Skip to main content
Erschienen in: Current Neurology and Neuroscience Reports 3/2017

01.03.2017 | Neurotrauma (M Kumar, Section Editor)

The Application of Proteomics to Traumatic Brain and Spinal Cord Injuries

verfasst von: George Anis Sarkis, Manasi D. Mangaonkar, Ahmed Moghieb, Brian Lelling, Michael Guertin, Hamad Yadikar, Zhihui Yang, Firas Kobeissy, Kevin K. W. Wang

Erschienen in: Current Neurology and Neuroscience Reports | Ausgabe 3/2017

Einloggen, um Zugang zu erhalten

Abstract

Traumatic brain injury (TBI) and traumatic spinal cord injury (SCI), collectively termed neurotrauma, are two parallel neurological conditions that can cause long-lasting neurological impairment and other comorbidities in patients, while at the same time, can create a high burden to society. To date, there are still no FDA-approved therapeutic interventions for either TBI or SCI. Recent advances in proteomic technologies, including tandem mass spectrometry, as well as imaging mass spectrometry, have enabled new approaches to study the differential proteome in TBI and SCI with the use of either animal disease models and/or biosamples from clinical observational studies. Thus, the applications of state-of-the-art proteomic method hold promises in shedding light on identifying clinically useful neurotrauma “biomarkers” and/or in identifying distinct and, otherwise, unobvious systems pathways or “key drivers” that can be further exploited as new therapeutic intervention targets.
Literatur
1.
Zurück zum Zitat Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, et al. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab. 2004;24:202–11.CrossRefPubMed Coles JP, Fryer TD, Smielewski P, Chatfield DA, Steiner LA, Johnston AJ, et al. Incidence and mechanisms of cerebral ischemia in early clinical head injury. J Cereb Blood Flow Metab. 2004;24:202–11.CrossRefPubMed
2.
Zurück zum Zitat Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, et al. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32(6):1384–90.CrossRefPubMed Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, et al. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32(6):1384–90.CrossRefPubMed
3.
Zurück zum Zitat Lakshmanan R, Loo JA, Drake T, Leblanc J, Ytterberg AJ, Mcarthur DL, et al. Metabolic crisis after traumatic brain injury is associated with a novel microdialysis proteome. Neurocrit Care. 2010;12(3):324–36.CrossRefPubMedPubMedCentral Lakshmanan R, Loo JA, Drake T, Leblanc J, Ytterberg AJ, Mcarthur DL, et al. Metabolic crisis after traumatic brain injury is associated with a novel microdialysis proteome. Neurocrit Care. 2010;12(3):324–36.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Timofeev I, Carpenter KLH, Nortje J, Al-Rawi PG, O’connell MT, Czosnyka M, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134(2):484–94.CrossRefPubMed Timofeev I, Carpenter KLH, Nortje J, Al-Rawi PG, O’connell MT, Czosnyka M, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134(2):484–94.CrossRefPubMed
5.
Zurück zum Zitat Zhang P, Zhu S, Li Y, Zhao M, Liu M, Gao J et al. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC–MS/MS. J Proteomics. 2016;133:93–9. Zhang P, Zhu S, Li Y, Zhao M, Liu M, Gao J et al. Quantitative proteomics analysis to identify diffuse axonal injury biomarkers in rats using iTRAQ coupled LC–MS/MS. J Proteomics. 2016;133:93–9.
6.
Zurück zum Zitat Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191–201.CrossRefPubMed Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention. Brain Behav Immun. 2012;26(8):1191–201.CrossRefPubMed
7.
Zurück zum Zitat Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathol. 2004;14(2):215–22.CrossRefPubMed Raghupathi R. Cell death mechanisms following traumatic brain injury. Brain Pathol. 2004;14(2):215–22.CrossRefPubMed
8.
Zurück zum Zitat • Chauhan NB. Chronic neurodegenerative consequences of traumatic brain injury. Restor Neurol Neurosci. 2014;32:337–65. Chauhan studied the consequences of traumatic brain injuries and its wide-ranging possibilities of affecting people’s lives. He studied common and deadly diseases such as Alzheimer’s and its relationship to TBI and repeated TBI can lead to chronic traumatic encephalopathy (CTE).PubMed • Chauhan NB. Chronic neurodegenerative consequences of traumatic brain injury. Restor Neurol Neurosci. 2014;32:337–65. Chauhan studied the consequences of traumatic brain injuries and its wide-ranging possibilities of affecting people’s lives. He studied common and deadly diseases such as Alzheimer’s and its relationship to TBI and repeated TBI can lead to chronic traumatic encephalopathy (CTE).PubMed
9.
Zurück zum Zitat Rao VLR, Dhodda VK, Song G, Bowen KK, Dempsey RJ. Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res. 2003;71(2):208–19.CrossRef Rao VLR, Dhodda VK, Song G, Bowen KK, Dempsey RJ. Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res. 2003;71(2):208–19.CrossRef
10.
Zurück zum Zitat Wang KKW. Calpain and caspase: can you tell the difference? Trends Neurosci. 2000;23(1):20–6.CrossRefPubMed Wang KKW. Calpain and caspase: can you tell the difference? Trends Neurosci. 2000;23(1):20–6.CrossRefPubMed
11.
Zurück zum Zitat Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med. 2008;45(4):443–52.CrossRefPubMedPubMedCentral Ansari MA, Roberts KN, Scheff SW. Oxidative stress and modification of synaptic proteins in hippocampus after traumatic brain injury. Free Radic Biol Med. 2008;45(4):443–52.CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK. Protein accumulation in traumatic brain injury. Neuromolecular Med. 2003;4:59–72.CrossRefPubMed Smith DH, Uryu K, Saatman KE, Trojanowski JQ, McIntosh TK. Protein accumulation in traumatic brain injury. Neuromolecular Med. 2003;4:59–72.CrossRefPubMed
13.
Zurück zum Zitat Zhang X, Chen Y, Ikonomovic MD, Nathaniel PD, Kochanek PM, Marion DW, et al. Increased phosphorylation of protein kinase B and related substrates after traumatic brain injury in humans and rats. J Cereb Blood Flow Metab. 2005;26(7):915–26.CrossRefPubMed Zhang X, Chen Y, Ikonomovic MD, Nathaniel PD, Kochanek PM, Marion DW, et al. Increased phosphorylation of protein kinase B and related substrates after traumatic brain injury in humans and rats. J Cereb Blood Flow Metab. 2005;26(7):915–26.CrossRefPubMed
14.
Zurück zum Zitat Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38(6):364–74.CrossRefPubMedPubMedCentral Yang Z, Wang KK. Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker. Trends Neurosci. 2015;38(6):364–74.CrossRefPubMedPubMedCentral
15.
16.
Zurück zum Zitat Hook G, Jacobsen JS, Grabstein K, Kindy M, Hook V. Cathepsin B is a new drug target for traumatic brain injury therapeutics: evidence for E64d as a promising lead drug candidate. Front Neurol. 2015;6. Hook G, Jacobsen JS, Grabstein K, Kindy M, Hook V. Cathepsin B is a new drug target for traumatic brain injury therapeutics: evidence for E64d as a promising lead drug candidate. Front Neurol. 2015;6.
17.
Zurück zum Zitat Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States emergency department visits, hospitalizations and deaths 2002–2006. 2010;1–74. Faul M, Xu L, Wald MM, Coronado VG. Traumatic brain injury in the United States emergency department visits, hospitalizations and deaths 2002–2006. 2010;1–74.
18.
Zurück zum Zitat •• Ordikhani F, Sheth S, Zustiak SP. Polymeric particle-mediated molecular therapies to treat spinal cord injury. Int J Pharm. 2016;16(31073):S0378–5173. Ordikhani et al. recognizes the issues that affect those that suffer from SCI. They review the benefits and challenges that polymeric particles can take on as a potential therapeutic help to those needing SCI treatment. •• Ordikhani F, Sheth S, Zustiak SP. Polymeric particle-mediated molecular therapies to treat spinal cord injury. Int J Pharm. 2016;16(31073):S0378–5173. Ordikhani et al. recognizes the issues that affect those that suffer from SCI. They review the benefits and challenges that polymeric particles can take on as a potential therapeutic help to those needing SCI treatment.
19.
Zurück zum Zitat National Center for Injury Prevention and Control. Report to congress on mild traumatic brain injury in the united states: steps to prevent a serious public health problem. 2003;1–45. National Center for Injury Prevention and Control. Report to congress on mild traumatic brain injury in the united states: steps to prevent a serious public health problem. 2003;1–45.
20.
Zurück zum Zitat Yamasaki K, Setoguchi T, Takenouchi T, Yone K, Komiya S. Stem cell factor prevents neuronal cell apoptosis after acute spinal cord injury. Spine. 2009;34(4):323–7.CrossRefPubMed Yamasaki K, Setoguchi T, Takenouchi T, Yone K, Komiya S. Stem cell factor prevents neuronal cell apoptosis after acute spinal cord injury. Spine. 2009;34(4):323–7.CrossRefPubMed
21.
Zurück zum Zitat Chen M, Xia X, Zhu X, Cao J, Xu D, Ni Y, et al. Expression of SGTA correlates with neuronal apoptosis and reactive gliosis after spinal cord injury. Cell Tissue Res. 2014;358(2):277–88.CrossRefPubMed Chen M, Xia X, Zhu X, Cao J, Xu D, Ni Y, et al. Expression of SGTA correlates with neuronal apoptosis and reactive gliosis after spinal cord injury. Cell Tissue Res. 2014;358(2):277–88.CrossRefPubMed
22.
Zurück zum Zitat Ellis RC, Earnhardt JN, Hayes RL, Wang KK, Anderson DK. Cathepsin B mRNA and protein expression following contusion spinal cord injury in rats. J Neurochem. 2004;88(3):689–97.CrossRefPubMed Ellis RC, Earnhardt JN, Hayes RL, Wang KK, Anderson DK. Cathepsin B mRNA and protein expression following contusion spinal cord injury in rats. J Neurochem. 2004;88(3):689–97.CrossRefPubMed
23.
Zurück zum Zitat Ellis RC, O’steen WA, Hayes RL, Nick HS, Wang KK, Anderson DK. Cellular localization and enzymatic activity of cathepsin B after spinal cord injury in the rat. Exp Neurol. 2005;193(1):19–28.CrossRefPubMed Ellis RC, O’steen WA, Hayes RL, Nick HS, Wang KK, Anderson DK. Cellular localization and enzymatic activity of cathepsin B after spinal cord injury in the rat. Exp Neurol. 2005;193(1):19–28.CrossRefPubMed
24.
Zurück zum Zitat Zhang H, Chu G, Pan C, Hu J, Guo C, Liu J, et al. A nutrient mixture reduces the expression of matrix metalloproteinases in an animal model of spinal cord injury by modulating matrix metalloproteinase-2 and matrix metalloproteinase-9 promoter activities. Exp Ther Med. 2014;8(6):1835–40.PubMedPubMedCentral Zhang H, Chu G, Pan C, Hu J, Guo C, Liu J, et al. A nutrient mixture reduces the expression of matrix metalloproteinases in an animal model of spinal cord injury by modulating matrix metalloproteinase-2 and matrix metalloproteinase-9 promoter activities. Exp Ther Med. 2014;8(6):1835–40.PubMedPubMedCentral
25.
26.
Zurück zum Zitat Hoffman SW, Harrison C. The interaction between psychological health and traumatic brain injury: a neuroscience perspective. Clin Neuropsychol. 2009;23(8):1400–15.CrossRefPubMed Hoffman SW, Harrison C. The interaction between psychological health and traumatic brain injury: a neuroscience perspective. Clin Neuropsychol. 2009;23(8):1400–15.CrossRefPubMed
27.
Zurück zum Zitat Papurica M, Rogobete AF, Sandesc D, Dumache R, Cradigati CA, Sarandan M, et al. Advances in biomarkers in critical ill polytrauma patients. Clin Lab. 2016;62(6):977–86.PubMed Papurica M, Rogobete AF, Sandesc D, Dumache R, Cradigati CA, Sarandan M, et al. Advances in biomarkers in critical ill polytrauma patients. Clin Lab. 2016;62(6):977–86.PubMed
28.
Zurück zum Zitat Stammers A, Liu J, Kwon B. Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J Neurosci Res. 2012;90(4):782–90.CrossRefPubMed Stammers A, Liu J, Kwon B. Expression of inflammatory cytokines following acute spinal cord injury in a rodent model. J Neurosci Res. 2012;90(4):782–90.CrossRefPubMed
29.
Zurück zum Zitat Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM, et al. Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma. 2010;27(4):669–82.CrossRefPubMed Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM, et al. Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. J Neurotrauma. 2010;27(4):669–82.CrossRefPubMed
30.
Zurück zum Zitat Kwon BK, Casha S, Hurlbert RJ, Yong VW. Inflammatory and structural biomarkers in acute traumatic spinal cord injury. Clin Chem Lab Med. 2011;49(3):425–33.CrossRefPubMed Kwon BK, Casha S, Hurlbert RJ, Yong VW. Inflammatory and structural biomarkers in acute traumatic spinal cord injury. Clin Chem Lab Med. 2011;49(3):425–33.CrossRefPubMed
31.
Zurück zum Zitat Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem. 1997;69(4):1592–600.CrossRefPubMed Springer JE, Azbill RD, Kennedy SE, George J, Geddes JW. Rapid calpain I activation and cytoskeletal protein degradation following traumatic spinal cord injury: attenuation with riluzole pretreatment. J Neurochem. 1997;69(4):1592–600.CrossRefPubMed
32.
Zurück zum Zitat Zhang SX, Underwood M, Landfield A, Huang F-F, Gibson S, Geddes JW. Cytoskeletal disruption following contusion injury to the rat spinal cord. J Neuropathol Exp Neurol. 2000;59(4):287–96.CrossRefPubMed Zhang SX, Underwood M, Landfield A, Huang F-F, Gibson S, Geddes JW. Cytoskeletal disruption following contusion injury to the rat spinal cord. J Neuropathol Exp Neurol. 2000;59(4):287–96.CrossRefPubMed
33.
Zurück zum Zitat Hanrieder J, Wetterhall M, Enblad P, Hillered L, Bergquist J. Temporally resolved differential proteomic analysis of human ventricular CSF for monitoring traumatic brain injury biomarker candidates. J Neurosci Methods. 2009;177(2):469–78.CrossRefPubMed Hanrieder J, Wetterhall M, Enblad P, Hillered L, Bergquist J. Temporally resolved differential proteomic analysis of human ventricular CSF for monitoring traumatic brain injury biomarker candidates. J Neurosci Methods. 2009;177(2):469–78.CrossRefPubMed
34.
Zurück zum Zitat •• Xu B, Tian R, Wang X, Zhan S, Wang R, Guo Y, et al. Protein profile changes in the frontotemporal lobes in human severe traumatic brain injury. Brain Res. 2016;1642:344–52. Xu et al. utilized bioinformatics analysis to relate the effects of severe traumatic brain injury with alterations in biological pathways in the brain. They observed through both mass spectrometry and western blot techniques the increased levels of GFAP, MMP9, transgelin, and vimentin in people suffering from severe TBI (sTBI).CrossRefPubMed •• Xu B, Tian R, Wang X, Zhan S, Wang R, Guo Y, et al. Protein profile changes in the frontotemporal lobes in human severe traumatic brain injury. Brain Res. 2016;1642:344–52. Xu et al. utilized bioinformatics analysis to relate the effects of severe traumatic brain injury with alterations in biological pathways in the brain. They observed through both mass spectrometry and western blot techniques the increased levels of GFAP, MMP9, transgelin, and vimentin in people suffering from severe TBI (sTBI).CrossRefPubMed
35.
Zurück zum Zitat Lööv C, Shevchenko G, Nadadhur AG, Clausen F, Hillered L, Wetterhall M et al. Identification of injury specific proteins in a cell culture model of traumatic brain injury. PLoS One. 2013;8(2). Lööv C, Shevchenko G, Nadadhur AG, Clausen F, Hillered L, Wetterhall M et al. Identification of injury specific proteins in a cell culture model of traumatic brain injury. PLoS One. 2013;8(2).
36.
Zurück zum Zitat Ahmed F, Gyorgy A, Kamnaksh A, Ling G, Tong L, Parks S, et al. Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis. 2012;33(24):3705–11.CrossRefPubMed Ahmed F, Gyorgy A, Kamnaksh A, Ling G, Tong L, Parks S, et al. Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis. 2012;33(24):3705–11.CrossRefPubMed
37.
Zurück zum Zitat Kobeissy FH, Sadasivan S, Liu J, Gold MS, Wang KK. Psychiatric research: psychoproteomics, degradomics and systems biology. Expert Rev Proteomics. 2008;5(2):293–314.CrossRefPubMed Kobeissy FH, Sadasivan S, Liu J, Gold MS, Wang KK. Psychiatric research: psychoproteomics, degradomics and systems biology. Expert Rev Proteomics. 2008;5(2):293–314.CrossRefPubMed
38.
Zurück zum Zitat Wu P, Zhao Y, Haidacher SJ, Wang E, Parsley MO, Gao J, et al. Detection of structural and metabolic changes in traumatically injured hippocampus by quantitative differential proteomics. J Neurotrauma. 2013;30(9):775–88.CrossRefPubMedPubMedCentral Wu P, Zhao Y, Haidacher SJ, Wang E, Parsley MO, Gao J, et al. Detection of structural and metabolic changes in traumatically injured hippocampus by quantitative differential proteomics. J Neurotrauma. 2013;30(9):775–88.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S. Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp. 2011;(54). Alder J, Fujioka W, Lifshitz J, Crockett DP, Thakker-Varia S. Lateral fluid percussion: model of traumatic brain injury in mice. J Vis Exp. 2011;(54).
40.
Zurück zum Zitat Reed TT, Jr WMP, Turner DM, Markesbery WR, Butterfield DA. Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J Cell Mol Med. 2009;13(8b):2019–29.CrossRefPubMed Reed TT, Jr WMP, Turner DM, Markesbery WR, Butterfield DA. Proteomic identification of nitrated brain proteins in early Alzheimer’s disease inferior parietal lobule. J Cell Mol Med. 2009;13(8b):2019–29.CrossRefPubMed
41.
Zurück zum Zitat Guingab-Cagmat JD, Newsom K, Vakulenko A, Cagmat EB, Kobeissy FH, Zoltewicz S, et al. In vitro MS-based proteomic analysis and absolute quantification of neuronal-glial injury biomarkers in cell culture system. Electrophoresis. 2012;33(24):3786–97.CrossRefPubMed Guingab-Cagmat JD, Newsom K, Vakulenko A, Cagmat EB, Kobeissy FH, Zoltewicz S, et al. In vitro MS-based proteomic analysis and absolute quantification of neuronal-glial injury biomarkers in cell culture system. Electrophoresis. 2012;33(24):3786–97.CrossRefPubMed
42.
Zurück zum Zitat Liu MC, Akle V, Zheng W, Dave JR, Tortella FC, Hayes RL, et al. Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochem J. 2006;394(3):715–25.CrossRefPubMedPubMedCentral Liu MC, Akle V, Zheng W, Dave JR, Tortella FC, Hayes RL, et al. Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochem J. 2006;394(3):715–25.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Gyorgy AB, Walker J, Wingo D, Eidelman O, Pollard HB, Molnar A, et al. Reverse phase protein microarray technology in traumatic brain injury. J Neurosci Methods. 2010;192(1):96–101.CrossRefPubMed Gyorgy AB, Walker J, Wingo D, Eidelman O, Pollard HB, Molnar A, et al. Reverse phase protein microarray technology in traumatic brain injury. J Neurosci Methods. 2010;192(1):96–101.CrossRefPubMed
44.
Zurück zum Zitat Ding Q, Wu Z, Guo Y, Zhao C, Jia Y, Kong F, et al. Proteome analysis of up-regulated proteins in the rat spinal cord induced by transection injury. Proteomics. 2006;6(2):505–18.CrossRefPubMed Ding Q, Wu Z, Guo Y, Zhao C, Jia Y, Kong F, et al. Proteome analysis of up-regulated proteins in the rat spinal cord induced by transection injury. Proteomics. 2006;6(2):505–18.CrossRefPubMed
45.
Zurück zum Zitat Kang S, So H, Moon Y, Kim C. Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS. Proteomics. 2006;6(9):2797–812.CrossRefPubMed Kang S, So H, Moon Y, Kim C. Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS. Proteomics. 2006;6(9):2797–812.CrossRefPubMed
46.
Zurück zum Zitat Tsai M, Shen L, Kuo H, Cheng H, Chak K. Involvement of acidic fibroblast growth factor in spinal cord injury repair processes revealed by a proteomics approach. Mol Cell Proteomics. 2008;7(9):1668–87.CrossRefPubMedPubMedCentral Tsai M, Shen L, Kuo H, Cheng H, Chak K. Involvement of acidic fibroblast growth factor in spinal cord injury repair processes revealed by a proteomics approach. Mol Cell Proteomics. 2008;7(9):1668–87.CrossRefPubMedPubMedCentral
47.
Zurück zum Zitat Yan X, Liu J, Luo Z, Ding Q, Mao X, Yan M, et al. Proteomic profiling of proteins in rat spinal cord induced by contusion injury. Neurochem Int. 2010;56(8):971–83.CrossRefPubMed Yan X, Liu J, Luo Z, Ding Q, Mao X, Yan M, et al. Proteomic profiling of proteins in rat spinal cord induced by contusion injury. Neurochem Int. 2010;56(8):971–83.CrossRefPubMed
48.
Zurück zum Zitat Liu W, Shang F, Xu Y, Belegu V, Xia L, Zhao W, et al. eIF5A1/RhoGDIα pathway: a novel therapeutic target for treatment of spinal cord injury identified by a proteomics approach. Sci Rep. 2015;5:16911.CrossRefPubMedPubMedCentral Liu W, Shang F, Xu Y, Belegu V, Xia L, Zhao W, et al. eIF5A1/RhoGDIα pathway: a novel therapeutic target for treatment of spinal cord injury identified by a proteomics approach. Sci Rep. 2015;5:16911.CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Chen A, Sun S, Ravikumar R, Visavadiya N, Springer J. Differential proteomic analysis of acute contusive spinal cord injury in rats using iTRAQ reagent labeling and LC–MS/MS. Neurochem Res. 2013;38(11):2247–55.CrossRefPubMed Chen A, Sun S, Ravikumar R, Visavadiya N, Springer J. Differential proteomic analysis of acute contusive spinal cord injury in rats using iTRAQ reagent labeling and LC–MS/MS. Neurochem Res. 2013;38(11):2247–55.CrossRefPubMed
50.
Zurück zum Zitat Moghieb A, Bramlett H, Das J, Yang Z, Selig T, Yost R, et al. Differential neuroproteomic and systems biology analysis of spinal cord injury. Mol Cell Proteomics. 2016;15(7):2379–95. Moghieb A, Bramlett H, Das J, Yang Z, Selig T, Yost R, et al. Differential neuroproteomic and systems biology analysis of spinal cord injury. Mol Cell Proteomics. 2016;15(7):2379–95.
51.
Zurück zum Zitat Devaux S, Cizkova D, Quanico J, Franck J, Nataf S, Pays L et al. Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time- and segment-specific window for effective tissue repair. Mol Cell Proteomics. 2016;15(8):2641–70. Devaux S, Cizkova D, Quanico J, Franck J, Nataf S, Pays L et al. Proteomic analysis of the spatio-temporal based molecular kinetics of acute spinal cord injury identifies a time- and segment-specific window for effective tissue repair. Mol Cell Proteomics. 2016;15(8):2641–70.
52.
53.
Zurück zum Zitat Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60(20):2299–301.CrossRefPubMed Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem. 1988;60(20):2299–301.CrossRefPubMed
54.
Zurück zum Zitat Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up tom/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2(8):151–3.CrossRef Tanaka K, Waki H, Ido Y, Akita S, Yoshida Y, Yoshida T, et al. Protein and polymer analyses up tom/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom. 1988;2(8):151–3.CrossRef
55.
Zurück zum Zitat Andersson M, Groseclose M, Deutch A, Caprioli R. Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods. 2008;5(1):101–8.CrossRefPubMed Andersson M, Groseclose M, Deutch A, Caprioli R. Imaging mass spectrometry of proteins and peptides: 3D volume reconstruction. Nat Methods. 2008;5(1):101–8.CrossRefPubMed
56.
Zurück zum Zitat Mainini V, Bovo G, Chinello C, Gianazza E, Grasso M, Cattoretti G, et al. Detection of high molecular weight proteins by MALDI imaging mass spectrometry. Mol Biosyst. 2013;9(6):1101–7.CrossRefPubMed Mainini V, Bovo G, Chinello C, Gianazza E, Grasso M, Cattoretti G, et al. Detection of high molecular weight proteins by MALDI imaging mass spectrometry. Mol Biosyst. 2013;9(6):1101–7.CrossRefPubMed
57.
Zurück zum Zitat Clemis E, Smith D, Camenzind A, Danell R, Parker C, Borchers C. Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging. Anal Chem. 2012;84(8):3514–22.CrossRefPubMed Clemis E, Smith D, Camenzind A, Danell R, Parker C, Borchers C. Quantitation of spatially-localized proteins in tissue samples using MALDI-MRM imaging. Anal Chem. 2012;84(8):3514–22.CrossRefPubMed
58.
Zurück zum Zitat Franck J, Arafah K, Elayed M, Bonnel D, Vergara D, Jacquet A, et al. Maldi imaging mass spectrometry: state of the art technology in clinical proteomics. Mol Cell Proteomics. 2009;8(9):2023–33.CrossRefPubMedPubMedCentral Franck J, Arafah K, Elayed M, Bonnel D, Vergara D, Jacquet A, et al. Maldi imaging mass spectrometry: state of the art technology in clinical proteomics. Mol Cell Proteomics. 2009;8(9):2023–33.CrossRefPubMedPubMedCentral
59.
Zurück zum Zitat Norris J, Caprioli R. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;113(4):2309–42.CrossRefPubMedPubMedCentral Norris J, Caprioli R. Analysis of tissue specimens by matrix-assisted laser desorption/ionization imaging mass spectrometry in biological and clinical research. Chem Rev. 2013;113(4):2309–42.CrossRefPubMedPubMedCentral
60.
Zurück zum Zitat Amstalden van Hove E, Smith D, Heeren R. A concise review of mass spectrometry imaging. J Chromatogr A. 2010;1217(25):3946–54.CrossRefPubMed Amstalden van Hove E, Smith D, Heeren R. A concise review of mass spectrometry imaging. J Chromatogr A. 2010;1217(25):3946–54.CrossRefPubMed
61.
Zurück zum Zitat Sugiura Y, Shimma S, Setou M. Two-step matrix application technique to improve ionization efficiency for matrix-assisted laser desorption/ionization in imaging mass spectrometry. Anal Chem. 2006;78(24):8227–35.CrossRefPubMed Sugiura Y, Shimma S, Setou M. Two-step matrix application technique to improve ionization efficiency for matrix-assisted laser desorption/ionization in imaging mass spectrometry. Anal Chem. 2006;78(24):8227–35.CrossRefPubMed
62.
Zurück zum Zitat Chaurand P, Caprioli R. Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry. Electrophoresis. 2002;23(18):3125–35.CrossRefPubMed Chaurand P, Caprioli R. Direct profiling and imaging of peptides and proteins from mammalian cells and tissue sections by mass spectrometry. Electrophoresis. 2002;23(18):3125–35.CrossRefPubMed
63.
Zurück zum Zitat Groseclose MR, Andersson M, Hardesty WM, Caprioli RM. Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom. 2007;42(2):254–62.CrossRefPubMed Groseclose MR, Andersson M, Hardesty WM, Caprioli RM. Identification of proteins directly from tissue: in situ tryptic digestions coupled with imaging mass spectrometry. J Mass Spectrom. 2007;42(2):254–62.CrossRefPubMed
65.
Zurück zum Zitat Taverna D, Norris JL, Caprioli RM. Histology-directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue. Anal Chem. 2015;87(1):670–6.CrossRefPubMed Taverna D, Norris JL, Caprioli RM. Histology-directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue. Anal Chem. 2015;87(1):670–6.CrossRefPubMed
67.
Zurück zum Zitat Ceuppens R, Dumont D, Brussel LV, Plas BVD, Daniels R, Noben J-P, et al. Direct profiling of myelinated and demyelinated regions in mouse brain by imaging mass spectrometry. Int J Mass Spectrom. 2007;260(2–3):185–94.CrossRef Ceuppens R, Dumont D, Brussel LV, Plas BVD, Daniels R, Noben J-P, et al. Direct profiling of myelinated and demyelinated regions in mouse brain by imaging mass spectrometry. Int J Mass Spectrom. 2007;260(2–3):185–94.CrossRef
68.
Zurück zum Zitat Crecelius AC, Cornett DS, Caprioli RM, Williams B, Dawant BM, Bodenheimer B. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom. 2005;16(7):1093–9.CrossRefPubMed Crecelius AC, Cornett DS, Caprioli RM, Williams B, Dawant BM, Bodenheimer B. Three-dimensional visualization of protein expression in mouse brain structures using imaging mass spectrometry. J Am Soc Mass Spectrom. 2005;16(7):1093–9.CrossRefPubMed
69.
Zurück zum Zitat Roux A, Muller L, Jackson SN, Post J, Baldwin K, Hoffer B, et al. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. J Neurosci Methods. 2016;272:19–32.CrossRefPubMed Roux A, Muller L, Jackson SN, Post J, Baldwin K, Hoffer B, et al. Mass spectrometry imaging of rat brain lipid profile changes over time following traumatic brain injury. J Neurosci Methods. 2016;272:19–32.CrossRefPubMed
70.
Zurück zum Zitat Woods AS, Colsch B, Jackson SN, Post J, Baldwin K, Roux A, et al. Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury. ACS Chem Neurosci. 2013;4(4):594–600. Woods AS, Colsch B, Jackson SN, Post J, Baldwin K, Roux A, et al. Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury. ACS Chem Neurosci. 2013;4(4):594–600.
71.
Zurück zum Zitat Caughlin S, Hepburn JD, Park DH, Jurcic K, Yeung KK-C, Cechetto DF et al. Increased expression of simple ganglioside species GM2 and GM3 detected by MALDI imaging mass spectrometry in a combined rat model of Aβ toxicity and stroke. PLoS One. 2015;10(6). Caughlin S, Hepburn JD, Park DH, Jurcic K, Yeung KK-C, Cechetto DF et al. Increased expression of simple ganglioside species GM2 and GM3 detected by MALDI imaging mass spectrometry in a combined rat model of Aβ toxicity and stroke. PLoS One. 2015;10(6).
72.
Zurück zum Zitat Whitehead SN, Chan KHN, Gangaraju S, Slinn J, Li J, Hou ST. Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One. 2011;6(6). Whitehead SN, Chan KHN, Gangaraju S, Slinn J, Li J, Hou ST. Imaging mass spectrometry detection of gangliosides species in the mouse brain following transient focal cerebral ischemia and long-term recovery. PLoS One. 2011;6(6).
73.
Zurück zum Zitat Aichler M, Walch A. MALDI imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest. 2015;95(4):422–31.CrossRefPubMed Aichler M, Walch A. MALDI imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. Lab Invest. 2015;95(4):422–31.CrossRefPubMed
74.
Zurück zum Zitat Grant S. Systems biology in neuroscience: bridging genes to cognition. Curr Opin Neurobiol. 2003;13(5):577–82.CrossRefPubMed Grant S. Systems biology in neuroscience: bridging genes to cognition. Curr Opin Neurobiol. 2003;13(5):577–82.CrossRefPubMed
75.
76.
Zurück zum Zitat Li C, Chen L, Aihara K. A systems biology perspective on signal processing in genetic network motifs [life sciences]. IEEE Signal Process Mag. 2007;24(2):136–47.CrossRef Li C, Chen L, Aihara K. A systems biology perspective on signal processing in genetic network motifs [life sciences]. IEEE Signal Process Mag. 2007;24(2):136–47.CrossRef
77.
Zurück zum Zitat Choudhary J, Grant SGN. Proteomics in postgenomic neuroscience: the end of the beginning. Nat Neurosci. 2004;7(5):440–5.CrossRefPubMed Choudhary J, Grant SGN. Proteomics in postgenomic neuroscience: the end of the beginning. Nat Neurosci. 2004;7(5):440–5.CrossRefPubMed
78.
Zurück zum Zitat Beltrao P, Kiel C, Serrano L. Structures in systems biology. Curr Opin Struct Biol. 2007;17(3):378–84.CrossRefPubMed Beltrao P, Kiel C, Serrano L. Structures in systems biology. Curr Opin Struct Biol. 2007;17(3):378–84.CrossRefPubMed
79.
Zurück zum Zitat Feala JD, Abdulhameed MDM, Yu C, Dutta B, Yu X, Schmid K, et al. Systems biology approaches for discovering biomarkers for traumatic brain injury. J Neurotrauma. 2013;30(13):1101–16.CrossRefPubMedPubMedCentral Feala JD, Abdulhameed MDM, Yu C, Dutta B, Yu X, Schmid K, et al. Systems biology approaches for discovering biomarkers for traumatic brain injury. J Neurotrauma. 2013;30(13):1101–16.CrossRefPubMedPubMedCentral
80.
Zurück zum Zitat Didangelos A, Puglia M, Iberl M, Sanchez-Bellot C, Roschitzki B, Bradbury E. High-throughput proteomics reveal alarmins as amplifiers of tissue pathology and inflammation after spinal cord injury. Sci Rep. 2016;6:21607.CrossRefPubMedPubMedCentral Didangelos A, Puglia M, Iberl M, Sanchez-Bellot C, Roschitzki B, Bradbury E. High-throughput proteomics reveal alarmins as amplifiers of tissue pathology and inflammation after spinal cord injury. Sci Rep. 2016;6:21607.CrossRefPubMedPubMedCentral
Metadaten
Titel
The Application of Proteomics to Traumatic Brain and Spinal Cord Injuries
verfasst von
George Anis Sarkis
Manasi D. Mangaonkar
Ahmed Moghieb
Brian Lelling
Michael Guertin
Hamad Yadikar
Zhihui Yang
Firas Kobeissy
Kevin K. W. Wang
Publikationsdatum
01.03.2017
Verlag
Springer US
Erschienen in
Current Neurology and Neuroscience Reports / Ausgabe 3/2017
Print ISSN: 1528-4042
Elektronische ISSN: 1534-6293
DOI
https://doi.org/10.1007/s11910-017-0736-z

Weitere Artikel der Ausgabe 3/2017

Current Neurology and Neuroscience Reports 3/2017 Zur Ausgabe

Genetics (V Bonifati, Section Editor)

Update on the Genetics of Dystonia

Neurology of Systemic Diseases (J Biller, Section Editor)

Neurological and Neurosurgical Emergencies in Patients with Hematological Disorders

Neuroimaging (DJ Brooks, Section Editor)

Neuroinflammation in Neurodegenerative Disorders—a Review

Headache (RB Halker, Section Editor)

Migraine and Stroke: What’s the Link? What to Do?

Headache (RB Halker, Section Editor)

PFO and Migraine: Is There a Role for Closure?

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.