen, Mengxian Zhang, Yangmei Zhou, Wenjing Guo, Ming Yi, Ziyan Zhang, Yanpeng Ding, Yali Wang

Erschienen in: Journal of Experimental & Clinical Cancer Research | Ausgabe 1/2020

Abstract

The epigenetic abnormality is generally accepted as the key to cancer initiation. Epigenetics that ensure the somatic inheritance of differentiated state is defined as a crucial factor influencing malignant phenotype without altering genotype. Histone modification is one such alteration playing an essential role in tumor formation, progression, and resistance to treatment. Notably, changes in histone acetylation have been strongly linked to gene expression, cell cycle, and carcinogenesis. The balance of two types of enzyme, histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines the stage of histone acetylation and then the architecture of chromatin. Changes in chromatin structure result in transcriptional dysregulation of genes that are involved in cell-cycle progression, differentiation, apoptosis, and so on. Recently, HDAC inhibitors (HDACis) are identified as novel agents to keep this balance, leading to numerous researches on it for more effective strategies against cancers, including glioblastoma (GBM). This review elaborated influences on gene expression and tumorigenesis by acetylation and the antitumor mechanism of HDACis. Besdes, we outlined the preclinical and clinical advancement of HDACis in GBM as monotherapies and combination therapies.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
TNBC
Triple-negative breast cancer
CML-BC
Human chronic myeloid leukemia blast crisis cells
XIAP
X-linked inhibitor of apoptosis
TBP2
Trx binding protein 2
ASK1
Apoptosis signal regulating kinase1;
ROS
Reactive oxygen species
CLL
Chronic lymphocytic leukemia
TRAIL
Tumour-necrosis factor-related apoptosis-inducing ligand
DR5
Death receptor 5
TNF
Tumor necrosis factor
VPA
Valproic acid
TSA
Trichostatin A
AIF
Apoptosis-inducing factor
ALL
Acute lymphoblastic leukemia
CAA
Cholangiocarcinoma
EZH2
Enhancer of Zeste 2
MMPs
metalloproteinases
HOTAIR
lncRNA HOX transcript antisense RNA
MRP1
multidrug resistance-associated protein 1
HMGB1
high-mobility group box 1
TLR4
Toll-like receptor 4

Background

Glioblastoma multiforme (GBM) is the most common and malignant intracranial primary tumor in adults, and it has the characteristics of substantial invasion and rapid progress. Although there is a standard combined treatment strategy of surgical plus radiotherapy and chemotherapy, the prognosis is still poor. Thus, the treatment of GBM meets severe challenges. In recent years, the view of epigenetic mechanisms contributing to diverse tumors has drawn people’s attention, and histone modification is among the well-understood examples of epigenetics.
Epigenetic changes refer to altering gene expression and cellular phenotype without modifying the DNA sequence itself. Structurally, two copies each of the core histone proteins (H2A, H2B, H3, and H4) whose N-terminal tails extend outward are wrapped around DNA and then package DNA into nucleosomes [1, 2]. Next, regular repeating structure nucleosomes compose chromatin that is the foundation for gene regulation [3]. This architecture changes when amino acid residues on the histone tails are modified by post-translational acetylation, methylation, and phosphorylation [4], leading to alteration of the distance between DNA and histones, which in turn changes the accessibility of transcription factors to gene promoter regions and finally the level of gene expression [5]. These modifications of histone N-terminal tails are determined by two kinds of enzymes. The one includes histone lysine methyltransferases (KMTs), histone acetyltransferases (HATs), and DNA methyltransferases (DNMTs). The other contains histone demethylases (KDMs), histone deacetylases (HDACs) and the ten-eleven translocation (TET) family of 5-methylcytosine oxidases [6]. The balance between these two determines chromatin architecture and then influences biological events, such as cell cycle, differentiation, and apoptosis in cancer cells [7].
Among these modifications, DNA hypermethylation and histone deacetylation in GBM has already been discovered for many years [8, 9]. But to date, no drugs that target histone methylation are approved by FDA or under clinical trials. However, another one, histone deacetylase protein is being exploited as therapeutic drug targets in various cancers, making it the focus of attention in GBM researches. Now histone deacetylase protein inhibitors, as the only one of the epigenetic agents, have been investigated in clinical trials in glioblastoma [10]. Thus, this review will firstly provide a brief overview of the effects of acetylation on gene expression and tumor phenotype, elaborate the antitumor mechanism of HDAC inhibitors, and then outline several of these promising HDACis that are in pre-clinical and clinical studies in GBM as monotherapies and combination therapies.

Histone acetylation

There are two groups of proteins that undergo acetylation. The one includes five types of histone proteins(H1, H2A, H2B, H3, and H4) acting as the primary protein components of chromatin [11], which was first observed as early as the 1960s [12, 13]. And every one of histone proteins can be divided into three classes of three-dimensional structural motifs: the histone-fold regions, their diverse extensions, and the histone tails. These tails contain recognition sites of histone post-translational modifications, among which the reversible acetylation of histone tails has brought remarkable advances for the past few decades because of its significant role in gene expression and carcinogenesis [3]. The other is nonhistone proteins, including tumor suppressor protein p53 and the tubulin components of the cytoskeleton. They participate in many critical cellular pathways, including chromatin remodeling, cell cycle, splicing, nuclear transport, actin nucleation, and mitochondrial metabolism [14].
The balance between acetylation and deacetylation of histone is controlled by two groups of enzymes: histone acetyltransferase (HAT) and histone deacetylase (HDAC) [15]. HATs transfer acetyl groups to amino-terminal lysine residues in histones, resulting in an open and accessible chromatin structure. HDACs remove these groups oppositely, contributing to chromatin condensation and transcriptional repression [16, 17]. Herein we separately describe these two molecules as follows for a better understanding of histone acetylation and their relationship to gene expression.

HAT

Histone acetyltransferases are a diverse set of enzymes that can be divided into two groups according to their suspected cellular origin and functions: B-type HATs, in the cytoplasm, likely catalyze acetylation events linked to the transport of newly synthesized histones from the cytoplasm to the nucleus for deposition onto newly replicated DNA [1820]. A-type HATs, conversely in nuclear, likely catalyze transcription-related acetylation events [21]. Based on several highly conserved structural motifs of the catalytic domains, HATs contain three major families (Table 1): general control nonderepressible 5 (Gcn5)-related N-acetyltransferases (GNATs) that have members of Gcn5, PCAF, Elp3, Hat1, Hpa2, and Hpa2; MYST family comprised by primarily MOZ, Ybf2 (Sas3), Sas2 and Tip60; and p300/CBP family that consist of p300 and CBP [30]. Besides, there are other proteins like Taf1 as well as many nuclear receptor co-activators that do not contain true consensus HAT domains shown to possess intrinsic HAT activity [31].
Table 1
Major histone acetyltransferase families
HAT Families
Family members
HAT domain motifsa
Function domainsb
HAT reaction mechanismc
GNAT
Gcn5
C-D-A-B
AT domains bromodomains
kinetic mechanism
PCAF
Elp3
Hat1
Hpa2
Nut1
MYST
MOZ
A
AT domains
ping-pong catalytic mechanism
Ybf2 (Sas3)
plant homeo domains
Sas2
zinc finger domains
Tip60
chromodomains
p300/CBP
p300
E-D-A-B
zinc finger region
Theorell–Chance mechanism
(cys, ZZ and TAZ domain)
CBP
HAT domains
Bromodomains
aHAT domain motifs, the relative positions of conserved sequence motifs in the three HAT families GNAT, MYST, and p300/CBP [2224]. Motif A is the most highly conserved motif, which contains an Arg/Gln-X-X-Gly-X-Gly/Ala sequence that is important for acetyl-CoA recognition and binding [18];
bFunction domains, the function domains for the GNAT, MYST and p300/CBP families of HATs. AT(acetyltransferase) domains, transfer acetyl groups from acetyl coenzyme A (acetyl-CoA) onto histone acceptors;
Bromodomains; an acetyl-lysine binding domain [21, 25, 26];
Zinc finger domains and chromodomains; protein:protein interaction domains that are often found in heterochromatin-associated proteins [27];
Plant homeo domains, a common structural motif found in all eukaryotic genomes in the nucleus. It is a Zn2+-binding domain involved in nucleosome/histone binding [28, 29];
cHAT reaction mechanism, see text for details.
The completely catalytic role of HAT families requires certain mechanisms. Respectively, GNAT family employs the kinetic mechanism that requires the formation of a ternary complex (enzyme • acetyl-CoA • H3 histone) before catalysis to guide acetyl transferred from acetyl-CoA to the substrate acceptor without the formation of a covalent enzyme intermediate [18, 3235]. MYST family has been shown to possess a ping-pong catalytic mechanism [36], in which the acetyl group from acetyl-CoA is firstly transferred to the cysteine utilizing base glutamate deprotonates the active site cysteine. Then glutamate protonates the leaving cofactor and deprotonates the substrate lysine so that the cysteine can transfer the acetyl group to the lysine [22]. And p300/CBP family, as a represent of ‘orphan class’ of HAT enzymes that do not bind directly to DNA but are recruited to particular promoters through interactions with DNA-bound transcription factors [31], appears to hold a Theorell-Chance mechanism, in which the peptide substrate associates only very transiently with the enzyme with no need for a stable ternary complex, thus leaving as soon as the reaction is complete.
Because of HATs’ catalytic role in histone proteins and even nonhistone proteins, they may be important for normal cell proliferation, growth, and differentiation. Therefore loss or misregulation of these activities may lead to cancer. And several lines of evidence have indicated that HAT is tied to tumor suppression [37].

HDAC

The discovery of the first HDAC almost accompanied by the first HAT [38]. Afterward, as more HDACs were found, existing 18 genes were subdivided into two types by their dependency on Zn2+ and four classes by homology to yeast, resulting in Zinc-dependent enzymes including class I, II and IV and Zinc-independent enzymes composed of class III HDACs (Table 2) [39, 40]. The class I HDAC family consist of HDAC1, 2, 3 and 8, which has similar homology to Rpd-3 yeast transcription factor and generally stay in the nucleus; The class II that shares homology with the yeast Hda1 protein and shuttles between the nucleus and the cytoplasm incorporates class IIa (HDAC4, 5, 7 and 9) and class IIb (HDAC6 and 10); The single HDAC11 belongs to class IV found in the nucleus that has mixed homology between Rpd-3 and Hda1 [41, 42]; And the last class III homologues of the yeast protein Sir2 is comprised of Sirt1-7 and requires NAD+ for their activities [43]. Among them, the first three-classes are recognized as ‘classical HDACs’ and common targets for therapy [44].
Table 2
Major histone deacetyltransferase families
Class of HDAC
members of each class
homology to yeast
location
HDACs as anticancer targets
class I
HDACS 1, 2, 3 and 8
RPD3 protein
in the nucleus
i) DNA-based process (DNA repair, replication and recombination) ;
ii) cell-cycle progression (cell proliferation, differentiation, apoptosis) ;
iii) migration;
iiii) immunity.
(See below for more details)
class IIa
HDACs 4, 5, 7 and 9
Hda1 protein
shuttle between the nucleus and the cytoplasm
class IIb
HDACs 6 and 10
class IV
HDAC11
mixed homology between Rpd-3 and Hda1
in the nucleus
class III
(NAD+-dependent) SIRT1, 2, 3, 4, 5, 6 and 7
Sir2 protein
in the nucleus

Acetylation and gene expression

Stable and closed nucleosomes and chromosomal structures generally impede the access to DNA. But researches, over the past few decades, have revealed that covalent modifications of histone proteins and DNA, such as acetylation, methylation, phosphorylation and citrullination of the histone core, can fundamentally alter the organization and function of chromatin, thus regulating all DNA-based processes, like transcription [45]. Among these covalent modifications, histone acetylation is a major source of dynamic variation in chromatin structure in vivo. Multiple mechanisms of action are involved in the acetylation-dependent disruption of nucleosome array condensation. Two basic connections in chromatin compaction: histone-histone and histone-DNA interactions, are essential to stabilize the condensed chromatin. The octamer of nucleosome core is assembled by a histone (H3-H4)2 tetramer and two H2A-H2B dimers, around which 146 bp of DNA wraps [5]. This process requires histone-histone interactions and incorporates two steps: the first step leads to the formation of the H2A-H2B dimer and the (H3-H4)2 tetramer; the second step of assembly is between two H2A-H2B dimers and one (H3-H4)2 tetramer [46]. Besides, histone-DNA interactions that block hydrophobic histone or charged histone DNA interfaces exist in a side of double-helix DNA facing the core histone octamer and chaperones recognizing specific histone sites [47]. All of these interactions are necessary to assemble into higher-order chromatin structures, which constrain the regulation of DNA.
The packaging of DNA within the tightly folded chromosomes burns a major barrier to transcription. Thus it is important for transcriptional machinery to change the stability and positioning of chromatin structures. Acetylation of the core histone N-termini, as one of the most studied and appreciated modifications, is widely considered to be correlated to the regulation of transcription. Many experiments show that histone acetylation and deacetylation mainly affects gene expression in the following ways (Figure 1).
Firstly, histone acetylation and deacetylation may function by changing the surrounding charge environment of the nucleosome, which will then strengthen or weaken the interactions between proteins related to gene expression and DNA, and in turn lead to altered chromatin architecture [48]. The histone N-terminal tail extending from the nucleosome core is generally rich in hydrophobic amino acids (e.g., lysine, arginine, serine, etc.), among which positively charged lysine residues is most likely to be acetylated by HAT. Then acetylated histone tail through the addition of an acyl group from an acyl-CoA to lysine residues with the positive charge by HATs will be neutralized, thus resulting in a decrease in binding affinity to the DNA backbone and a negatively charged neighboring nucleosome, which subsequently leads to a possibly decreased nucleosome stability, loose chromatin structure and more accessible underlying DNA [49]. On the contrary, HDACs remove the acetyl groups from histones, thereby getting back to the compacted chromatin and transcriptional repression state.
The second way to regulate gene expression by histone acetylation derives from the ‘histone code’ theory that has been recognized by most researches and incorporates ‘writers’, ‘readers’ and ‘erasers’ [4, 50]. It is just like a variety of different passwords when histone tails form a large number of special signals as a result of acetylation and deacetylation on different sites of it. Multiple HATs, as ‘writers’, transfer acetyl groups from acyl-CoA to histone N-terminal tails, producing the code identified by ‘readers’ that almost all contain the bromodomain [51]. Bromodomain, a structurally conserved module present in transcription-associated proteins (or rather more exact, histone chaperones), can recognize and bind to acetylated histones specifically and then changes the remodeling of nucleosomes, subsequently regulating transcription programs [51]. And these ‘readers’, including Spt6, the FACT (facilitates chromatin transcription) complex, anti-silencing function 1 (Asf1) and the chromatin assembly factor 1 (Caf1) complex, generally act by invading the nucleosome gradually and/or interacting with DNA or other proteins to control gene expression indirectly [25]. Once ‘readers’ bind to particular sites of acetylated lysines, the requisite transcription factors would recruit key regulatory DNA sequences (e.g., promoters and enhancers), leading to initiation of transcription. On the contrary, those enzymes that remove acetylated histone marks are termed as ‘erasers’, which prevent contacts between those transcription-associated proteins and histones or DNA [52].
Thirdly, there is one kind of protein called ATP-driven nucleosome remodelers, including the SWI/SNF complex and Chd1 or the RSC complex, expected to exert great effects on chromatin structure and mediate transcription factor binding [47]. These proteins use the energy of ATP hydrolysis to rearrange nucleosomal arrays and introduce superhelical torsion into nucleosomal DNA, which causes nucleosome sliding as well as topological and structural changes of chromatin, ultimately yielding a remodeled nucleosome with accessible DNA sites [52, 53]. Up to now, researches have dictated that these complexes, such as SWI/SNF complex, allow recruitment and DNA binding of TFIID to the TATA box, which is responsible for the initiation of transcription involving the crucial steps of sliding of nucleosome to a new position, changes in histone-DNA interactions and an increase in the association with transcription factors [54]. Additionally, another significant function involved in the transcriptional mechanism mediated by ATP-dependent complexes is that histone acetylation creates recognition sites for bromodomains present in these complexes [4]. In contrast, histone deacetylases associate with corepressor complexes to direct gene-specific transcriptional repression. Hence, the state of acetylation on core histone is critical for the recruitment of transcriptional coactivators by ATP-driven nucleosome, which forms another type of ‘histone code’ similar to chaperones binding to acetylated histone surface. Consequently, it means that chromatin structure and function differ depending on the composition of the histone variants [47].
In addition to these above mechanisms, many ways participate in and assist in transcription regulation by acetylation modification. So it is not just a sample static image of gene regulation, but rather a more dynamic and complex framework for the effects of acetylation on transcription in reality. What’s more, not only histone proteins are targeted by HATs and HDACs, but also are non-histone substrates including transcription factors like E2F,p53 and GATA1 activated by HATs [18, 55], and c-Myc, nuclear factor B (NF-B), Stat3, transcription factor IIE (TFIIE), the retinoblastoma protein, hypoxia-inducible factor 1 (HIF-1), as well as estrogen receptor and the androgen receptor complexes repressed by HDACs [10, 5663]. The activities of these transcription factors can be a major determinant of gene activation or inactivation. Moreover, a wealth of studies uncovered the fact that other post-modifications including methylation, phosphorylation and ubiquitylation may have a tremendous impact on the functional activity of acetylation [11]. Once more than one of them acts on the same site on histones, a cross-talk will occur via multiple mechanisms either competitive or cooperative [64].

HDACs and HDACis in cancer

Given the known function of histone acetylation in transcription, there is a strong need for a balance between histone acetyltransferase and (HAT) and histone deacetylase (HDAC). Shifts in this balance might have dramatic consequences on the cell phenotype [65, 66]. Aberrant recruitment of HDACs, which have been widely studied over the past few years, is tightly associated with malignancies and linked to cancer progression and drug resistance [67]. Accordingly, histone deacetylase inhibitors (HDACis) came into being a few decades ago, which are small moleculors to decrease the high level of HDACs and in turn increase the level of protein acetylation in the cancerous cell, restarting the expression of silenced tumor suppressor genes. Therefore, HDACis are now emerging as novel promising anticancer agents [68].

HDACs in cancer

HDACs, which have various targets of histone and non-histone proteins, are in the focus of cancer researches due to their pleiotropic effects on genome functions including chromatin assembly, DNA repair, replication and recombination [47, 69, 70], as well as on many biological processes, such as cell proliferation, differentiation, apoptosis, and senescence [71]. Numerous evidence have demonstrated the overexpression of HDACs in diverse types of malignancies such as lung cancer [72], breast cancer [73], and hepatocellular carcinoma [74, 75]. Herein we recapitulate several excellent HDAC carcinogenic ways. For example, high level of HDAC1 has been shown to target the oncosuppressor p53 that mediates cell apoptosis [76], to prevent cells from differentiating thus maintaining an undifferentiated phenotype [77], and to enhance cell proliferation through targeting a subset of cyclin dependent kinase (CDK) inhibitors ( p21 and p27) [65]. Tip60, a DNA damage-response proteins essential for double-strand break (DSB) repair and apoptosis, might be lack of its activities when it is negatively regulated by SIRT1 and HDAC3 deacetylase activity [7880], causing accumulation of cell damage and inactivation of the apoptotic program and finally triggering tumorigenesis [81]. The molecular chaperone heat shock protein 90 (Hsp90) is the target of HDAC6, and the involvement of HDAC6 in the Hsp-mediated regulation of VEGFR can result in an increased fibroblast cell migration [82, 83]. Also, HDAC7 overexpression might induce an increased expression of PDGF-B, which lead to angiogenesis and consequently tumor progression [84]. In addition, growing evidence supports the relation between HDACs and immune system function. Researches suggested that HDACs have a role in not only innate immunity, but also adaptive immune systems [85]. For instance, class I HDACs seem to negatively regulate innate immunity through repressing the production of an inflammatory cytokines such as COX2 [86], NF-κB [87], and IFN-β [88], and also crucially influence adaptive immunity. There is a vast array of other roles in the pathogenesis of cancer as well as other complex biological functions by HDACs. A case in point is the repression of tumour suppressor genes like p21 and the upregulation of oncogenes such as BCL2 by HDAC-mediated deacetylation [89]. Also, many studies over the years indicated that overexpression of individual HDACs correlated with poor cancer patient prognosis independent of other variables such as tumor type and disease progression. For example, elevated HDAC2 levels may be of high relevance to worse prognosis in patients with colorectal cancer [90]. Nevertheless, HDAC overexpression is not always a negative prognostic marker. Indeed, downregulated expression of HDAC10 in non-small lung carcinoma cells is reported to be related to poor prognosis in lung cancer patients [91].

HDACis

Based on the above introduction, HDACs-mediated deacetylation is responsible for altering a large number of genes implicated in tumorigenesis. For an optimal transcription of these genes, proteins should be in an appropriate acetylated state. Hence, inhibition of histone deacetylases as a therapeutic tool in cancer emerged as a novel class of targeted drugs, which exert an antitumor effect in vitro and in vivo including the induction of the growth arrest, differentiation and apoptosis, and the inhibition of angiogenesis, DNA repair and immunomodulatory activities [92]. For instance, shreds of evidence indicate that suberic bishydroxamate (SBHA), a HDAC inhibitor, induces apoptosis by changing the balance between proapoptotic and antiapoptotic proteins in melanoma cells, which means the overexpression of proapoptotic proteins of Bcl-2 family, such as Bim, Bmf, Bax, Bak and Bik, and the repression of anti-apoptotic proteins of Bcl-2 family, such as Bcl-2, Bcl-XL, Bcl-w and Mcl-1 [93]. Also there are some other ways to induce tumour cell death, like autophagy and death receptor pathways. One of the classic HDACis, suberoylanilide hydroxamic acid (SAHA), downregulates AKT-MTOR signaling (a major suppressive cascade of autophagy) that triggers glioblastoma cell death [94]. In addition, HDACis can downregulate the expression of Nanog, a pluripotency regulator that has been shown to promote cancer progression by regulating CSCs (cancer stem cells) [95]. Table 3 provides examples grouped by pathways of alterations of those genes that play a major role in cancer (see details in Table 3).
Table 3
Role of HDACis in Cancer
pathway
genes/signalings
tumours affected
representative drug
apoptosis
mutant p53 ↓ [96, 97]
TNBC and pancreatic cancer
SAHA, NaB , VPA and TSA
proapoptotic proteins of Bcl-2 family, such as Bim, Bmf, Bax, Bak and Bik ↑
antiapoptotic proteins of Bcl-2 family, such as Bcl-2, Bcl-XL, Bcl-w and Mcl-1 ↓ [93]
melanoma
SBHA
XIAP ↓ [98, 99]
Mesothelioma and leukemia
LBH589 and LAQ824
TBP2 ↑-Trx ↓-ASK1 signaling ↑ [100]
prostate cancer
SAHA
ROS ↑ [101]
CLL
MS-275
TRAIL-DR5 ↑
FASL-FAS (Apo-1 or CD95) ↑
TNF-TNFR-1 ↑ [102, 103]
leukaemia, breast cancer
VPA, SAHA and TSA
human RAD23 homolog B (HR23B) ↑ [104]
U2OS cells
SAHA
erbB2 (Her-2) ↓ [105, 106]
breast cancer
TSA and LAQ824
cell death
NF-κβ ↑ [107]
AKT-mTOR signaling ↓ [94]
Prostate Cancer
glioblastoma
SAHA
SAHA
cell arrest
CDKN1A (encoding p21 WAF1/CIP1)↑ [108110]
CML-BC cells, colon cancer and bladder carcinoma
LAQ824, SAHA and Butyrate
p27 ↑ [111]
leukemia and breast cancer
SAHA and TSA
GADD45 α and GADD45 β ↑ [112]
colon carcinoma
TSA and Butyrate
TGF-βRII ↑ - c-MYC ↓ [113]
Ewing's sarcoma (EWS) and neuroblastoma
MS-275
angiogenesis
HIF-1a ↓ [114]
VEGF ↓ [115]
Lewis lung carcinoma
HepG2 cell
FK228
TSA
DNA repair
Ku86 ↓
Ku70 ↓ [116]
melanoma cells
sodium butyrate (NaB)
RAD51 ↓
BRCA1&2 ↓ [117]
human squamous carcinoma cells (SQ-20B)
TSA
immunity
MHC class I genes ↑
tumor antigens ↑
PD-1 ligands ↑ [118]
melanoma
LBH589, MS-275 and MGCD0103
Treg cells ↓ [119]
renal and prostate cancer
entinostat
‘↑’ or ‘, represent the up-regulated or down-regulated trend of gene expression, respectively.

HDACis in clinic

Until now, four compounds as HDACis have already been approved by the Food and Drug Administration (FDA) for the treatment of hematological malignancy, especially cutaneous T cell lymphoma (CTCL) and peripheral T cell lymphoma (PTCL). They are vorinostat (also known as suberanilohydroxamic acid, SAHA), romidepsin, belinostat, and panobinostat. Another HDACi, Sodium Phenylbutyrate (4-PB), though not in oncology, is approved by the FDA for the treatment of urea cycle disorders, and is now being investigated for therapy in multiple types of cancer [10]. In addition, CG-745, a new clinical stage histone deacetylase (HDAC) inhibitor produced by CrystalGenomics (a biopharmaceutical company from Korea), has recently been granted as Orphan Drug Designation by FDA for pancreatic cancer (http://​www.​crystalgenomics.​com/​), which is currently in Phase II pancreatic cancer trial and the results look promising thus far. All of these encouraging results justified the introduction of more and more HDACis into clinical trials in cancer. The number of these studies that we can search on the web of Clinicaltrial.​gov so far amount to 622, with more than 350 clinical trials completed or being recruiting, both as single agents and in combination with other therapeutics (https://​clinicaltrials.​gov/​).
HDAC inhibitors that have been found to date are most the pan-HDAC inhibitors targeting multiple HDACs. They either work on Zn2+-dependent HDACs including Class I, II and IV or affect the class III HDACs that rely on NAD as a cofactor [120]. Based on their target and chemical structure, these HDACis are divided into seven categories: short chain fatty acids, benzamides, cyclic peptides, electrophilic ketones, hydro-examines, sirtuin inhibitors and miscellaneous. The common compounds of each category are shown in Table 4. The general pharmacophore essential for the activity of these HDACis includes a hydrophobic capping group for interactions with the surface of the enzyme, a linker essential for interaction with the enzymatic tunnel and connecting the cap by a small connecting unit, and the zinc binding group (ZBG) that chelates the zinc atom in the active site [147]. In these compounds, SAHA is the first and most well-known approved pan-HDACis, which was marketed under the trade name of Zolinza for the treatment of refractory cutaneous T-cell lymphoma (CTCL) in 2006. Over the years, Vorinostat has also been found to be a potent agent in the treatment of many types of cancer, such as endometrial cancer [148], lung cancer [149], gastrointestinal (GI) cancer [150] and glioblastoma [151]. And studies have shown that SAHA generally fights against cancer by upregulating the p21 (CDKN1A) cancer suppressor gene, PTEN, p27 and decreasing levels of pro-growth genes CDK2, CDK4, cyclin D1 and cyclin E [152].
Table 4
The classes of HDACis in clinic
target
chemical classes
compounds
source
Isotype selectivity
study phase
reference
Pan-HDAC
Hydroxamic acid
Vorinostat (SAHA)
Synthetic
class I, II and IV
FDA approval (CTCL)
[121]
Belinostat(PXD-101)
Synthetic
class I and II
FDA approval (PTCL)
[15]
Panobinostat (LBH-589)
Synthetic
class I, II and IV
FDA approval (PTCL and multiple myelomas)
[122]
Trichostatin A (TSA)
Natural
class I and II
Phase I (Relapsed or Refractory hematologic malignancies )
NCT03838926
Quisinostat (JNJ-16241199)
Synthetic
class I and II
phase II (CTCL)
NCT01486277
WW437
Synthetic
HDAC 2 and 4
pre-clinical
[123]
short chain fatty acids
Pivaloyloxmethyl butyrate (AN-9)
Synthetic
class I and IIa
phase II (melanoma)
phase I (CLL)
NCT00087477
NCT00083473
Sodium Butyrate (NaB)
Natural
class I and IIa
phase I (Colorectal cancer )
[124]
Sodium Phenylbutyrate (4-PB)
Synthetic
class I and IIa
FDA approval (urea cycle disorders)
[10]
Valproate (valproic acid)
Synthetic
class I and IIa
phase I (Brain and Central Nervous System Tumors)
[125]
Benzamides
Entinostat (MS-275)
Synthetic
class I
phase II (Hodgkin's Lymphoma)
[126]
Tacedinaline (CI-994)
Synthetic
class I
phase II (Myeloma)
NCT00005624
Mocetinostat (MG-0103)
Synthetic
class I and IV
phase I (Hodgkin's Lymphoma)
[127]
Cyclic peptides
Romidepsin (depsipeptide, FK228)
Natural
class I
FDA approval (CTCL)
[128]
electrophilic ketones
trapoxins(TPX)
Natural
class I
NA
[129]
a-ketoamides
Synthetic
NA
NA
[130]
heterocyclic ketones
Synthetic
NA
NA
[131]
miscellaneous compounds
Diallyl Trisulfide (DATS)
Natural
NA
pre-clinical (glioblastoma)
[132]
sirtuin inhibitors
cambinol
Synthetic
SIRT1 and 2
pre-clinical
[133]
EX-527
Synthetic
SIRT1 and 2
pre-clinical
sirtinol
Synthetic
SIRT1 and 2
pre-clinical
nicotinamide
Synthetic
class III
phase III (laryngeal cancer)
specific HDAC
Hydroxamate Derivatives
Azelaic Bishydroxamic Acid (ABHA)
Synthetic
HDAC 3
NA
[134]
CBHA (m-carboxycinnamic acid bis-hydroxamide)
Synthetic
HDAC 3
pre-clinical
[135]
NA
I-7ab
Synthetic
HDAC 3
NA
[136]
RGFP966
Synthetic
HDAC 3
pre-clinical (CTCL)
[137]
PCI34051
Synthetic
HDAC 8
pre-clinical (T-cell lymphomas or leukemias)
[138]
C149
Synthetic
HDAC 8
pre-clinical (T-cell lymphoma and neuroblastoma)
[139]
Benzamides
Ricolinosta(ACY-1215)
Synthetic
HDAC 6
phase II (relapsed/refractory lymphoid malignancies )
NCT02091063
tubacin
Synthetic
HDAC 6
pre-clinical (ALL)
[140]
Polyketides
Depudecin
Natural
HDAC 1
NA
[71]
sirtuin inhibitors
SEN196
Synthetic
SIRT1
NA
[141]
COMPOUND 6J
Synthetic
SIRT2
NA
[142]
JGB1741
Synthetic
SIRT1
NA
[143]
bromodomain
BET inhibitors
JQ1
Synthetic
BRD4
pre-clinical (CAA)
[144]
I-BET
Synthetic
BET
pre-clinica (Breast and lung cancer)
[145]
BY27
Synthetic
BD2
NA
[146]
hybrid molecules
chimeric
CUDC907
Synthetic
HDAC /PI3K
phase II (Thyroid Cancer)
NCT03002623
CUDC101
Synthetic
EGFR/Her-2/HDAC 1
Phase I (head and neck, gastric, breast, liver, and non-small cell lung cancer)
NCT01171924
Though more and more HDACis have been developed, few have been used in the clinic to fight cancer, the main reasons behind which are their high toxicity and low specificity [122]. And since the toxicity is likely due to broad activity across HDAC isoforms, the development of second-generation HDAC inhibitor has been focused to improve the selectivity of HDACis, resulting in the discovery of series of specific HDACis (see details in Table 4). Until now, most of the agents developed and reported in existing articles have selectivity for HDAC3, HDAC6, HDAC8 and sirt1. For example, there are several HDAC3-selective inhibitors including RG2833 that increases the frataxin (FXN) gene silenced in Friedreich ataxia and is in a phase I clinical trial in man [153], RGFP966 that inhibits cell growth due to increased apoptosis associated with DNA damage and replication in CTCL cell lines [137], BG45 which induces the death of multiple myeloma cells concomitant with hyperacetylation and hypophosphorylation of STAT3 either singly or in combination with proteasome inhibitors [154], and I-7ab that inhibits cell viability of triple negative breast cancer (TNBC) cells and induces cell apoptosis by promoting hyperacetylation of P53 and its transcriptional activity which in turn induces the expression of p21 and consequently cause cell cycle arrest at G1 phase [155].
Besides these, there are two other special acetylation-modifying agents. The one is a small-molecule inhibitor also termed as BET (bromodomain and extra-terminal family-BRD2, BRD3, BRD4, BRDT, BD1 and BD2) inhibitor including JQ1, I-BET and more recently BY27, which disrupt the interaction between the bromodomain and acetyl-Lys. Studies show that I-BET is a type of pan BET inhibitor altering gene transcription mediated by BET proteins, and JQ1, as well as BY27, are selective BET inhibitors that competitively bind BRD4 and BD2 respectively and displaces them from chromatin [146, 156, 157]. Now many clinical trials enrolling patients with hematologic and solid tumors are ongoing, with encouraging preliminary findings [158]. The other is the molecule called a hybrid (chimeric) drug that merges two drug pharmacophores to act on different targets, of which CUDC-101 and CUDC-907 are the most representative two [95]. CUDC-101, a potent EGFR/Her-2/HDAC1 inhibitor, was developed by Cai et al. in 2010 and was found to promote tumor inhibition in various cancer xenograft models including nonsmall cell lung cancer (NSCLC), liver, breast, head and neck, colon, and pancreatic cancer [159]. Furthermore, findings strongly support that CUDC-101 has great potential to combat cancer resistance and tumor metastasis [160].

HDACis in GBM

Virtually, almost all patients with Glioblastoma multiforme (GBM) are at the risk of recurrence, which may be ascribed to limited drug penetration of blood-brain barrier (BBB), intratumor heterogeneity, intrinsic GBM resistance, and toxicity of nonspecific agents [161]. Therefore, more targeted and effective combination strategies are urgently required for GBM treatment. Over the years, a more accurate and detailed gene expression-based molecular classification system has been built in GBM. And TCGA research network has reported three signaling pathways frequently modified in GBM, including receptor tyrosine kinase (RTK)/Ras/phosphoinositide 3-kinase (PI3K), p53, and retinoblastoma (Rb) signaling, with the mutation ratio of 88%, 87%, 78% in adults respectively. Besides, there are also variations in other genes, such as the epidermal growth factor receptor (EGFR), phosphatase and tensin homolog (PTEN) [162]. While, according to the above introduction of HDACis function, it has evoked considerable interest for the treatment of GBM. Herein, we summarize current knowledge on HDAC inhibitors’ clinical studies on GBM as monotherapies and combination therapies.

HDACis monotherapy

Mechanisms of HDACis in GBM

There are several HDACis reported to be able to penetrate into BBB and play an anti-GBM role. Generally, up-regulation of HDAC proteins may be related to the occurrence and development of GBM. For instance, it has shown that the expression of HDAC9 in GBM is significantly upregulated. HDAC9 can promotes GBM proliferation and tumor formation by activating the transcription coactivator with PDZ-binding motif (TAZ), an oncogene and an essential downstream effector of the Hippo pathway [163]. So the depletion of HDAC9 can reduce the expression of TAZ, producing anti-GBM effect. Additionally, silencing of HDAC2 via its specific siRNAs can suppress the in vitro proliferation, migration, and invasion of U87 and A172 cells. Can reckon thereof, inhibitng HDAC proteins may be anti-GBM through a variety of mechanisms. According to the degree of enrichment, the mechanisms reported so far about HDACis in GBM are summarized in the following Table 5.
Table 5
Mechanisms of HDACis in GBM
alterations
affected part
agents
p21Waf1/Cip1, p27↑
cell cycle arrest
SAHA [151], I-BET151 [164], TSA [165], NaB [166], PB [167], FK228 [168], DATS [169], PXD-101 [170], NBM-HD-3 [171], Scriptaid [172], MS-275 [173]
DR5, TNFα, p53, Bad, Bax, Bim, chop, Puma, m-calpian↑
proapoptotic genes
SAHA [151], TSA [166], NaB [166], VPA [174], FK228 [152], DATS [169], PXD-101 [170], DWP0016 [175]
vasculogenic mimicry, VEGF, EGFR↓
angiogenesis
SAHA , MS-275, MC1568, TSA [176], NaB [177], DATS [169], LBH589 [178]
Bcl2, Bcl-XL↓
antiapoptotic genes
VPA [174], PB [167], FK228 [168], DATS [169]
EZH2, MMP-2↓
invasion
SAHA [179], VPA [174], FK228 [168], W2 [180]
p-PTEN/p-AKT, pFAK/p-STAT3↓
pathways
TSA [181], DATS [169], NBM-HD-3 [171], W2 [180]
CDK2, CDK4, CDK6, cyclins D1, cyclins D2↓
progrowth genes
SAHA [151], TSA [165]
caspase 8, caspase 9, caspase 3
apoptotic cascade activation
SAHA [182], DATS [169]
HOTAIR↓
tumor promoting lncRNA
I-BET151 [183]
Ras, c-myc↓
oncogenes
Scriptaid [172], DATS [169]
CD133, Bmi1↓
GSCs markers
SAHA [182]
‘↑’ or ‘, represent the up-regulated or down-regulated trend of gene expression, respectively.
As shown in the table above, it is clear that most HDACis play an anti-GBM role by upregulating the cell cycle inhibitor p21Waf1/Cip1, thus inducing cell cycle arrest. And the second effect is on proapoptotic genes. For example, HDACis such as romidepsin and DWP0016 induce apoptosis through an increase in Bad and Bax proteins in human glioma cells in vitro [168, 175]. And exposure to belinostat in LN-229 cells leads to induction of apoptosis, associated with an increased expression of proapoptotic genes including Puma, Bim, and Chop [170]. Correspondingly, there is a decrease in anti-apoptotic genes. Researches showed that phenylbutyrate and romidepsin resulted in the reduction of anti-apoptotic proteins Bcl-xL and Bcl-2 in LN-229 cells and U251MG cells, respectively [167, 168]. Thirdly, the angiogenesis of GBM is influenced by HDACis, either by inhibiting growth factors (VEGF, EGFR) production or by blocking vascular mimicry in GBM . And more strikingly, HDACis have been proved to be efficient in targeting glioblastoma stem cells (GSCs) in the preclinical area. SAHA, TSA and valproic acid have been demonstrated to significantly trigger autophagy in GSCs , reduce proliferation rates of GSCs and stimulate differentiation in GSCs [94, 184]. To sum up, it is enough to see that the application of HDACis in GBM is promising. Here we will list some studies about single HDACis drugs investigated in GBM either in the preclinical or clinical phase as follows.

Single HDACis in GBM

Vorinostat
Vorinostat is the first HDAC inhibitor entering the trial for patients with glioma (NCT00238303). This phase II trial is studying how well vorinostat works in patients with progressive or recurrent glioblastoma multiforme who undergo surgery or do not. In general, patients received oral vorinostat (SAHA) twice daily for 14 days every three weeks. Notably, patients who undergo surgical treatment would receive oral vorinostat (SAHA) once or twice daily for a total of six doses before surgery. Finally, the trial met the primary objectives, with nine of the first 52 patients being free of progression at 6 months, and the median duration of the stable disease being 11.2 months, as well as well-tolerated toxicities. In summary, this trial shows that vorinostat has modest single-agent activity and can extend life by a few months in a subpopulation of those with recurrent glioblastoma. Nevertheless, additional testing of vorinostat in combination regimens is warranted [185].
Romidepsin
Based on promising preclinical data for romidepsin in glioma, North American Brain Tumor Consortium developed a phase I study to determine the maximum tolerated dose (MTD) and the pharmacokinetics of romidepsin in patients with recurrent glioma on enzyme-inducing antiepileptic drugs (EIAEDs), and a phase II study to evaluate the clinical efficacy of this drug by measuring 6-month progression-free survival and objective tumor response in patients (NCT00085540). Although the reasonably well tolerated characteristic of romidepsin in their study, the trial showed that romidepsin had no significant clinical activity as a single agent in unselected patients with recurrent GBM [186]. It is needed to find a better combination strategy for the treatment of GBM.
Currently, many HDAC inhibitors have shown considerable promise in the GBM pre-clinical phase. Still, only a few of these agents have made it into clinical trials and no one has yet to shown significant efficacy in GBM patients. Nevertheless, during studies into these drugs, researchers note that HDAC inhibitors as part of a combination therapy seem more promising in improving prognosis in this difficult to treat malignancy. So, increasing combined clinical trials in GBM about HDACis now is underway. It is worth summarizing these combination strategies.

HDACis-involved combination therapy

There are limitations in the efficacy of single HDACis for GBM despite the tolerated toxicities that attribute to the poor pharmacokinetic properties and multiple misregulated growth and survival pathways in GBM. Thus it is rational to believe that the combinational treatment modality may represent an attractive approach to enhance the standard of care in patients with GBM. Many HDAC inhibitors are proved to act synergistically with other chemotherapy drugs, have radiosensitizing effects and enhance immunotherapies. Next, we will give an elaborate list of preclinical and clinical combination studies of HDACis for GBM in Tables 6 and 7 respectively.
Table 6
Combined trials of HDACis in GBM in the preclinical phase
Sensitization
HDACis
synergistic members
reference
chemotherapy
FK228
Temozolomide
[187]
MS275
Temozolomide, etoposide, and cisplatin
[188]
trichostatin A
lomustine
[189]
HDAC2 inhibitor
Temozolomide
[190]
RGFP109
Temozolomide
[191]
Tubastatin A
Temozolomide
[192, 193]
Radiotherapy
PCI-24781
Radiation
[194]
Tinostamustine(EDO-S101)
Radiation
[195]
trichostatin A
Radiation
[196]
immunotherapy
J22352
PD-L1
[197]
demethylase
vorinostat or PCI-24781
LSD1
[198]
panobinostat
DZ-Nep
[199]
BRD inhibition
panobinostat
JQ1 or OTX015
[200, 201]
RTKi
4-PB
gefitinib or vandetanib
[202]
MS275, scriptaid, SAHA, TSA
Erlotinib
[203]
topoisomerase inhibitor
SAHA
SN38
[204]
virotherapy
trichostatin A
dl520
[205]
Scriptaid, LBH589
Delta24-RGD
[206]
others
valproic acid (VPA)
Fluvastatin
[207]
sodium butyrate (NaB)
quercetin
[208]
tubastatin A
celecoxib
[209]
panobinostat
BEZ235
[210]
vorinostat
tranylcypromine
[211]
SAHA
olaparib
[212]
Table 7
Current clinical trials of HDACis as a combination therapy in GBM
HDACis
synergistic members
conditions
phase
trial identifier
reference
Vorinostat (SAHA)
Bevacizumab
Recurrent GBM
phase II
NCT01738646
[213]
Bevacizumab, Temozolomide
Recurrent Malignant Gliomas
phase I/II
NCT00939991
[214]
Temozolomide
Malignant Gliomas
phase I
NCT00268385
[215]
Radiation
Recurrent Glioma
phase I
NCT01378481
-
Isotretinoin, Temozolomide
Recurrent GBM
phase I/II
NCT00555399
-
Erlotinib, Temozolomide
Recurrent GBM
phase I/II
NCT01110876
-
Temozolomide, Radiation
Newly Diagnosed GBM
phase I/II
NCT00731731
[216]
Pembrolizumab, Temozolomide
Newly Diagnosed GBM
phase I
NCT03426891
-
Bortezomib
Recurrent GBM
phase II
NCT00641706
[217]
Bevacizumab, Irinotecan
Recurrent GBM
phase I
NCT00762255
[218]
Panobinostat (LBH-589)
Bevacizumab
Recurrent High Grade Glioma
phase I/II
NCT00859222
[219]
Radiation
Recurrent Glioma
phase I
NCT01324635
-
Valproate (valproic acid, VPA)
Sorafenib Tosylate, Sildenafil Citrate
Recurrent High-Grade Glioma
phase II
NCT01817751
-
Temozolomide, Radiation
High Grade Gliomas
phase II
NCT00302159
[220222]
Nivolumab, Radiation
Recurrent GBM
phase I
NCT02648633
-
Belinostat (PXD101)
Temozolomide, Radiation
GBM
phase II
NCT02137759
-

Preclinical

In vitro, studies have shown significant promise about HDACis synergizing with other drugs for cancer treatment [223], providing a rationale to apply these synergistic ways to GBM. Several agents have been tested in combination therapy in vitro, either as chemosensitizers or radiosensitizer, or in association with other antitumor treatments (see Table 6 for details ).
Generally, HDACis can inhibit DNA repair responses thus leading to increased DNA damage, which may partly contribute to enhanced sensitivity of tumour cells to chemotherapy and radiotherapy [224]. In GBM, studies have found that FK228 can augment temozolomide sensitivity in vivo and in vitro partially by blocking PI3K/AKT/mTOR signal pathways, triggering the cell apoptosis pathway and finally leading to cell death of glioma cell lines [187]. And histone deacetylase inhibitor RGFP109 has also been proved to be able to enhance TMZ-induced cytotoxicity in four TMZ-resistant GBM cell lines by blocking NF-κB-dependent transcription [191].
Besides, treatment with tubastatin A or ACY-1215 or CAY10603, selective HDAC6 inhibitors, were reported to abrogate temozolomide resistance by decreasing and inactivating EGFR protein, thus reducing glioblastoma clonogenicity and migration capacities, accelerating temozolomide-induced apoptosis, and finally reversing the malignant phenotype [192]. Furthermore, silencing of HDAC2 can also increase the sensitivity of GBM cells to temozolomide (TMZ), which might be due to the significant down-regulation of the multidrug resistance-associated protein 1 (MRP1) [190]. All in all, both of these research results show that HDACis can be an attractive agent to overcome chemoresistance, and combining HDACis with chemotherapy may be a promising approach to GBM.
Except for sensitization to chemotherapy, HDACis are also demonstrated to increase sensitivity to radiotherapy, modulate activities of immunity, and bolster antitumor effects of many other drugs. For example, a study indicated that TSA, a potent HDACis, could radiosensitize human glioblastoma cells [196]. And the treatment of pan-HDAC inhibitors, LBH589 (panobinostat) and suberoylanilide hydroxamic acid (SAHA, vorinostat), were shown to induce chromatin decondensation and prevent DNA DSBs repair, resulting in increased tumor cell death and radiosensitivity [225]. So clinical trials using HDACis in combination with radiotherapy should be considered useful for glioblastoma patients.
Also, there are some findings provide proof-of-principle evidence in support of a therapeutically relevant immunostimulatory activity of HDACis against GBM. For instance, a high-selective HDAC6 inhibitor, J22352, was reported to increased levels of immune-activating cytokines and the proliferation of CD8+ T cells by decreasing negative regulation of PD-L1, which made it possible to combine HDACis with immunotherapy to against GBM [197]. Moreover, TSA can lead GBM cells to release high-mobility group box 1 (HMGB1), an endogenous Toll-like receptor 4 (TLR4) ligand that promotes cytotoxic T-cell mediated antitumor immune responses [226].
Despite successful outcomes from these preclinical studies, only a few combination strategies have entered into clinical trials for GBM patients. Table 7 summarizes these completed or ongoing combination of clinical trials.

Clinical

Vorinostat
Vorinostat was the first HDAC inhibitor entering clinical trials in GBM, which was a phase I trial in 2005 using vorinostat together with Temozolomide (TMZ) to treat patients with malignant gliomas (NCT00268385). The primary objective of this trial is to evaluate the safety and tolerability of combining an HDAC inhibitor with TMZ in high-grade glioma (HGG). Based on the information obtained from this phase I clinical trial, a phase II trial of vorinostat with radiotherapy and concomitant TMZ later were underway (NCT00731731). This phase I/II trial demonstrated reasonable tolerability in newly diagnosed GBM. However, the primary efficacy endpoint was not met, with the OS rate at 15 months of 55.1% in the entire cohort and median OS of 16.1 months [216]. And another phase I trial of vorinostat in combination with bevacizumab and irinotecan (a topoisomerase I inhibitor) in recurrent GBM found the cumulative toxicity associated with CPT-11 and its unclear efficacy in glioblastoma, thus providing a more promising strategy for future investigation of combining vorinostat with bevacizumab alone in recurrent glioblastoma (NCT00762255) [218]. Then due to the early success of bevacizumab and subsequent approval of bevacizumab by the FDA for treatment of recurrent GBM, a phase II trial tested the efficacy of vorinostat combination with bevacizumab (NCT01738646). Ultimately, this combined treatment was tolerable, but there was no improvement in progression-free survival at 6 months [213].
Panobinostat
There is only two combination strategies about panobinostat in GBM approved into the clinical trial. The first is a phase II trial of panobinostat combination with bevacizumab in recurrent GBM to determine the efficacy of LBH589 by measuring 6-month progression-free survival (PFS6) (NCT00859222). It finally turned out to be well-tolerated, but it did not significantly improve PFS6 compared with bevacizumab monotherapy in the cohort [219]. The other one is a phase I trial for recurrent glioma combining panobinostat with stereotactic radiation treatment, which was terminated because of the poor accrual (NCT01324635).
Valproic acid
A phase II trial investigated the effects of combination treatment of VPA, temozolomide and concurrent radiotherapy for GBM patients, which shown promising results (NCT00302159). This study demonstrated improved outcomes compared to historical data and merits with the median OS of 29.6 months (range: 21–63.8 months), median progression-free survival (PFS) of 10.5 months (range: 6.8–51.2 months) and tolerated toxicities in patients with newly diagnosed GBM [222]. However, another phase I study on patients with recurrent GBM using romidepsin was terminated for the reason that pharmaceutical company (BMS) would no longer provide nivolumab for this study (NCT02648633).

Perspectives and conclusion

Even though our progress in understanding the function of HDACs in tumour pathogenesis and the tumour response to HDACi are fruitful, there is still more hope for the exploitation of this knowledge to develop more effective clinical protocols. The clinical trials about HDACis currently achieve little for GBM treatment, and a better application strategy is urgent required. There are areas that we have not covered and might become relevant in the future. For instance, due to the heterogeneity of GBM tumors, the exist of GSCs, and the sophisticated genetic, epigenetic, and transcriptional profiling in GBM, it is difficult to identify patients who are most likely to respond to HDACis and identify specific biomarkers relative to therapeutic effects. Furthermore, the relationship between the toxicity of HDACis and their pharmacodynamic/pharmacokinetic properties is still mostly unknown, which makes it challenging to convert more viable preclinical studies into clinical trials for the further possible regimens of GBM. And so far, few research had addressed the role of HDACis in GSCs sensitivity, which should be on the agenda to clarify the true potential of HDACi in clinical treatment.
In all, only by fulling understanding the underlying molecular mechanisms can we translate these scientific findings into effective clinical practices to anti-cancer strategies. We should pursue new discoveries to advance GBM treatment.

Acknowledgements

Not applicable
Not applicable
Not applicable

Competing interests

The authors declare that they have no competing interests
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423:145–50.PubMedCrossRef Richmond TJ, Davey CA. The structure of DNA in the nucleosome core. Nature. 2003;423:145–50.PubMedCrossRef
2.
Zurück zum Zitat Luger K. Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev. 2003;13:127–35.PubMedCrossRef Luger K. Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev. 2003;13:127–35.PubMedCrossRef
3.
Zurück zum Zitat Luger K, Richmond TJ. The histone tails of the nucleosome. Curr Opin Genet Dev. 1998;8:140–6.PubMedCrossRef Luger K, Richmond TJ. The histone tails of the nucleosome. Curr Opin Genet Dev. 1998;8:140–6.PubMedCrossRef
4.
Zurück zum Zitat Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.PubMedCrossRef Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403:41–5.PubMedCrossRef
6.
Zurück zum Zitat Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41.PubMedCrossRef Jones PA, Issa JP, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17:630–41.PubMedCrossRef
7.
Zurück zum Zitat Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells.; 2000. pp 1210-1216. Marks PA, Richon VM, Rifkind RA. Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells.; 2000. pp 1210-1216.
8.
Zurück zum Zitat Nagarajan RP, Costello JF. Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol. 2009;19:188–97.PubMedCrossRef Nagarajan RP, Costello JF. Epigenetic mechanisms in glioblastoma multiforme. Semin Cancer Biol. 2009;19:188–97.PubMedCrossRef
9.
Zurück zum Zitat Li P, Wu M. Epigenetic Mechanisms of Glioblastoma. 2017. Li P, Wu M. Epigenetic Mechanisms of Glioblastoma. 2017.
10.
Zurück zum Zitat Lee P, Murphy B, Miller R, Menon V, Banik NL, Giglio P, Lindhorst SM, Varma AK, Vandergrift WR, Patel SJ, Das A. Mechanisms and clinical significance of histone deacetylase inhibitors: epigenetic glioblastoma therapy. Anticancer Res. 2015;35:615–25.PubMedPubMedCentral Lee P, Murphy B, Miller R, Menon V, Banik NL, Giglio P, Lindhorst SM, Varma AK, Vandergrift WR, Patel SJ, Das A. Mechanisms and clinical significance of histone deacetylase inhibitors: epigenetic glioblastoma therapy. Anticancer Res. 2015;35:615–25.PubMedPubMedCentral
11.
Zurück zum Zitat Kouzarides T. Chromatin modifications and their function.; 2007. pp 693-705. Kouzarides T. Chromatin modifications and their function.; 2007. pp 693-705.
12.
15.
Zurück zum Zitat Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 2015;20:3898–941.PubMedPubMedCentralCrossRef Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules. 2015;20:3898–941.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Batty N, Malouf GG, Issa JP. Histone deacetylase inhibitors as anti-neoplastic agents. Cancer Lett. 2009;280:192–200.PubMedCrossRef Batty N, Malouf GG, Issa JP. Histone deacetylase inhibitors as anti-neoplastic agents. Cancer Lett. 2009;280:192–200.PubMedCrossRef
17.
Zurück zum Zitat Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, Rath SK, Patra SK. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem. 2014;62:11–33.PubMedPubMedCentralCrossRef Parbin S, Kar S, Shilpi A, Sengupta D, Deb M, Rath SK, Patra SK. Histone deacetylases: a saga of perturbed acetylation homeostasis in cancer. J Histochem Cytochem. 2014;62:11–33.PubMedPubMedCentralCrossRef
18.
19.
Zurück zum Zitat Ruiz-Carrillo A, Wangh LJ, Allfrey VG. Processing of newly synthesized histone molecules. Science. 1975;190:117–28.PubMedCrossRef Ruiz-Carrillo A, Wangh LJ, Allfrey VG. Processing of newly synthesized histone molecules. Science. 1975;190:117–28.PubMedCrossRef
20.
Zurück zum Zitat Allis CD, Chicoine LG, Richman R, Schulman IG. Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc Natl Acad Sci U S A. 1985;82:8048–52.PubMedPubMedCentralCrossRef Allis CD, Chicoine LG, Richman R, Schulman IG. Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc Natl Acad Sci U S A. 1985;82:8048–52.PubMedPubMedCentralCrossRef
21.
Zurück zum Zitat Brownell JE, Allis CD. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev. 1996;6:176–84.PubMedCrossRef Brownell JE, Allis CD. Special HATs for special occasions: linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev. 1996;6:176–84.PubMedCrossRef
22.
Zurück zum Zitat Yan Y, Barlev NA, Haley RH, Berger SL, Marmorstein R. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol Cell. 2000;6:1195–205.PubMedCrossRef Yan Y, Barlev NA, Haley RH, Berger SL, Marmorstein R. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol Cell. 2000;6:1195–205.PubMedCrossRef
23.
Zurück zum Zitat Dutnall RN, Tafrov ST, Sternglanz R, Ramakrishnan V. Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell. 1998;94:427–38.PubMedCrossRef Dutnall RN, Tafrov ST, Sternglanz R, Ramakrishnan V. Structure of the histone acetyltransferase Hat1: a paradigm for the GCN5-related N-acetyltransferase superfamily. Cell. 1998;94:427–38.PubMedCrossRef
24.
Zurück zum Zitat Neuwald AF, Landsman D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci. 1997;22:154–5.PubMedCrossRef Neuwald AF, Landsman D. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci. 1997;22:154–5.PubMedCrossRef
25.
Zurück zum Zitat Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399:491–6.PubMedCrossRef Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain. Nature. 1999;399:491–6.PubMedCrossRef
26.
Zurück zum Zitat Wolffe AP, Pruss D. Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell. 1996;84:817–9.PubMedCrossRef Wolffe AP, Pruss D. Targeting chromatin disruption: Transcription regulators that acetylate histones. Cell. 1996;84:817–9.PubMedCrossRef
27.
Zurück zum Zitat Jones DO, Cowell IG, Singh PB. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays. 2000;22:124–37.PubMedCrossRef Jones DO, Cowell IG, Singh PB. Mammalian chromodomain proteins: their role in genome organisation and expression. Bioessays. 2000;22:124–37.PubMedCrossRef
28.
Zurück zum Zitat Bienz M. The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 2006;31:35-40. Bienz M. The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci 2006;31:35-40.
29.
Zurück zum Zitat Morra R, Lee BM, Shaw H, Tuma R, Mancini EJ. Concerted action of the PHD, chromo and motor domains regulates the human chromatin remodelling ATPase CHD4. Febs Lett. 2012;586:2513–21.PubMedPubMedCentralCrossRef Morra R, Lee BM, Shaw H, Tuma R, Mancini EJ. Concerted action of the PHD, chromo and motor domains regulates the human chromatin remodelling ATPase CHD4. Febs Lett. 2012;586:2513–21.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Kelly RD, Cowley SM. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem Soc Trans. 2013;41:741–9.PubMedCrossRef Kelly RD, Cowley SM. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem Soc Trans. 2013;41:741–9.PubMedCrossRef
31.
Zurück zum Zitat Kimura A, Matsubara K, Horikoshi M. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem. 2005;138:647–62.PubMedCrossRef Kimura A, Matsubara K, Horikoshi M. A decade of histone acetylation: marking eukaryotic chromosomes with specific codes. J Biochem. 2005;138:647–62.PubMedCrossRef
32.
Zurück zum Zitat Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, Allis CD, Marmorstein R, Denu JM. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem. 1999;274:18157–60.PubMedCrossRef Tanner KG, Trievel RC, Kuo MH, Howard RM, Berger SL, Allis CD, Marmorstein R, Denu JM. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem. 1999;274:18157–60.PubMedCrossRef
33.
Zurück zum Zitat Tanner KG, Langer MR, Kim Y, Denu JM. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J Biol Chem. 2000;275:22048–55.PubMedCrossRef Tanner KG, Langer MR, Kim Y, Denu JM. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J Biol Chem. 2000;275:22048–55.PubMedCrossRef
34.
Zurück zum Zitat Tanner KG, Langer MR, Denu JM. Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry-us. 2000;39:15652.CrossRef Tanner KG, Langer MR, Denu JM. Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry-us. 2000;39:15652.CrossRef
35.
Zurück zum Zitat Lau OD, Courtney AD, Vassilev A, Marzilli LA, Cotter RJ, Nakatani Y, Cole PA. p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. Kinetic analysis of the catalytic mechanism. J Biol Chem. 2000;275:21953–9.PubMedCrossRef Lau OD, Courtney AD, Vassilev A, Marzilli LA, Cotter RJ, Nakatani Y, Cole PA. p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. Kinetic analysis of the catalytic mechanism. J Biol Chem. 2000;275:21953–9.PubMedCrossRef
36.
Zurück zum Zitat McCullough CE, Marmorstein R. In Vitro Activity Assays for MYST Histone Acetyltransferases and Adaptation for High-Throughput Inhibitor Screening. Methods Enzymol. 2016;573:139–60.PubMedPubMedCentralCrossRef McCullough CE, Marmorstein R. In Vitro Activity Assays for MYST Histone Acetyltransferases and Adaptation for High-Throughput Inhibitor Screening. Methods Enzymol. 2016;573:139–60.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Davie JR, Samuel SK, Spencer VA, Holth LT, Chadee DN, Peltier CP, Sun JM, Chen HY, Wright JA. Organization of chromatin in cancer cells: role of signalling pathways. Biochem Cell Biol. 1999;77:265–75.PubMedCrossRef Davie JR, Samuel SK, Spencer VA, Holth LT, Chadee DN, Peltier CP, Sun JM, Chen HY, Wright JA. Organization of chromatin in cancer cells: role of signalling pathways. Biochem Cell Biol. 1999;77:265–75.PubMedCrossRef
38.
Zurück zum Zitat Nakajima H. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Tanpakushitsu Kakusan Koso. 2007;52:1790–1.PubMed Nakajima H. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Tanpakushitsu Kakusan Koso. 2007;52:1790–1.PubMed
39.
Zurück zum Zitat Ahmad M, Hamid A, Hussain A, Majeed R, Qurishi Y, Bhat JA, Najar RA, Qazi AK, Zargar MA, Singh SK, Saxena AK. Understanding histone deacetylases in the cancer development and treatment: an epigenetic perspective of cancer chemotherapy. DNA Cell Biol. 2012;31(Suppl 1):S62–71.PubMedCrossRef Ahmad M, Hamid A, Hussain A, Majeed R, Qurishi Y, Bhat JA, Najar RA, Qazi AK, Zargar MA, Singh SK, Saxena AK. Understanding histone deacetylases in the cancer development and treatment: an epigenetic perspective of cancer chemotherapy. DNA Cell Biol. 2012;31(Suppl 1):S62–71.PubMedCrossRef
40.
Zurück zum Zitat Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42.PubMedPubMedCentralCrossRef Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009;10:32–42.PubMedPubMedCentralCrossRef
41.
42.
Zurück zum Zitat Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002;277:25748–55.PubMedCrossRef Gao L, Cueto MA, Asselbergs F, Atadja P. Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family. J Biol Chem. 2002;277:25748–55.PubMedCrossRef
43.
Zurück zum Zitat Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.PubMedCrossRef Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–84.PubMedCrossRef
45.
Zurück zum Zitat Wolffe AP, Guschin D. Review: chromatin structural features and targets that regulate transcription. J Struct Biol. 2000;129:102–22.PubMedCrossRef Wolffe AP, Guschin D. Review: chromatin structural features and targets that regulate transcription. J Struct Biol. 2000;129:102–22.PubMedCrossRef
46.
Zurück zum Zitat Eickbush TH, Moudrianakis EN. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry-us. 1978;17:4955–64.CrossRef Eickbush TH, Moudrianakis EN. The histone core complex: an octamer assembled by two sets of protein-protein interactions. Biochemistry-us. 1978;17:4955–64.CrossRef
47.
Zurück zum Zitat Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15:703–8.PubMedCrossRef Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15:703–8.PubMedCrossRef
48.
Zurück zum Zitat Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993;72:73–84.PubMedCrossRef Lee DY, Hayes JJ, Pruss D, Wolffe AP. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell. 1993;72:73–84.PubMedCrossRef
49.
Zurück zum Zitat Fenley AT, Anandakrishnan R, Kidane YH, Onufriev AV. Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core.; 2018. p 11. Fenley AT, Anandakrishnan R, Kidane YH, Onufriev AV. Modulation of nucleosomal DNA accessibility via charge-altering post-translational modifications in histone core.; 2018. p 11.
50.
Zurück zum Zitat Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11:384–400.PubMedCrossRef Arrowsmith CH, Bountra C, Fish PV, Lee K, Schapira M. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov. 2012;11:384–400.PubMedCrossRef
51.
52.
Zurück zum Zitat Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002;111:381–92.PubMedCrossRef Agalioti T, Chen G, Thanos D. Deciphering the transcriptional histone acetylation code for a human gene. Cell. 2002;111:381–92.PubMedCrossRef
53.
Zurück zum Zitat Peterson CL. Chromatin remodeling: nucleosomes bulging at the seams. Curr Biol. 2002;12:R245–7.PubMedCrossRef Peterson CL. Chromatin remodeling: nucleosomes bulging at the seams. Curr Biol. 2002;12:R245–7.PubMedCrossRef
55.
Zurück zum Zitat Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001;1:194–202.PubMedCrossRef Marks P, Rifkind RA, Richon VM, Breslow R, Miller T, Kelly WK. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001;1:194–202.PubMedCrossRef
56.
Zurück zum Zitat Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.PubMedCrossRef Gu W, Roeder RG. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell. 1997;90:595–606.PubMedCrossRef
57.
58.
Zurück zum Zitat Patel JH, Du Y, Ard PG, Phillips C, Carella B, Chen CJ, Rakowski C, Chatterjee C, Lieberman PM, Lane WS, Blobel GA, McMahon SB. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol. 2004;24:10826–34.PubMedPubMedCentralCrossRef Patel JH, Du Y, Ard PG, Phillips C, Carella B, Chen CJ, Rakowski C, Chatterjee C, Lieberman PM, Lane WS, Blobel GA, McMahon SB. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol Cell Biol. 2004;24:10826–34.PubMedPubMedCentralCrossRef
59.
Zurück zum Zitat Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 2001;293:1653–7.CrossRef Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 2001;293:1653–7.CrossRef
60.
Zurück zum Zitat Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell. 2002;111:709–20.PubMedCrossRef Jeong JW, Bae MK, Ahn MY, Kim SH, Sohn TK, Bae MH, Yoo MA, Song EJ, Lee KJ, Kim KW. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell. 2002;111:709–20.PubMedCrossRef
61.
Zurück zum Zitat Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SA, Lopez GN, Kushner PJ, Pestell RG. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem. 2001;276:18375–83.PubMedCrossRef Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SA, Lopez GN, Kushner PJ, Pestell RG. Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity. J Biol Chem. 2001;276:18375–83.PubMedCrossRef
62.
Zurück zum Zitat Gaughan L, Logan IR, Cook S, Neal DE, Robson CN. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem. 2002;277:25904–13.PubMedCrossRef Gaughan L, Logan IR, Cook S, Neal DE, Robson CN. Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor. J Biol Chem. 2002;277:25904–13.PubMedCrossRef
63.
Zurück zum Zitat Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.PubMedCrossRef Glozak MA, Sengupta N, Zhang X, Seto E. Acetylation and deacetylation of non-histone proteins. Gene. 2005;363:15–23.PubMedCrossRef
65.
Zurück zum Zitat Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51.PubMedCrossRef Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51.PubMedCrossRef
66.
Zurück zum Zitat Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S, Ragno R. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. MED RES REV. 2005;25:261–309.PubMedCrossRef Mai A, Massa S, Rotili D, Cerbara I, Valente S, Pezzi R, Simeoni S, Ragno R. Histone deacetylation in epigenetics: an attractive target for anticancer therapy. MED RES REV. 2005;25:261–309.PubMedCrossRef
67.
Zurück zum Zitat Kumar S, Ahmad MK, Waseem M, Pandey AK. Drug Targets for Cancer Treatment: An Overview. Med Chem. 2015;5:115–23. Kumar S, Ahmad MK, Waseem M, Pandey AK. Drug Targets for Cancer Treatment: An Overview. Med Chem. 2015;5:115–23.
68.
69.
Zurück zum Zitat Vidanes GM, Bonilla CY, Toczyski DP. Complicated tails: histone modifications and the DNA damage response. Cell. 2005;121:973–6.PubMedCrossRef Vidanes GM, Bonilla CY, Toczyski DP. Complicated tails: histone modifications and the DNA damage response. Cell. 2005;121:973–6.PubMedCrossRef
70.
Zurück zum Zitat Polo SE, Almouzni G. Histone metabolic pathways and chromatin assembly factors as proliferation markers. Cancer Lett. 2005;220:1–9.PubMedCrossRef Polo SE, Almouzni G. Histone metabolic pathways and chromatin assembly factors as proliferation markers. Cancer Lett. 2005;220:1–9.PubMedCrossRef
71.
Zurück zum Zitat Singh AK, Bishayee A, Pandey AK. Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy. Nutrients. 2018;10. Singh AK, Bishayee A, Pandey AK. Targeting Histone Deacetylases with Natural and Synthetic Agents: An Emerging Anticancer Strategy. Nutrients. 2018;10.
72.
Zurück zum Zitat Petta V, Gkiozos I, Strimpakos A, Syrigos K. Histones and lung cancer: Are the histone deacetylases a promising therapeutic target? Cancer Chemother Pharmacol. 2013;72:935–52.PubMedCrossRef Petta V, Gkiozos I, Strimpakos A, Syrigos K. Histones and lung cancer: Are the histone deacetylases a promising therapeutic target? Cancer Chemother Pharmacol. 2013;72:935–52.PubMedCrossRef
73.
Zurück zum Zitat Cao C, Vasilatos SN, Bhargava R, Fine JL, Oesterreich S, Davidson NE, Huang Y. Functional interaction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression. Oncogene. 2017;36:133–45.PubMedCrossRef Cao C, Vasilatos SN, Bhargava R, Fine JL, Oesterreich S, Davidson NE, Huang Y. Functional interaction of histone deacetylase 5 (HDAC5) and lysine-specific demethylase 1 (LSD1) promotes breast cancer progression. Oncogene. 2017;36:133–45.PubMedCrossRef
74.
Zurück zum Zitat Rikimaru T, Taketomi A, Yamashita Y, Shirabe K, Hamatsu T, Shimada M, Maehara Y. Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology. 2007;72:69–74.PubMedCrossRef Rikimaru T, Taketomi A, Yamashita Y, Shirabe K, Hamatsu T, Shimada M, Maehara Y. Clinical significance of histone deacetylase 1 expression in patients with hepatocellular carcinoma. Oncology. 2007;72:69–74.PubMedCrossRef
75.
Zurück zum Zitat Insinga A, Monestiroli S, Ronzoni S, Carbone R, Pearson M, Pruneri G, Viale G, Appella E, Pelicci P, Minucci S. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. Embo J. 2004;23:1144–54.PubMedPubMedCentralCrossRef Insinga A, Monestiroli S, Ronzoni S, Carbone R, Pearson M, Pruneri G, Viale G, Appella E, Pelicci P, Minucci S. Impairment of p53 acetylation, stability and function by an oncogenic transcription factor. Embo J. 2004;23:1144–54.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408:377–81.PubMedCrossRef Luo J, Su F, Chen D, Shiloh A, Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature. 2000;408:377–81.PubMedCrossRef
77.
Zurück zum Zitat Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate. 2004;59:177–89.PubMedCrossRef Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate. 2004;59:177–89.PubMedCrossRef
78.
79.
Zurück zum Zitat Yi J, Huang X, Yang Y, Zhu WG, Gu W, Luo J. Regulation of histone acetyltransferase TIP60 function by histone deacetylase 3. J Biol Chem. 2014;289:33878–86.PubMedPubMedCentralCrossRef Yi J, Huang X, Yang Y, Zhu WG, Gu W, Luo J. Regulation of histone acetyltransferase TIP60 function by histone deacetylase 3. J Biol Chem. 2014;289:33878–86.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell. 2000;102:463–73.PubMedCrossRef Ikura T, Ogryzko VV, Grigoriev M, Groisman R, Wang J, Horikoshi M, Scully R, Qin J, Nakatani Y. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell. 2000;102:463–73.PubMedCrossRef
81.
Zurück zum Zitat Roos WP, Krumm A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res. 2016;44:10017–30.PubMedPubMedCentral Roos WP, Krumm A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res. 2016;44:10017–30.PubMedPubMedCentral
82.
Zurück zum Zitat Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18:601–7.PubMedCrossRef Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT, Nicchitta CV, Yoshida M, Toft DO, Pratt WB, Yao TP. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18:601–7.PubMedCrossRef
83.
Zurück zum Zitat Park JH, Kim SH, Choi MC, Lee J, Oh DY, Im SA, Bang YJ, Kim TY. Class II histone deacetylases play pivotal roles in heat shock protein 90-mediated proteasomal degradation of vascular endothelial growth factor receptors. Biochem Biophys Res Commun. 2008;368:318–22.PubMedCrossRef Park JH, Kim SH, Choi MC, Lee J, Oh DY, Im SA, Bang YJ, Kim TY. Class II histone deacetylases play pivotal roles in heat shock protein 90-mediated proteasomal degradation of vascular endothelial growth factor receptors. Biochem Biophys Res Commun. 2008;368:318–22.PubMedCrossRef
84.
Zurück zum Zitat Mottet D, Bellahcene A, Pirotte S, Waltregny D, Deroanne C, Lamour V, Lidereau R, Castronovo V. Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res. 2007;101:1237–46.PubMedCrossRef Mottet D, Bellahcene A, Pirotte S, Waltregny D, Deroanne C, Lamour V, Lidereau R, Castronovo V. Histone deacetylase 7 silencing alters endothelial cell migration, a key step in angiogenesis. Circ Res. 2007;101:1237–46.PubMedCrossRef
85.
Zurück zum Zitat Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011;32:335–43.PubMedCrossRef Shakespear MR, Halili MA, Irvine KM, Fairlie DP, Sweet MJ. Histone deacetylases as regulators of inflammation and immunity. Trends Immunol. 2011;32:335–43.PubMedCrossRef
86.
Zurück zum Zitat Deng WG, Zhu Y, Wu KK. Role of p300 and PCAF in regulating cyclooxygenase-2 promoter activation by inflammatory mediators. Blood. 2004;103:2135–42.PubMedCrossRef Deng WG, Zhu Y, Wu KK. Role of p300 and PCAF in regulating cyclooxygenase-2 promoter activation by inflammatory mediators. Blood. 2004;103:2135–42.PubMedCrossRef
87.
Zurück zum Zitat Choi YS, Jeong S. PI3-kinase and PDK-1 regulate HDAC1-mediated transcriptional repression of transcription factor NF-kappaB. Mol Cells. 2005;20:241–6.PubMed Choi YS, Jeong S. PI3-kinase and PDK-1 regulate HDAC1-mediated transcriptional repression of transcription factor NF-kappaB. Mol Cells. 2005;20:241–6.PubMed
88.
Zurück zum Zitat Nusinzon I, Horvath CM. Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol Cell Biol. 2006;26:3106–13.PubMedPubMedCentralCrossRef Nusinzon I, Horvath CM. Positive and negative regulation of the innate antiviral response and beta interferon gene expression by deacetylation. Mol Cell Biol. 2006;26:3106–13.PubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Duan H, Heckman CA, Boxer LM. Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol. 2005;25:1608–19.PubMedPubMedCentralCrossRef Duan H, Heckman CA, Boxer LM. Histone deacetylase inhibitors down-regulate bcl-2 expression and induce apoptosis in t(14;18) lymphomas. Mol Cell Biol. 2005;25:1608–19.PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Weichert W, Roske A, Niesporek S, Noske A, Buckendahl AC, Dietel M, Gekeler V, Boehm M, Beckers T, Denkert C. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res. 2008;14:1669–77.PubMedCrossRef Weichert W, Roske A, Niesporek S, Noske A, Buckendahl AC, Dietel M, Gekeler V, Boehm M, Beckers T, Denkert C. Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo. Clin Cancer Res. 2008;14:1669–77.PubMedCrossRef
91.
Zurück zum Zitat Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer. 2004;112:26–32.PubMedCrossRef Osada H, Tatematsu Y, Saito H, Yatabe Y, Mitsudomi T, Takahashi T. Reduced expression of class II histone deacetylase genes is associated with poor prognosis in lung cancer patients. Int J Cancer. 2004;112:26–32.PubMedCrossRef
92.
Zurück zum Zitat Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002;1:287–99.PubMedCrossRef Johnstone RW. Histone-deacetylase inhibitors: novel drugs for the treatment of cancer. Nat Rev Drug Discov. 2002;1:287–99.PubMedCrossRef
93.
Zurück zum Zitat Zhang XD, Gillespie SK, Borrow JM, Hersey P. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther. 2004;3:425.PubMed Zhang XD, Gillespie SK, Borrow JM, Hersey P. The histone deacetylase inhibitor suberic bishydroxamate regulates the expression of multiple apoptotic mediators and induces mitochondria-dependent apoptosis of melanoma cells. Mol Cancer Ther. 2004;3:425.PubMed
94.
Zurück zum Zitat Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy. 2013;9:1509–26.PubMedCrossRef Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL. Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy. 2013;9:1509–26.PubMedCrossRef
95.
Zurück zum Zitat Hesham HM, Lasheen DS, Abouzid K. Chimeric HDAC inhibitors: Comprehensive review on the HDAC-based strategies developed to combat cancer. Med Res Rev. 2018;38:2058–109.PubMedCrossRef Hesham HM, Lasheen DS, Abouzid K. Chimeric HDAC inhibitors: Comprehensive review on the HDAC-based strategies developed to combat cancer. Med Res Rev. 2018;38:2058–109.PubMedCrossRef
96.
Zurück zum Zitat Wang Z, Chen Z, Jiang G, Wu Y, Liu T, Yi Y, Zeng J, Du J, Wang H. Histone deacetylase inhibitors suppress mutant p53 transcription via HDAC8/YY1 signals in triple negative breast cancer cells. Cell Signal. 2016;28:506–15.PubMedCrossRef Wang Z, Chen Z, Jiang G, Wu Y, Liu T, Yi Y, Zeng J, Du J, Wang H. Histone deacetylase inhibitors suppress mutant p53 transcription via HDAC8/YY1 signals in triple negative breast cancer cells. Cell Signal. 2016;28:506–15.PubMedCrossRef
97.
Zurück zum Zitat Gilardini Montani MS, Granato M, Santoni C, Del Porto P, Merendino N, D Orazi G, Faggioni A, Cirone M. Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells. Cell Oncol 2017;40:167-180. Gilardini Montani MS, Granato M, Santoni C, Del Porto P, Merendino N, D Orazi G, Faggioni A, Cirone M. Histone deacetylase inhibitors VPA and TSA induce apoptosis and autophagy in pancreatic cancer cells. Cell Oncol 2017;40:167-180.
98.
Zurück zum Zitat Symanowski J, Vogelzang N, Zawel L, Atadja P, Pass H, Sharma S. A Histone Deacetylase Inhibitor LBH589 Downregulates XIAP in Mesothelioma Cell Lines Which is Likely Responsible for Increased Apoptosis With TRAIL. J Thorac Oncol. 2009;4:149–60.PubMedCrossRef Symanowski J, Vogelzang N, Zawel L, Atadja P, Pass H, Sharma S. A Histone Deacetylase Inhibitor LBH589 Downregulates XIAP in Mesothelioma Cell Lines Which is Likely Responsible for Increased Apoptosis With TRAIL. J Thorac Oncol. 2009;4:149–60.PubMedCrossRef
99.
Zurück zum Zitat Rosato RR, Maggio SC, Almenara JA, Payne SG, Atadja P, Spiegel S, Dent P, Grant S. RETRACTION: The Histone Deacetylase Inhibitor LAQ824 Induces Human Leukemia Cell Death through a Process Involving XIAP Down-Regulation, Oxidative Injury, and the Acid Sphingomyelinase-Dependent Generation of Ceramide. Mol Pharmacol. 2006;69:216.PubMedCrossRef Rosato RR, Maggio SC, Almenara JA, Payne SG, Atadja P, Spiegel S, Dent P, Grant S. RETRACTION: The Histone Deacetylase Inhibitor LAQ824 Induces Human Leukemia Cell Death through a Process Involving XIAP Down-Regulation, Oxidative Injury, and the Acid Sphingomyelinase-Dependent Generation of Ceramide. Mol Pharmacol. 2006;69:216.PubMedCrossRef
100.
Zurück zum Zitat Xu W, Ngo L, Perez G, Dokmanovic M, Marks PA. Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. P Natl Acad Sci Usa. 2006;103:15540–5.CrossRef Xu W, Ngo L, Perez G, Dokmanovic M, Marks PA. Intrinsic apoptotic and thioredoxin pathways in human prostate cancer cell response to histone deacetylase inhibitor. P Natl Acad Sci Usa. 2006;103:15540–5.CrossRef
101.
Zurück zum Zitat Lucas DM, Davis ME, Parthun MR, Mone AP, Kitada S, Cunningham KD, Flax EL, Wickham J, Reed JC, Byrd JC, Grever MR. The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia. 2004;18:1207–14.PubMedCrossRef Lucas DM, Davis ME, Parthun MR, Mone AP, Kitada S, Cunningham KD, Flax EL, Wickham J, Reed JC, Byrd JC, Grever MR. The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells. Leukemia. 2004;18:1207–14.PubMedCrossRef
102.
Zurück zum Zitat Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, Pelicci PG. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med. 2005;11:71–6.PubMedCrossRef Insinga A, Monestiroli S, Ronzoni S, Gelmetti V, Marchesi F, Viale A, Altucci L, Nervi C, Minucci S, Pelicci PG. Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway. Nat Med. 2005;11:71–6.PubMedCrossRef
103.
Zurück zum Zitat Singh TR, Shankar S, Srivastava RK. HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene. 2005;24:4609–23.PubMedCrossRef Singh TR, Shankar S, Srivastava RK. HDAC inhibitors enhance the apoptosis-inducing potential of TRAIL in breast carcinoma. Oncogene. 2005;24:4609–23.PubMedCrossRef
104.
Zurück zum Zitat Fotheringham S, Epping MT, Stimson L, Khan O, Wood V, Pezzella F, Bernards R, La Thangue NB. Genome-wide Loss-of-Function Screen Reveals an Important Role for the Proteasome in HDAC Inhibitor-Induced Apoptosis. Cancer Cell. 2009;15:57–66.PubMedCrossRef Fotheringham S, Epping MT, Stimson L, Khan O, Wood V, Pezzella F, Bernards R, La Thangue NB. Genome-wide Loss-of-Function Screen Reveals an Important Role for the Proteasome in HDAC Inhibitor-Induced Apoptosis. Cancer Cell. 2009;15:57–66.PubMedCrossRef
105.
Zurück zum Zitat Scott GK, Marden C, Xu F, Kirk L, Benz CC. Transcriptional Repression of ErbB2 by Histone Deacetylase Inhibitors Detected by a Genomically Integrated ErbB2 Promoter-reporting Cell Screen. Mol Cancer Ther. 2002;1:385.PubMed Scott GK, Marden C, Xu F, Kirk L, Benz CC. Transcriptional Repression of ErbB2 by Histone Deacetylase Inhibitors Detected by a Genomically Integrated ErbB2 Promoter-reporting Cell Screen. Mol Cancer Ther. 2002;1:385.PubMed
106.
Zurück zum Zitat Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H, Wang H, Atadja P, Bhalla K. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther. 2003;2:971.PubMed Fuino L, Bali P, Wittmann S, Donapaty S, Guo F, Yamaguchi H, Wang H, Atadja P, Bhalla K. Histone deacetylase inhibitor LAQ824 down-regulates Her-2 and sensitizes human breast cancer cells to trastuzumab, taxotere, gemcitabine, and epothilone B. Mol Cancer Ther. 2003;2:971.PubMed
107.
Zurück zum Zitat Shulak L, Beljanski V, Chiang C, Dutta SM, Van Grevenynghe J, Belgnaoui SM, Nguyên TL, Di Lenardo T, Semmes OJ, Lin R, Hiscott J. Histone deacetylase inhibitors potentiate vesicular stomatitis virus oncolysis in prostate cancer cells by modulating NF-κB-dependent autophagy. J Virol. 2014;88:2927–40.PubMedPubMedCentralCrossRef Shulak L, Beljanski V, Chiang C, Dutta SM, Van Grevenynghe J, Belgnaoui SM, Nguyên TL, Di Lenardo T, Semmes OJ, Lin R, Hiscott J. Histone deacetylase inhibitors potentiate vesicular stomatitis virus oncolysis in prostate cancer cells by modulating NF-κB-dependent autophagy. J Virol. 2014;88:2927–40.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J, Moscinski L, Smith C, Wu J, Jove R, Atadja P, Bhalla K. Histone Deacetylase Inhibitor LAQ824 Both Lowers Expression and Promotes Proteasomal Degradation of Bcr-Abl and Induces Apoptosis of Imatinib Mesylate-sensitive or -refractory Chronic Myelogenous Leukemia-Blast Crisis Cells. Cancer Res. 2003;63:5126.PubMed Nimmanapalli R, Fuino L, Bali P, Gasparetto M, Glozak M, Tao J, Moscinski L, Smith C, Wu J, Jove R, Atadja P, Bhalla K. Histone Deacetylase Inhibitor LAQ824 Both Lowers Expression and Promotes Proteasomal Degradation of Bcr-Abl and Induces Apoptosis of Imatinib Mesylate-sensitive or -refractory Chronic Myelogenous Leukemia-Blast Crisis Cells. Cancer Res. 2003;63:5126.PubMed
109.
Zurück zum Zitat Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. P Natl Acad Sci Usa. 2000;97:10014–9.CrossRef Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. P Natl Acad Sci Usa. 2000;97:10014–9.CrossRef
110.
Zurück zum Zitat Archer SY, Meng S, Shei A, Hodin RA. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. P Natl Acad Sci Usa. 1998;95:6791–6.CrossRef Archer SY, Meng S, Shei A, Hodin RA. p21(WAF1) is required for butyrate-mediated growth inhibition of human colon cancer cells. P Natl Acad Sci Usa. 1998;95:6791–6.CrossRef
111.
Zurück zum Zitat Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26:5541–52.PubMedCrossRef Xu WS, Parmigiani RB, Marks PA. Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene. 2007;26:5541–52.PubMedCrossRef
112.
Zurück zum Zitat Chen Z, Clark S, Birkeland M, Sung C, Lago A, Liu R, Kirkpatrick R, Johanson K, Winkler JD, Hu E. Induction and superinduction of growth arrest and DNA damage gene 45 (GADD45) α and β messenger RNAs by histone deacetylase inhibitors trichostatin A (TSA) and butyrate in SW620 human colon carcinoma cells. Cancer Lett. 2002;188:127–40.PubMedCrossRef Chen Z, Clark S, Birkeland M, Sung C, Lago A, Liu R, Kirkpatrick R, Johanson K, Winkler JD, Hu E. Induction and superinduction of growth arrest and DNA damage gene 45 (GADD45) α and β messenger RNAs by histone deacetylase inhibitors trichostatin A (TSA) and butyrate in SW620 human colon carcinoma cells. Cancer Lett. 2002;188:127–40.PubMedCrossRef
113.
Zurück zum Zitat Jaboin J, Wild J, Hamidi H, Khanna C, Kim CJ, Robey R, Bates SE, Thiele CJ. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res. 2002;62:6108–15.PubMed Jaboin J, Wild J, Hamidi H, Khanna C, Kim CJ, Robey R, Bates SE, Thiele CJ. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res. 2002;62:6108–15.PubMed
114.
Zurück zum Zitat Mie Lee Y, Kim S, Kim H, Jin Son M, Nakajima H, Jeong Kwon H, Kim K. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1α activity. Biochem Bioph Res Co. 2003;300:241–6.CrossRef Mie Lee Y, Kim S, Kim H, Jin Son M, Nakajima H, Jeong Kwon H, Kim K. Inhibition of hypoxia-induced angiogenesis by FK228, a specific histone deacetylase inhibitor, via suppression of HIF-1α activity. Biochem Bioph Res Co. 2003;300:241–6.CrossRef
115.
Zurück zum Zitat Kim MS, Kwon HJ, Lee YM, Baek JH, Jang J, Lee S, Moon E, Kim H, Lee S, Chung HY, Kim CW, Kim K. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med. 2001;7:437–43.PubMedCrossRef Kim MS, Kwon HJ, Lee YM, Baek JH, Jang J, Lee S, Moon E, Kim H, Lee S, Chung HY, Kim CW, Kim K. Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med. 2001;7:437–43.PubMedCrossRef
116.
Zurück zum Zitat Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, Ismail S, Stevens C, Meyn RE. Histone Deacetylase Inhibitors Radiosensitize Human Melanoma Cells by Suppressing DNA Repair Activity. Clin Cancer Res. 2005;11:4912.PubMedCrossRef Munshi A, Kurland JF, Nishikawa T, Tanaka T, Hobbs ML, Tucker SL, Ismail S, Stevens C, Meyn RE. Histone Deacetylase Inhibitors Radiosensitize Human Melanoma Cells by Suppressing DNA Repair Activity. Clin Cancer Res. 2005;11:4912.PubMedCrossRef
117.
Zurück zum Zitat Zhang Y, Carr T, Dimtchev A, Zaer N, Dritschilo A, Jung M. Attenuated DNA Damage Repair by Trichostatin A through BRCA1 Suppression. Radiat Res 2007;168:115-124, 10. Zhang Y, Carr T, Dimtchev A, Zaer N, Dritschilo A, Jung M. Attenuated DNA Damage Repair by Trichostatin A through BRCA1 Suppression. Radiat Res 2007;168:115-124, 10.
118.
Zurück zum Zitat Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J. HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 Blockade. Cancer Immunol Res. 2015;3:1375–85.PubMedPubMedCentralCrossRef Woods DM, Sodré AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J. HDAC Inhibition Upregulates PD-1 Ligands in Melanoma and Augments Immunotherapy with PD-1 Blockade. Cancer Immunol Res. 2015;3:1375–85.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, Sotomayor P, Shrikant P, Fenstermaker R, Pili R. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. Plos One. 2012;7:e30815.PubMedPubMedCentralCrossRef Shen L, Ciesielski M, Ramakrishnan S, Miles KM, Ellis L, Sotomayor P, Shrikant P, Fenstermaker R, Pili R. Class I histone deacetylase inhibitor entinostat suppresses regulatory T cells and enhances immunotherapies in renal and prostate cancer models. Plos One. 2012;7:e30815.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Bojang PJ, Ramos KS. The promise and failures of epigenetic therapies for cancer treatment. Cancer Treat Rev. 2014;40:153–69.PubMedCrossRef Bojang PJ, Ramos KS. The promise and failures of epigenetic therapies for cancer treatment. Cancer Treat Rev. 2014;40:153–69.PubMedCrossRef
121.
Zurück zum Zitat Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug.; 2007. pp 84-90. Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug.; 2007. pp 84-90.
123.
Zurück zum Zitat Zhang T, Li J, Ma X, Yang Y, Sun W, Jin W, Wang L, He Y, Yang F, Yi Z, Hua Y, Liu M, Chen Y, Cai Z. Inhibition of HDACs-EphA2 Signaling Axis with WW437 Demonstrates Promising Preclinical Antitumor Activity in Breast Cancer.; 2018. pp 276-286. Zhang T, Li J, Ma X, Yang Y, Sun W, Jin W, Wang L, He Y, Yang F, Yi Z, Hua Y, Liu M, Chen Y, Cai Z. Inhibition of HDACs-EphA2 Signaling Axis with WW437 Demonstrates Promising Preclinical Antitumor Activity in Breast Cancer.; 2018. pp 276-286.
124.
Zurück zum Zitat Douillard JY, Bennouna J, Vavasseur F, Deporte-Fety R, Thomare P, Giacalone F, Meflah K. Phase I trial of interleukin-2 and high-dose arginine butyrate in metastatic colorectal cancer.; 2000. pp 56-61. Douillard JY, Bennouna J, Vavasseur F, Deporte-Fety R, Thomare P, Giacalone F, Meflah K. Phase I trial of interleukin-2 and high-dose arginine butyrate in metastatic colorectal cancer.; 2000. pp 56-61.
125.
Zurück zum Zitat Su JM, Li X, Thompson P, Ou C, Ingle AM, Russell H, Lau CC, Adamson PC, Blaney SM. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children's oncology group report.; 2011. pp 589-597. Su JM, Li X, Thompson P, Ou C, Ingle AM, Russell H, Lau CC, Adamson PC, Blaney SM. Phase 1 study of valproic acid in pediatric patients with refractory solid or CNS tumors: a children's oncology group report.; 2011. pp 589-597.
126.
Zurück zum Zitat Batlevi CL, Kasamon Y, Bociek RG, Lee P, Gore L, Copeland A, Sorensen R, Ordentlich P, Cruickshank S, Kunkel L, Buglio D, Hernandez-Ilizaliturri F, Younes A. ENGAGE- 501: phase II study of entinostat (SNDX-275) in relapsed and refractory Hodgkin lymphoma.; 2016. pp 968-975. Batlevi CL, Kasamon Y, Bociek RG, Lee P, Gore L, Copeland A, Sorensen R, Ordentlich P, Cruickshank S, Kunkel L, Buglio D, Hernandez-Ilizaliturri F, Younes A. ENGAGE- 501: phase II study of entinostat (SNDX-275) in relapsed and refractory Hodgkin lymphoma.; 2016. pp 968-975.
127.
Zurück zum Zitat Younes A, Oki Y, Bociek RG, Kuruvilla J, Fanale M, Neelapu S, Copeland A, Buglio D, Galal A, Besterman J, Li Z, Drouin M, Patterson T, Ward MR, Paulus JK, Ji Y, Medeiros LJ, Martell RE. Mocetinostat for relapsed classical Hodgkin's lymphoma: an open-label, single-arm, phase 2 trial.; 2011. pp 1222-1228. Younes A, Oki Y, Bociek RG, Kuruvilla J, Fanale M, Neelapu S, Copeland A, Buglio D, Galal A, Besterman J, Li Z, Drouin M, Patterson T, Ward MR, Paulus JK, Ji Y, Medeiros LJ, Martell RE. Mocetinostat for relapsed classical Hodgkin's lymphoma: an open-label, single-arm, phase 2 trial.; 2011. pp 1222-1228.
128.
Zurück zum Zitat Whittaker SJ, Demierre M, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Kim YH. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma.; 2010. pp 4485-4491. Whittaker SJ, Demierre M, Kim EJ, Rook AH, Lerner A, Duvic M, Scarisbrick J, Reddy S, Robak T, Becker JC, Samtsov A, McCulloch W, Kim YH. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma.; 2010. pp 4485-4491.
129.
Zurück zum Zitat Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 1993;268:22429–35.PubMedCrossRef Kijima M, Yoshida M, Sugita K, Horinouchi S, Beppu T. Trapoxin, an antitumor cyclic tetrapeptide, is an irreversible inhibitor of mammalian histone deacetylase. J Biol Chem. 1993;268:22429–35.PubMedCrossRef
130.
Zurück zum Zitat Wada CK, Frey RR, Ji Z, Curtin ML, Garland RB, Holms JH, Li J, Pease LJ, Guo J, Glaser KB, Marcotte PA, Richardson PL, Murphy SS, Bouska JJ, Tapang P, Magoc TJ, Albert DH, Davidsen SK, Michaelides MR. Alpha-keto amides as inhibitors of histone deacetylase.; 2003. pp 3331-3335. Wada CK, Frey RR, Ji Z, Curtin ML, Garland RB, Holms JH, Li J, Pease LJ, Guo J, Glaser KB, Marcotte PA, Richardson PL, Murphy SS, Bouska JJ, Tapang P, Magoc TJ, Albert DH, Davidsen SK, Michaelides MR. Alpha-keto amides as inhibitors of histone deacetylase.; 2003. pp 3331-3335.
131.
Zurück zum Zitat Vasudevan A, Ji Z, Frey RR, Wada CK, Steinman D, Heyman HR, Guo Y, Curtin ML, Guo J, Li J, Pease L, Glaser KB, Marcotte PA, Bouska JJ, Davidsen SK, Michaelides MR. Heterocyclic ketones as inhibitors of histone deacetylase.; 2003. pp 3909-3913. Vasudevan A, Ji Z, Frey RR, Wada CK, Steinman D, Heyman HR, Guo Y, Curtin ML, Guo J, Li J, Pease L, Glaser KB, Marcotte PA, Bouska JJ, Davidsen SK, Michaelides MR. Heterocyclic ketones as inhibitors of histone deacetylase.; 2003. pp 3909-3913.
132.
Zurück zum Zitat Das A, Henderson F, Lowe S, Wallace GC, Vandergrift WA, Lindhorst SM, Varma AK, Infinger LK, Giglio P, Banik NL, Patel SJ, Cachia D. Single agent efficacy of the HDAC inhibitor DATS in preclinical models of glioblastoma.; 2018. pp 945-952. Das A, Henderson F, Lowe S, Wallace GC, Vandergrift WA, Lindhorst SM, Varma AK, Infinger LK, Giglio P, Banik NL, Patel SJ, Cachia D. Single agent efficacy of the HDAC inhibitor DATS in preclinical models of glioblastoma.; 2018. pp 945-952.
133.
Zurück zum Zitat Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone Deacetylase Inhibitors as Anticancer Drugs.; 2017. Eckschlager T, Plch J, Stiborova M, Hrabeta J. Histone Deacetylase Inhibitors as Anticancer Drugs.; 2017.
134.
Zurück zum Zitat Burgess AJ, Pavey S, Warrener R, Hunter LJ, Piva TJ, Musgrove EA, Saunders N, Parsons PG, Gabrielli BG. Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol Pharmacol. 2001;60:828–37.PubMed Burgess AJ, Pavey S, Warrener R, Hunter LJ, Piva TJ, Musgrove EA, Saunders N, Parsons PG, Gabrielli BG. Up-regulation of p21(WAF1/CIP1) by histone deacetylase inhibitors reduces their cytotoxicity. Mol Pharmacol. 2001;60:828–37.PubMed
135.
Zurück zum Zitat Coffey DC, Kutko MC, Glick RD, Butler LM, Heller G, Rifkind RA, Marks PA, Richon VM, La Quaglia MP. The histone deacetylase inhibitor, CBHA, inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res. 2001;61:3591–4.PubMed Coffey DC, Kutko MC, Glick RD, Butler LM, Heller G, Rifkind RA, Marks PA, Richon VM, La Quaglia MP. The histone deacetylase inhibitor, CBHA, inhibits growth of human neuroblastoma xenografts in vivo, alone and synergistically with all-trans retinoic acid. Cancer Res. 2001;61:3591–4.PubMed
136.
Zurück zum Zitat Yang L, Liang Q, Shen K, Ma L, An N, Deng W, Fei Z, Liu J. A novel class I histone deacetylase inhibitor, I-7ab, induces apoptosis and arrests cell cycle progression in human colorectal cancer cells.; 2015. pp 70-78. Yang L, Liang Q, Shen K, Ma L, An N, Deng W, Fei Z, Liu J. A novel class I histone deacetylase inhibitor, I-7ab, induces apoptosis and arrests cell cycle progression in human colorectal cancer cells.; 2015. pp 70-78.
137.
Zurück zum Zitat Wells CE, Bhaskara S, Stengel KR, Zhao Y, Sirbu B, Chagot B, Cortez D, Khabele D, Chazin WJ, Cooper A, Jacques V, Rusche J, Eischen CM, McGirt LY, Hiebert SW. Inhibition of histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma. Plos One. 2013;8:e68915.PubMedPubMedCentralCrossRef Wells CE, Bhaskara S, Stengel KR, Zhao Y, Sirbu B, Chagot B, Cortez D, Khabele D, Chazin WJ, Cooper A, Jacques V, Rusche J, Eischen CM, McGirt LY, Hiebert SW. Inhibition of histone deacetylase 3 causes replication stress in cutaneous T cell lymphoma. Plos One. 2013;8:e68915.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas.; 2008. pp 1026-1034. Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ. A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas.; 2008. pp 1026-1034.
139.
Zurück zum Zitat Suzuki T, Ota Y, Ri M, Bando M, Gotoh A, Itoh Y, Tsumoto H, Tatum PR, Mizukami T, Nakagawa H, Iida S, Ueda R, Shirahige K, Miyata N. Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries.; 2012. pp 9562-9575. Suzuki T, Ota Y, Ri M, Bando M, Gotoh A, Itoh Y, Tsumoto H, Tatum PR, Mizukami T, Nakagawa H, Iida S, Ueda R, Shirahige K, Miyata N. Rapid discovery of highly potent and selective inhibitors of histone deacetylase 8 using click chemistry to generate candidate libraries.; 2012. pp 9562-9575.
140.
Zurück zum Zitat Aldana-Masangkay GI, Rodriguez-Gonzalez A, Lin T, Ikeda AK, Hsieh Y, Kim Y, Lomenick B, Okemoto K, Landaw EM, Wang D, Mazitschek R, Bradner JE, Sakamoto KM. Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells.; 2011. pp 1544-1555. Aldana-Masangkay GI, Rodriguez-Gonzalez A, Lin T, Ikeda AK, Hsieh Y, Kim Y, Lomenick B, Okemoto K, Landaw EM, Wang D, Mazitschek R, Bradner JE, Sakamoto KM. Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells.; 2011. pp 1544-1555.
141.
Zurück zum Zitat Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, Huber LJ. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol. 2006;26:28–38.PubMedPubMedCentralCrossRef Solomon JM, Pasupuleti R, Xu L, McDonagh T, Curtis R, DiStefano PS, Huber LJ. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol Cell Biol. 2006;26:28–38.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Medda F, Russell RJM, Higgins M, McCarthy AR, Campbell J, Slawin AMZ, Lane DP, Lain S, Westwood NJ. Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity. J Med Chem. 2009;52:2673–82.PubMedPubMedCentralCrossRef Medda F, Russell RJM, Higgins M, McCarthy AR, Campbell J, Slawin AMZ, Lane DP, Lain S, Westwood NJ. Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity. J Med Chem. 2009;52:2673–82.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Kalle AM, Mallika A, Badiger J, Alinakhi, Talukdar P, Sachchidanand. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells.; 2010. pp 13-19. Kalle AM, Mallika A, Badiger J, Alinakhi, Talukdar P, Sachchidanand. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells.; 2010. pp 13-19.
144.
Zurück zum Zitat Garcia PL, Miller AL, Gamblin TL, Council LN, Christein JD, Arnoletti JP, Heslin MJ, Reddy S, Richardson JH, Cui X, van Waardenburg RCAM, Bradner JE, Yang ES, Yoon KJ. JQ1 Induces DNA Damage and Apoptosis, and Inhibits Tumor Growth in a Patient-Derived Xenograft Model of Cholangiocarcinoma.; 2018. pp 107-118. Garcia PL, Miller AL, Gamblin TL, Council LN, Christein JD, Arnoletti JP, Heslin MJ, Reddy S, Richardson JH, Cui X, van Waardenburg RCAM, Bradner JE, Yang ES, Yoon KJ. JQ1 Induces DNA Damage and Apoptosis, and Inhibits Tumor Growth in a Patient-Derived Xenograft Model of Cholangiocarcinoma.; 2018. pp 107-118.
145.
Zurück zum Zitat Zhang D, Leal AS, Carapellucci S, Zydeck K, Sporn MB, Liby KT. Chemoprevention of Preclinical Breast and Lung Cancer with the Bromodomain Inhibitor I-BET 762.; 2018. pp 143-156. Zhang D, Leal AS, Carapellucci S, Zydeck K, Sporn MB, Liby KT. Chemoprevention of Preclinical Breast and Lung Cancer with the Bromodomain Inhibitor I-BET 762.; 2018. pp 143-156.
146.
Zurück zum Zitat Chen D, Lu T, Yan Z, Lu W, Zhou F, Lyu X, Xu B, Jiang H, Chen K, Luo C, Zhao Y. Discovery, structural insight, and bioactivities of BY27 as a selective inhibitor of the second bromodomains of BET proteins.; 2019. p 111633. Chen D, Lu T, Yan Z, Lu W, Zhou F, Lyu X, Xu B, Jiang H, Chen K, Luo C, Zhao Y. Discovery, structural insight, and bioactivities of BY27 as a selective inhibitor of the second bromodomains of BET proteins.; 2019. p 111633.
147.
148.
Zurück zum Zitat Sarfstein R, Bruchim I, Fishman A, Werner H. The mechanism of action of the histone deacetylase inhibitor vorinostat involves interaction with the insulin-like growth factor signaling pathway. Plos One. 2011;6:e24468.PubMedPubMedCentralCrossRef Sarfstein R, Bruchim I, Fishman A, Werner H. The mechanism of action of the histone deacetylase inhibitor vorinostat involves interaction with the insulin-like growth factor signaling pathway. Plos One. 2011;6:e24468.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Ma T, Galimberti F, Erkmen CP, Memoli V, Chinyengetere F, Sempere L, Beumer JH, Anyang BN, Nugent W, Johnstone D, Tsongalis GJ, Kurie JM, Li H, Direnzo J, Guo Y, Freemantle SJ, Dragnev KH, Dmitrovsky E. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545–55.PubMedPubMedCentralCrossRef Ma T, Galimberti F, Erkmen CP, Memoli V, Chinyengetere F, Sempere L, Beumer JH, Anyang BN, Nugent W, Johnstone D, Tsongalis GJ, Kurie JM, Li H, Direnzo J, Guo Y, Freemantle SJ, Dragnev KH, Dmitrovsky E. Comparing histone deacetylase inhibitor responses in genetically engineered mouse lung cancer models and a window of opportunity trial in patients with lung cancer. Mol Cancer Ther. 2013;12:1545–55.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Doi T, Hamaguchi T, Shirao K, Chin K, Hatake K, Noguchi K, Otsuki T, Mehta A, Ohtsu A. Evaluation of safety, pharmacokinetics, and efficacy of vorinostat, a histone deacetylase inhibitor, in the treatment of gastrointestinal (GI) cancer in a phase I clinical trial. Int J Clin Oncol. 2013;18:87–95.PubMedCrossRef Doi T, Hamaguchi T, Shirao K, Chin K, Hatake K, Noguchi K, Otsuki T, Mehta A, Ohtsu A. Evaluation of safety, pharmacokinetics, and efficacy of vorinostat, a histone deacetylase inhibitor, in the treatment of gastrointestinal (GI) cancer in a phase I clinical trial. Int J Clin Oncol. 2013;18:87–95.PubMedCrossRef
151.
Zurück zum Zitat Yin D, Ong JM, Hu J, Desmond JC, Kawamata N, Konda BM, Black KL, Koeffler HP. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res. 2007;13:1045–52.PubMedCrossRef Yin D, Ong JM, Hu J, Desmond JC, Kawamata N, Konda BM, Black KL, Koeffler HP. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor: effects on gene expression and growth of glioma cells in vitro and in vivo. Clin Cancer Res. 2007;13:1045–52.PubMedCrossRef
152.
Zurück zum Zitat Bezecny P. Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Med Oncol. 2014;31:985.PubMedCrossRef Bezecny P. Histone deacetylase inhibitors in glioblastoma: pre-clinical and clinical experience. Med Oncol. 2014;31:985.PubMedCrossRef
153.
Zurück zum Zitat Soragni E, Xu C, Plasterer HL, Jacques V, Rusche JR, Gottesfeld JM. Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia. J Child Neurol. 2012;27:1164–73.PubMedPubMedCentralCrossRef Soragni E, Xu C, Plasterer HL, Jacques V, Rusche JR, Gottesfeld JM. Rationale for the development of 2-aminobenzamide histone deacetylase inhibitors as therapeutics for Friedreich ataxia. J Child Neurol. 2012;27:1164–73.PubMedPubMedCentralCrossRef
154.
Zurück zum Zitat Minami J, Suzuki R, Mazitschek R, Gorgun G, Ghosh B, Cirstea D, Hu Y, Mimura N, Ohguchi H, Cottini F, Jakubikova J, Munshi NC, Haggarty SJ, Richardson PG, Hideshima T, Anderson KC. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia. 2014;28:680–9.PubMedCrossRef Minami J, Suzuki R, Mazitschek R, Gorgun G, Ghosh B, Cirstea D, Hu Y, Mimura N, Ohguchi H, Cottini F, Jakubikova J, Munshi NC, Haggarty SJ, Richardson PG, Hideshima T, Anderson KC. Histone deacetylase 3 as a novel therapeutic target in multiple myeloma. Leukemia. 2014;28:680–9.PubMedCrossRef
155.
Zurück zum Zitat Yang M, Dang X, Tan Y, Wang M, Li X, Li G. I-7ab inhibited the growth of TNBC cells via targeting HDAC3 and promoting the acetylation of p53. Biomed Pharmacother. 2018;99:220–6.PubMedCrossRef Yang M, Dang X, Tan Y, Wang M, Li X, Li G. I-7ab inhibited the growth of TNBC cells via targeting HDAC3 and promoting the acetylation of p53. Biomed Pharmacother. 2018;99:220–6.PubMedCrossRef
156.
Zurück zum Zitat Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond.; 2015. pp 258-264. Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond.; 2015. pp 258-264.
157.
Zurück zum Zitat Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE. Selective inhibition of BET bromodomains.; 2010. pp 1067-1073. Filippakopoulos P, Qi J, Picaud S, Shen Y, Smith WB, Fedorov O, Morse EM, Keates T, Hickman TT, Felletar I, Philpott M, Munro S, McKeown MR, Wang Y, Christie AL, West N, Cameron MJ, Schwartz B, Heightman TD, La Thangue N, French CA, Wiest O, Kung AL, Knapp S, Bradner JE. Selective inhibition of BET bromodomains.; 2010. pp 1067-1073.
158.
Zurück zum Zitat French CA. Small-Molecule Targeting of BET Proteins in Cancer.; 2016. pp 21-58. French CA. Small-Molecule Targeting of BET Proteins in Cancer.; 2016. pp 21-58.
159.
Zurück zum Zitat Cai X, Zhai H, Wang J, Forrester J, Qu H, Yin L, Lai C, Bao R, Qian C. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer.; 2010. pp 2000-2009. Cai X, Zhai H, Wang J, Forrester J, Qu H, Yin L, Lai C, Bao R, Qian C. Discovery of 7-(4-(3-ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDc-101) as a potent multi-acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer.; 2010. pp 2000-2009.
160.
Zurück zum Zitat Wang J, Pursell NW, Samson MES, Atoyan R, Ma AW, Selmi A, Xu W, Cai X, Voi M, Savagner P, Lai C. Potential advantages of CUDC-101, a multitargeted HDAC, EGFR, and HER2 inhibitor, in treating drug resistance and preventing cancer cell migration and invasion.; 2013. pp 925-936. Wang J, Pursell NW, Samson MES, Atoyan R, Ma AW, Selmi A, Xu W, Cai X, Voi M, Savagner P, Lai C. Potential advantages of CUDC-101, a multitargeted HDAC, EGFR, and HER2 inhibitor, in treating drug resistance and preventing cancer cell migration and invasion.; 2013. pp 925-936.
161.
Zurück zum Zitat Ellis HP, Greenslade M, Powell B, Spiteri I, Sottoriva A, Kurian KM. Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence.; 2015. p 251. Ellis HP, Greenslade M, Powell B, Spiteri I, Sottoriva A, Kurian KM. Current Challenges in Glioblastoma: Intratumour Heterogeneity, Residual Disease, and Models to Predict Disease Recurrence.; 2015. p 251.
162.
Zurück zum Zitat Zorzan M, Giordan E, Redaelli M, Caretta A, Mucignat-Caretta C. Molecular targets in glioblastoma.; 2015. pp 1407-1420. Zorzan M, Giordan E, Redaelli M, Caretta A, Mucignat-Caretta C. Molecular targets in glioblastoma.; 2015. pp 1407-1420.
163.
Zurück zum Zitat Yang R, Wu Y, Wang M, Sun Z, Zou J, Zhang Y, Cui H. HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation.; 2015. pp 7644-7656. Yang R, Wu Y, Wang M, Sun Z, Zou J, Zhang Y, Cui H. HDAC9 promotes glioblastoma growth via TAZ-mediated EGFR pathway activation.; 2015. pp 7644-7656.
164.
Zurück zum Zitat Pastori C, Daniel M, Penas C, Volmar C, Johnstone AL, Brothers SP, Graham RM, Allen B, Sarkaria JN, Komotar RJ, Wahlestedt C, Ayad NG. BET bromodomain proteins are required for glioblastoma cell proliferation.; 2014. pp 611-620. Pastori C, Daniel M, Penas C, Volmar C, Johnstone AL, Brothers SP, Graham RM, Allen B, Sarkaria JN, Komotar RJ, Wahlestedt C, Ayad NG. BET bromodomain proteins are required for glioblastoma cell proliferation.; 2014. pp 611-620.
165.
Zurück zum Zitat Bajbouj K, Mawrin C, Hartig R, Schulze-Luehrmann J, Wilisch-Neumann A, Roessner A, Schneider-Stock R. P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells.; 2012. pp 503-516. Bajbouj K, Mawrin C, Hartig R, Schulze-Luehrmann J, Wilisch-Neumann A, Roessner A, Schneider-Stock R. P53-dependent antiproliferative and pro-apoptotic effects of trichostatin A (TSA) in glioblastoma cells.; 2012. pp 503-516.
166.
Zurück zum Zitat Sawa H, Murakami H, Ohshima Y, Sugino T, Nakajyo T, Kisanuki T, Tamura Y, Satone A, Ide W, Hashimoto I, Kamada H. Histone deacetylase inhibitors such as sodium butyrate and trichostatin A induce apoptosis through an increase of the bcl-2-related protein Bad.; 2001. pp 109-114. Sawa H, Murakami H, Ohshima Y, Sugino T, Nakajyo T, Kisanuki T, Tamura Y, Satone A, Ide W, Hashimoto I, Kamada H. Histone deacetylase inhibitors such as sodium butyrate and trichostatin A induce apoptosis through an increase of the bcl-2-related protein Bad.; 2001. pp 109-114.
167.
Zurück zum Zitat Kusaczuk M, Krętowski R, Bartoszewicz M, Cechowska-Pasko M. Phenylbutyrate-a pan-HDAC inhibitor-suppresses proliferation of glioblastoma LN-229 cell line.; 2016. pp 931-942. Kusaczuk M, Krętowski R, Bartoszewicz M, Cechowska-Pasko M. Phenylbutyrate-a pan-HDAC inhibitor-suppresses proliferation of glioblastoma LN-229 cell line.; 2016. pp 931-942.
168.
Zurück zum Zitat Sawa H, Murakami H, Kumagai M, Nakasato M, Yamauchi S, Matsuyama N, Tamura Y, Satone A, Ide W, Hashimoto I, Kamada H. Histone deacetylase inhibitor, FK228, induces apoptosis and suppresses cell proliferation of human glioblastoma cells in vitro and in vivo.; 2004. pp 523-531. Sawa H, Murakami H, Kumagai M, Nakasato M, Yamauchi S, Matsuyama N, Tamura Y, Satone A, Ide W, Hashimoto I, Kamada H. Histone deacetylase inhibitor, FK228, induces apoptosis and suppresses cell proliferation of human glioblastoma cells in vitro and in vivo.; 2004. pp 523-531.
169.
Zurück zum Zitat Wallace GC, Haar CP, Vandergrift WA, Giglio P, Dixon-Mah YN, Varma AK, Ray SK, Patel SJ, Banik NL, Das A. Multi-targeted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition.; 2013. pp 43-50. Wallace GC, Haar CP, Vandergrift WA, Giglio P, Dixon-Mah YN, Varma AK, Ray SK, Patel SJ, Banik NL, Das A. Multi-targeted DATS prevents tumor progression and promotes apoptosis in ectopic glioblastoma xenografts in SCID mice via HDAC inhibition.; 2013. pp 43-50.
170.
Zurück zum Zitat Kusaczuk M, Krętowski R, Stypułkowska A, Cechowska-Pasko M. Molecular and cellular effects of a novel hydroxamate-based HDAC inhibitor - belinostat - in glioblastoma cell lines: a preliminary report.; 2016. pp 552-564. Kusaczuk M, Krętowski R, Stypułkowska A, Cechowska-Pasko M. Molecular and cellular effects of a novel hydroxamate-based HDAC inhibitor - belinostat - in glioblastoma cell lines: a preliminary report.; 2016. pp 552-564.
171.
Zurück zum Zitat Huang W, Lin C, Lee C, Chi L, Chao Y, Wang H, Chiou B, Chen T, Huang C, Chen C. NBM-HD-3, a novel histone deacetylase inhibitor with anticancer activity through modulation of PTEN and AKT in brain cancer cells.; 2011. pp 156-167. Huang W, Lin C, Lee C, Chi L, Chao Y, Wang H, Chiou B, Chen T, Huang C, Chen C. NBM-HD-3, a novel histone deacetylase inhibitor with anticancer activity through modulation of PTEN and AKT in brain cancer cells.; 2011. pp 156-167.
172.
Zurück zum Zitat Sharma V, Koul N, Joseph C, Dixit D, Ghosh S, Sen E. HDAC inhibitor, scriptaid, induces glioma cell apoptosis through JNK activation and inhibits telomerase activity.; 2010. pp 2151-2161. Sharma V, Koul N, Joseph C, Dixit D, Ghosh S, Sen E. HDAC inhibitor, scriptaid, induces glioma cell apoptosis through JNK activation and inhibits telomerase activity.; 2010. pp 2151-2161.
173.
Zurück zum Zitat Eyüpoglu IY, Hahnen E, Tränkle C, Savaskan NE, Siebzehnrübl FA, Buslei R, Lemke D, Wick W, Fahlbusch R, Blümcke I. Experimental therapy of malignant gliomas using the inhibitor of histone deacetylase MS-275.; 2006. pp 1248-1255. Eyüpoglu IY, Hahnen E, Tränkle C, Savaskan NE, Siebzehnrübl FA, Buslei R, Lemke D, Wick W, Fahlbusch R, Blümcke I. Experimental therapy of malignant gliomas using the inhibitor of histone deacetylase MS-275.; 2006. pp 1248-1255.
174.
Zurück zum Zitat Papi A, Ferreri AM, Rocchi P, Guerra F, Orlandi M. Epigenetic modifiers as anticancer drugs: effectiveness of valproic acid in neural crest-derived tumor cells. Anticancer Res. 2010;30:535–40.PubMed Papi A, Ferreri AM, Rocchi P, Guerra F, Orlandi M. Epigenetic modifiers as anticancer drugs: effectiveness of valproic acid in neural crest-derived tumor cells. Anticancer Res. 2010;30:535–40.PubMed
175.
Zurück zum Zitat Jin H, Liang L, Liu L, Deng W, Liu J. HDAC inhibitor DWP0016 activates p53 transcription and acetylation to inhibit cell growth in U251 glioblastoma cells.; 2013. pp 1498-1509. Jin H, Liang L, Liu L, Deng W, Liu J. HDAC inhibitor DWP0016 activates p53 transcription and acetylation to inhibit cell growth in U251 glioblastoma cells.; 2013. pp 1498-1509.
176.
Zurück zum Zitat Pastorino O, Gentile MT, Mancini A, Del Gaudio N, Di Costanzo A, Bajetto A, Franco P, Altucci L, Florio T, Stoppelli MP, Colucci-D'Amato L. Histone Deacetylase Inhibitors Impair Vasculogenic Mimicry from Glioblastoma Cells. Cancers. 2019;11:747.PubMedCentralCrossRef Pastorino O, Gentile MT, Mancini A, Del Gaudio N, Di Costanzo A, Bajetto A, Franco P, Altucci L, Florio T, Stoppelli MP, Colucci-D'Amato L. Histone Deacetylase Inhibitors Impair Vasculogenic Mimicry from Glioblastoma Cells. Cancers. 2019;11:747.PubMedCentralCrossRef
177.
Zurück zum Zitat Sawa H, Murakami H, Ohshima Y, Murakami M, Yamazaki I, Tamura Y, Mima T, Satone A, Ide W, Hashimoto I, Kamada H. Histone deacetylase inhibitors such as sodium butyrate and trichostatin A inhibit vascular endothelial growth factor (VEGF) secretion from human glioblastoma cells.; 2002. pp 77-81. Sawa H, Murakami H, Ohshima Y, Murakami M, Yamazaki I, Tamura Y, Mima T, Satone A, Ide W, Hashimoto I, Kamada H. Histone deacetylase inhibitors such as sodium butyrate and trichostatin A inhibit vascular endothelial growth factor (VEGF) secretion from human glioblastoma cells.; 2002. pp 77-81.
178.
Zurück zum Zitat Yao Z, Li W, Hua F, Cheng H, Zhao M, Sun X, Qin Y, Li J. LBH589 Inhibits Glioblastoma Growth and Angiogenesis Through Suppression of HIF-1α Expression. J Neuropathol Exp Neurol. 2017;76:1000–7.PubMedCrossRef Yao Z, Li W, Hua F, Cheng H, Zhao M, Sun X, Qin Y, Li J. LBH589 Inhibits Glioblastoma Growth and Angiogenesis Through Suppression of HIF-1α Expression. J Neuropathol Exp Neurol. 2017;76:1000–7.PubMedCrossRef
179.
Zurück zum Zitat Orzan F, Pellegatta S, Poliani PL, Pisati F, Caldera V, Menghi F, Kapetis D, Marras C, Schiffer D, Finocchiaro G. Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells.; 2011. pp 381-394. Orzan F, Pellegatta S, Poliani PL, Pisati F, Caldera V, Menghi F, Kapetis D, Marras C, Schiffer D, Finocchiaro G. Enhancer of Zeste 2 (EZH2) is up-regulated in malignant gliomas and in glioma stem-like cells.; 2011. pp 381-394.
180.
Zurück zum Zitat Nam JH, Cho H, Kang H, Lee J, Jung M, Chang Y, Kim K, Hoe H. A Mercaptoacetamide-Based Class II Histone Deacetylase Inhibitor Suppresses Cell Migration and Invasion in Monomorphic Malignant Human Glioma Cells by Inhibiting FAK/STAT3 Signaling.; 2017. pp 4672-4685. Nam JH, Cho H, Kang H, Lee J, Jung M, Chang Y, Kim K, Hoe H. A Mercaptoacetamide-Based Class II Histone Deacetylase Inhibitor Suppresses Cell Migration and Invasion in Monomorphic Malignant Human Glioma Cells by Inhibiting FAK/STAT3 Signaling.; 2017. pp 4672-4685.
181.
Zurück zum Zitat Chen C, Weng S, Tseng P, Lin H, Chen C. Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes.; 2005. pp 38879-38887. Chen C, Weng S, Tseng P, Lin H, Chen C. Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes.; 2005. pp 38879-38887.
182.
Zurück zum Zitat Hsu C, Chang W, Hsu T, Liu J, Yeh S, Wang J, Liou J, Ko C, Chang K, Chuang J. Suberoylanilide hydroxamic acid represses glioma stem-like cells.; 2016. p 81. Hsu C, Chang W, Hsu T, Liu J, Yeh S, Wang J, Liou J, Ko C, Chang K, Chuang J. Suberoylanilide hydroxamic acid represses glioma stem-like cells.; 2016. p 81.
183.
Zurück zum Zitat Pastori C, Kapranov P, Penas C, Peschansky V, Volmar C, Sarkaria JN, Bregy A, Komotar R, St Laurent G, Ayad NG, Wahlestedt C. The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation.; 2015. pp 8326-8331. Pastori C, Kapranov P, Penas C, Peschansky V, Volmar C, Sarkaria JN, Bregy A, Komotar R, St Laurent G, Ayad NG, Wahlestedt C. The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential for glioblastoma proliferation.; 2015. pp 8326-8331.
184.
Zurück zum Zitat Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells.; 2015. Alvarez AA, Field M, Bushnev S, Longo MS, Sugaya K. The effects of histone deacetylase inhibitors on glioblastoma-derived stem cells.; 2015.
185.
Zurück zum Zitat Galanis E, Jaeckle KA, Maurer MJ, Reid JM, Ames MM, Hardwick JS, Reilly JF, Loboda A, Nebozhyn M, Fantin VR, Richon VM, Scheithauer B, Giannini C, Flynn PJ, Moore DF, Zwiebel J, Buckner JC. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study.; 2009. pp 2052-2058. Galanis E, Jaeckle KA, Maurer MJ, Reid JM, Ames MM, Hardwick JS, Reilly JF, Loboda A, Nebozhyn M, Fantin VR, Richon VM, Scheithauer B, Giannini C, Flynn PJ, Moore DF, Zwiebel J, Buckner JC. Phase II trial of vorinostat in recurrent glioblastoma multiforme: a north central cancer treatment group study.; 2009. pp 2052-2058.
186.
Zurück zum Zitat Iwamoto FM, Lamborn KR, Kuhn JG, Wen PY, Yung WKA, Gilbert MR, Chang SM, Lieberman FS, Prados MD, Fine HA. A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03.; 2011. pp 509-516. Iwamoto FM, Lamborn KR, Kuhn JG, Wen PY, Yung WKA, Gilbert MR, Chang SM, Lieberman FS, Prados MD, Fine HA. A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03-03.; 2011. pp 509-516.
187.
Zurück zum Zitat Wu Y, Dong L, Bao S, Wang M, Yun Y, Zhu R. FK228 augmented temozolomide sensitivity in human glioma cells by blocking PI3K/AKT/mTOR signal pathways.; 2016. pp 462-469. Wu Y, Dong L, Bao S, Wang M, Yun Y, Zhu R. FK228 augmented temozolomide sensitivity in human glioma cells by blocking PI3K/AKT/mTOR signal pathways.; 2016. pp 462-469.
188.
Zurück zum Zitat Bangert A, Häcker S, Cristofanon S, Debatin K, Fulda S. Chemosensitization of glioblastoma cells by the histone deacetylase inhibitor MS275.; 2011. pp 494-499. Bangert A, Häcker S, Cristofanon S, Debatin K, Fulda S. Chemosensitization of glioblastoma cells by the histone deacetylase inhibitor MS275.; 2011. pp 494-499.
189.
Zurück zum Zitat Staberg M, Michaelsen SR, Rasmussen RD, Villingshøj M, Poulsen HS, Hamerlik P. Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine.; 2017. pp 21-32. Staberg M, Michaelsen SR, Rasmussen RD, Villingshøj M, Poulsen HS, Hamerlik P. Inhibition of histone deacetylases sensitizes glioblastoma cells to lomustine.; 2017. pp 21-32.
190.
Zurück zum Zitat Zhang Z, Wang Y, Chen J, Tan Q, Xie C, Li C, Zhan W, Wang M. Silencing of histone deacetylase 2 suppresses malignancy for proliferation, migration, and invasion of glioblastoma cells and enhances temozolomide sensitivity.; 2016. pp 1289-1296. Zhang Z, Wang Y, Chen J, Tan Q, Xie C, Li C, Zhan W, Wang M. Silencing of histone deacetylase 2 suppresses malignancy for proliferation, migration, and invasion of glioblastoma cells and enhances temozolomide sensitivity.; 2016. pp 1289-1296.
191.
Zurück zum Zitat Li Z, Li Q, Chen L, Chen B, Wang B, Zhang X, Li W. Histone Deacetylase Inhibitor RGFP109 Overcomes Temozolomide Resistance by Blocking NF-κB-Dependent Transcription in Glioblastoma Cell Lines.; 2016. pp 3192-3205. Li Z, Li Q, Chen L, Chen B, Wang B, Zhang X, Li W. Histone Deacetylase Inhibitor RGFP109 Overcomes Temozolomide Resistance by Blocking NF-κB-Dependent Transcription in Glioblastoma Cell Lines.; 2016. pp 3192-3205.
192.
Zurück zum Zitat Urdiciain A, Erausquin E, Meléndez B, Rey JA, Idoate MA, Castresana JS. Tubastatin A, an inhibitor of HDAC6, enhances temozolomide-induced apoptosis and reverses the malignant phenotype of glioblastoma cells.; 2019. pp 1797-1808. Urdiciain A, Erausquin E, Meléndez B, Rey JA, Idoate MA, Castresana JS. Tubastatin A, an inhibitor of HDAC6, enhances temozolomide-induced apoptosis and reverses the malignant phenotype of glioblastoma cells.; 2019. pp 1797-1808.
193.
Zurück zum Zitat Li Z, Zhang C, Zhang Y, Chen L, Chen B, Li Q, Zhang X, Li W. A novel HDAC6 inhibitor Tubastatin A: Controls HDAC6-p97/VCP-mediated ubiquitination-autophagy turnover and reverses Temozolomide-induced ER stress-tolerance in GBM cells.; 2017. pp 89-99. Li Z, Zhang C, Zhang Y, Chen L, Chen B, Li Q, Zhang X, Li W. A novel HDAC6 inhibitor Tubastatin A: Controls HDAC6-p97/VCP-mediated ubiquitination-autophagy turnover and reverses Temozolomide-induced ER stress-tolerance in GBM cells.; 2017. pp 89-99.
194.
Zurück zum Zitat de Andrade PV, Andrade AF, de Paula Queiroz RG, Scrideli CA, Tone LG, Valera ET. The histone deacetylase inhibitor PCI-24781 as a putative radiosensitizer in pediatric glioblastoma cell lines.; 2016. p 31. de Andrade PV, Andrade AF, de Paula Queiroz RG, Scrideli CA, Tone LG, Valera ET. The histone deacetylase inhibitor PCI-24781 as a putative radiosensitizer in pediatric glioblastoma cell lines.; 2016. p 31.
195.
Zurück zum Zitat Festuccia C, Mancini A, Colapietro A, Gravina GL, Vitale F, Marampon F, Delle Monache S, Pompili S, Cristiano L, Vetuschi A, Tombolini V, Chen Y, Mehrling T. The first-in-class alkylating deacetylase inhibitor molecule tinostamustine shows antitumor effects and is synergistic with radiotherapy in preclinical models of glioblastoma.; 2018. p 32. Festuccia C, Mancini A, Colapietro A, Gravina GL, Vitale F, Marampon F, Delle Monache S, Pompili S, Cristiano L, Vetuschi A, Tombolini V, Chen Y, Mehrling T. The first-in-class alkylating deacetylase inhibitor molecule tinostamustine shows antitumor effects and is synergistic with radiotherapy in preclinical models of glioblastoma.; 2018. p 32.
196.
Zurück zum Zitat Kim JH, Shin JH, Kim IH. Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor.; 2004. pp 1174-1180. Kim JH, Shin JH, Kim IH. Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor.; 2004. pp 1174-1180.
197.
Zurück zum Zitat Liu J, Yu C, Hung P, Hsin L, Chern J. High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma.; 2019. pp 458-471. Liu J, Yu C, Hung P, Hsin L, Chern J. High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhanced antitumor immunity in glioblastoma.; 2019. pp 458-471.
198.
Zurück zum Zitat Singh MM, Manton CA, Bhat KP, Tsai W, Aldape K, Barton MC, Chandra J. Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors.; 2011. pp 894-903. Singh MM, Manton CA, Bhat KP, Tsai W, Aldape K, Barton MC, Chandra J. Inhibition of LSD1 sensitizes glioblastoma cells to histone deacetylase inhibitors.; 2011. pp 894-903.
199.
Zurück zum Zitat De La Rosa J, Urdiciain A, Zazpe I, Zelaya MV, Meléndez B, Rey JA, Idoate MA, Castresana JS. The synergistic effect of DZ-NEP, panobinostat and temozolomide reduces clonogenicity and induces apoptosis in glioblastoma cells.; 2020. pp 283-300. De La Rosa J, Urdiciain A, Zazpe I, Zelaya MV, Meléndez B, Rey JA, Idoate MA, Castresana JS. The synergistic effect of DZ-NEP, panobinostat and temozolomide reduces clonogenicity and induces apoptosis in glioblastoma cells.; 2020. pp 283-300.
200.
Zurück zum Zitat Meng W, Wang B, Mao W, Wang J, Zhao Y, Li Q, Zhang C, Tang Y, Ma J. Enhanced efficacy of histone deacetylase inhibitor combined with bromodomain inhibitor in glioblastoma.; 2018. p 241. Meng W, Wang B, Mao W, Wang J, Zhao Y, Li Q, Zhang C, Tang Y, Ma J. Enhanced efficacy of histone deacetylase inhibitor combined with bromodomain inhibitor in glioblastoma.; 2018. p 241.
201.
Zurück zum Zitat Zhang Y, Ishida CT, Ishida W, Lo SL, Zhao J, Shu C, Bianchetti E, Kleiner G, Sanchez-Quintero MJ, Quinzii CM, Westhoff M, Karpel-Massler G, Canoll P, Siegelin MD. Combined HDAC and Bromodomain Protein Inhibition Reprograms Tumor Cell Metabolism and Elicits Synthetic Lethality in Glioblastoma.; 2018. pp 3941-3954. Zhang Y, Ishida CT, Ishida W, Lo SL, Zhao J, Shu C, Bianchetti E, Kleiner G, Sanchez-Quintero MJ, Quinzii CM, Westhoff M, Karpel-Massler G, Canoll P, Siegelin MD. Combined HDAC and Bromodomain Protein Inhibition Reprograms Tumor Cell Metabolism and Elicits Synthetic Lethality in Glioblastoma.; 2018. pp 3941-3954.
202.
Zurück zum Zitat Marino A, Sofiadis A, Baryawno N, Johnsen JI, Larsson C, Vukojević V, Ekström TJ. Enhanced effects by 4-phenylbutyrate in combination with RTK inhibitors on proliferation in brain tumor cell models.; 2011. pp 208-212. Marino A, Sofiadis A, Baryawno N, Johnsen JI, Larsson C, Vukojević V, Ekström TJ. Enhanced effects by 4-phenylbutyrate in combination with RTK inhibitors on proliferation in brain tumor cell models.; 2011. pp 208-212.
203.
Zurück zum Zitat Liffers K, Kolbe K, Westphal M, Lamszus K, Schulte A. Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition.; 2016. pp 29-40. Liffers K, Kolbe K, Westphal M, Lamszus K, Schulte A. Histone Deacetylase Inhibitors Resensitize EGFR/EGFRvIII-Overexpressing, Erlotinib-Resistant Glioblastoma Cells to Tyrosine Kinase Inhibition.; 2016. pp 29-40.
204.
Zurück zum Zitat Sarcar B, Kahali S, Chinnaiyan P. Vorinostat enhances the cytotoxic effects of the topoisomerase I inhibitor SN38 in glioblastoma cell lines.; 2010. pp 201-207. Sarcar B, Kahali S, Chinnaiyan P. Vorinostat enhances the cytotoxic effects of the topoisomerase I inhibitor SN38 in glioblastoma cell lines.; 2010. pp 201-207.
205.
Zurück zum Zitat Bieler A, Mantwill K, Dravits T, Bernshausen A, Glockzin G, Köhler-Vargas N, Lage H, Gansbacher B, Holm PS. Novel three-pronged strategy to enhance cancer cell killing in glioblastoma cell lines: histone deacetylase inhibitor, chemotherapy, and oncolytic adenovirus dl520.; 2006. pp 55-70. Bieler A, Mantwill K, Dravits T, Bernshausen A, Glockzin G, Köhler-Vargas N, Lage H, Gansbacher B, Holm PS. Novel three-pronged strategy to enhance cancer cell killing in glioblastoma cell lines: histone deacetylase inhibitor, chemotherapy, and oncolytic adenovirus dl520.; 2006. pp 55-70.
206.
Zurück zum Zitat Berghauser Pont LME, Kleijn A, Kloezeman JJ, van den Bossche W, Kaufmann JK, de Vrij J, Leenstra S, Dirven CMF, Lamfers MLM. The HDAC Inhibitors Scriptaid and LBH589 Combined with the Oncolytic Virus Delta24-RGD Exert Enhanced Anti-Tumor Efficacy in Patient-Derived Glioblastoma Cells.; 2015. p e127058. Berghauser Pont LME, Kleijn A, Kloezeman JJ, van den Bossche W, Kaufmann JK, de Vrij J, Leenstra S, Dirven CMF, Lamfers MLM. The HDAC Inhibitors Scriptaid and LBH589 Combined with the Oncolytic Virus Delta24-RGD Exert Enhanced Anti-Tumor Efficacy in Patient-Derived Glioblastoma Cells.; 2015. p e127058.
207.
Zurück zum Zitat Chang Y, Huang L, Chen Y, Wang Y, Hueng D, Huang S. The synergistic effects of valproic acid and fluvastatin on apoptosis induction in glioblastoma multiforme cell lines.; 2017. pp 155-163. Chang Y, Huang L, Chen Y, Wang Y, Hueng D, Huang S. The synergistic effects of valproic acid and fluvastatin on apoptosis induction in glioblastoma multiforme cell lines.; 2017. pp 155-163.
208.
Zurück zum Zitat Taylor MA, Khathayer F, Ray SK. Quercetin and Sodium Butyrate Synergistically Increase Apoptosis in Rat C6 and Human T98G Glioblastoma Cells Through Inhibition of Autophagy.; 2019. pp 1715-1725. Taylor MA, Khathayer F, Ray SK. Quercetin and Sodium Butyrate Synergistically Increase Apoptosis in Rat C6 and Human T98G Glioblastoma Cells Through Inhibition of Autophagy.; 2019. pp 1715-1725.
209.
Zurück zum Zitat Zhang G, Gan Y. Synergistic antitumor effects of the combined treatment with an HDAC6 inhibitor and a COX-2 inhibitor through activation of PTEN.; 2017. pp 2657-2666. Zhang G, Gan Y. Synergistic antitumor effects of the combined treatment with an HDAC6 inhibitor and a COX-2 inhibitor through activation of PTEN.; 2017. pp 2657-2666.
210.
Zurück zum Zitat Meng W, Wang B, Mao W, Wang J, Zhao Y, Li Q, Zhang C, Ma J. Enhanced efficacy of histone deacetylase inhibitor panobinostat combined with dual PI3K/mTOR inhibitor BEZ235 against glioblastoma.; 2019. Meng W, Wang B, Mao W, Wang J, Zhao Y, Li Q, Zhang C, Ma J. Enhanced efficacy of histone deacetylase inhibitor panobinostat combined with dual PI3K/mTOR inhibitor BEZ235 against glioblastoma.; 2019.
211.
Zurück zum Zitat Singh MM, Johnson B, Venkatarayan A, Flores ER, Zhang J, Su X, Barton M, Lang F, Chandra J. Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma.; 2015. pp 1463-1473. Singh MM, Johnson B, Venkatarayan A, Flores ER, Zhang J, Su X, Barton M, Lang F, Chandra J. Preclinical activity of combined HDAC and KDM1A inhibition in glioblastoma.; 2015. pp 1463-1473.
212.
Zurück zum Zitat Rasmussen RD, Gajjar MK, Jensen KE, Hamerlik P. Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma.; 2016. pp 751-763. Rasmussen RD, Gajjar MK, Jensen KE, Hamerlik P. Enhanced efficacy of combined HDAC and PARP targeting in glioblastoma.; 2016. pp 751-763.
213.
Zurück zum Zitat Ghiaseddin A, Reardon D, Massey W, Mannerino A, Lipp ES, Herndon JE, McSherry F, Desjardins A, Randazzo D, Friedman HS, Peters KB. Phase II Study of Bevacizumab and Vorinostat for Patients with Recurrent World Health Organization Grade 4 Malignant Glioma.; 2018. pp 121-157. Ghiaseddin A, Reardon D, Massey W, Mannerino A, Lipp ES, Herndon JE, McSherry F, Desjardins A, Randazzo D, Friedman HS, Peters KB. Phase II Study of Bevacizumab and Vorinostat for Patients with Recurrent World Health Organization Grade 4 Malignant Glioma.; 2018. pp 121-157.
214.
Zurück zum Zitat Peters KB, Lipp ES, Miller E, Herndon JE, McSherry F, Desjardins A, Reardon DA, Friedman HS. Phase I/II trial of vorinostat, bevacizumab, and daily temozolomide for recurrent malignant gliomas.; 2018. pp 349-356. Peters KB, Lipp ES, Miller E, Herndon JE, McSherry F, Desjardins A, Reardon DA, Friedman HS. Phase I/II trial of vorinostat, bevacizumab, and daily temozolomide for recurrent malignant gliomas.; 2018. pp 349-356.
215.
Zurück zum Zitat Lee EQ, Puduvalli VK, Reid JM, Kuhn JG, Lamborn KR, Cloughesy TF, Chang SM, Drappatz J, Yung WKA, Gilbert MR, Robins HI, Lieberman FS, Lassman AB, McGovern RM, Xu J, Desideri S, Ye X, Ames MM, Espinoza-Delgado I, Prados MD, Wen PY. Phase I study of vorinostat in combination with temozolomide in patients with high-grade gliomas: North American Brain Tumor Consortium Study 04-03.; 2012. pp 6032-6039. Lee EQ, Puduvalli VK, Reid JM, Kuhn JG, Lamborn KR, Cloughesy TF, Chang SM, Drappatz J, Yung WKA, Gilbert MR, Robins HI, Lieberman FS, Lassman AB, McGovern RM, Xu J, Desideri S, Ye X, Ames MM, Espinoza-Delgado I, Prados MD, Wen PY. Phase I study of vorinostat in combination with temozolomide in patients with high-grade gliomas: North American Brain Tumor Consortium Study 04-03.; 2012. pp 6032-6039.
216.
Zurück zum Zitat Galanis E, Anderson SK, Miller CR, Sarkaria JN, Jaeckle K, Buckner JC, Ligon KL, Ballman KV, Moore DF, Nebozhyn M, Loboda A, Schiff D, Ahluwalia MS, Lee EQ, Gerstner ER, Lesser GJ, Prados M, Grossman SA, Cerhan J, Giannini C, Wen PY. Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02.; 2018. pp 546-556. Galanis E, Anderson SK, Miller CR, Sarkaria JN, Jaeckle K, Buckner JC, Ligon KL, Ballman KV, Moore DF, Nebozhyn M, Loboda A, Schiff D, Ahluwalia MS, Lee EQ, Gerstner ER, Lesser GJ, Prados M, Grossman SA, Cerhan J, Giannini C, Wen PY. Phase I/II trial of vorinostat combined with temozolomide and radiation therapy for newly diagnosed glioblastoma: results of Alliance N0874/ABTC 02.; 2018. pp 546-556.
217.
Zurück zum Zitat Friday BB, Anderson SK, Buckner J, Yu C, Giannini C, Geoffroy F, Schwerkoske J, Mazurczak M, Gross H, Pajon E, Jaeckle K, Galanis E. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study.; 2012. pp 215-221. Friday BB, Anderson SK, Buckner J, Yu C, Giannini C, Geoffroy F, Schwerkoske J, Mazurczak M, Gross H, Pajon E, Jaeckle K, Galanis E. Phase II trial of vorinostat in combination with bortezomib in recurrent glioblastoma: a north central cancer treatment group study.; 2012. pp 215-221.
218.
Zurück zum Zitat Chinnaiyan P, Chowdhary S, Potthast L, Prabhu A, Tsai Y, Sarcar B, Kahali S, Brem S, Yu HM, Rojiani A, Murtagh R, Pan E. Phase I trial of vorinostat combined with bevacizumab and CPT-11 in recurrent glioblastoma.; 2012. Chinnaiyan P, Chowdhary S, Potthast L, Prabhu A, Tsai Y, Sarcar B, Kahali S, Brem S, Yu HM, Rojiani A, Murtagh R, Pan E. Phase I trial of vorinostat combined with bevacizumab and CPT-11 in recurrent glioblastoma.; 2012.
219.
Zurück zum Zitat Lee EQ, Reardon DA, Schiff D, Drappatz J, Muzikansky A, Grimm SA, Norden AD, Nayak L, Beroukhim R, Rinne ML, Chi AS, Batchelor TT, Hempfling K, McCluskey C, Smith KH, Gaffey SC, Wrigley B, Ligon KL, Raizer JJ, Wen PY. Phase II study of panobinostat in combination with bevacizumab for recurrent glioblastoma and anaplastic glioma.; 2015. pp 862-867. Lee EQ, Reardon DA, Schiff D, Drappatz J, Muzikansky A, Grimm SA, Norden AD, Nayak L, Beroukhim R, Rinne ML, Chi AS, Batchelor TT, Hempfling K, McCluskey C, Smith KH, Gaffey SC, Wrigley B, Ligon KL, Raizer JJ, Wen PY. Phase II study of panobinostat in combination with bevacizumab for recurrent glioblastoma and anaplastic glioma.; 2015. pp 862-867.
220.
Zurück zum Zitat Watanabe S, Kuwabara Y, Suehiro S, Yamashita D, Tanaka M, Tanaka A, Ohue S, Araki H. Valproic acid reduces hair loss and improves survival in patients receiving temozolomide-based radiation therapy for high-grade glioma.; 2017. pp 357-363. Watanabe S, Kuwabara Y, Suehiro S, Yamashita D, Tanaka M, Tanaka A, Ohue S, Araki H. Valproic acid reduces hair loss and improves survival in patients receiving temozolomide-based radiation therapy for high-grade glioma.; 2017. pp 357-363.
221.
Zurück zum Zitat Barker CA, Bishop AJ, Chang M, Beal K, Chan TA. Valproic acid use during radiation therapy for glioblastoma associated with improved survival.; 2013. pp 504-509. Barker CA, Bishop AJ, Chang M, Beal K, Chan TA. Valproic acid use during radiation therapy for glioblastoma associated with improved survival.; 2013. pp 504-509.
222.
Zurück zum Zitat Krauze AV, Myrehaug SD, Chang MG, Holdford DJ, Smith S, Shih J, Tofilon PJ, Fine HA, Camphausen K. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma.; 2015. pp 986-992. Krauze AV, Myrehaug SD, Chang MG, Holdford DJ, Smith S, Shih J, Tofilon PJ, Fine HA, Camphausen K. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma.; 2015. pp 986-992.
223.
Zurück zum Zitat Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. Clinical development of histone deacetylase inhibitors as anticancer agents.; 2005. pp 495-528. Drummond DC, Noble CO, Kirpotin DB, Guo Z, Scott GK, Benz CC. Clinical development of histone deacetylase inhibitors as anticancer agents.; 2005. pp 495-528.
224.
Zurück zum Zitat Thurn KT, Thomas S, Moore A, Munster PN. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer.; 2011. pp 263-283. Thurn KT, Thomas S, Moore A, Munster PN. Rational therapeutic combinations with histone deacetylase inhibitors for the treatment of cancer.; 2011. pp 263-283.
225.
Zurück zum Zitat Lee DH, Ryu H, Won H, Kwon SH. Advances in epigenetic glioblastoma therapy.; 2017. pp 18577-18589. Lee DH, Ryu H, Won H, Kwon SH. Advances in epigenetic glioblastoma therapy.; 2017. pp 18577-18589.
226.
Zurück zum Zitat Adamopoulou E, Naumann U. HDAC inhibitors and their potential applications to glioblastoma therapy.; 2013. p e25219. Adamopoulou E, Naumann U. HDAC inhibitors and their potential applications to glioblastoma therapy.; 2013. p e25219.
Metadaten
Titel
The application of histone deacetylases inhibitors in glioblastoma
verfasst von
Rui Chen
Mengxian Zhang
Yangmei Zhou
Wenjing Guo
Ming Yi
Ziyan Zhang
Yanpeng Ding
Yali Wang
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Journal of Experimental & Clinical Cancer Research / Ausgabe 1/2020
Elektronische ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-020-01643-6

Weitere Artikel der Ausgabe 1/2020

Journal of Experimental & Clinical Cancer Research 1/2020 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.