Skip to main content
Erschienen in: Sports Medicine 3/2014

01.03.2014 | Current Opinion

The Emerging Role of p53 in Exercise Metabolism

verfasst von: Jonathan D. Bartlett, Graeme L. Close, Barry Drust, James P. Morton

Erschienen in: Sports Medicine | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

The major tumour suppressor protein, p53, is one of the most well-studied proteins in cell biology. Often referred to as the Guardian of the Genome, the list of known functions of p53 include regulatory roles in cell cycle arrest, apoptosis, angiogenesis, DNA repair and cell senescence. More recently, p53 has been implicated as a key molecular player regulating substrate metabolism and exercise-induced mitochondrial biogenesis in skeletal muscle. In this context, the study of p53 therefore has obvious implications for both human health and performance, given that impaired mitochondrial content and function is associated with the pathology of many metabolic disorders such as ageing, type 2 diabetes, obesity and cancer, as well as reduced exercise performance. Studies on p53 knockout (KO) mice collectively demonstrate that ablation of p53 content reduces intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondrial yield, reduces cytochrome c oxidase (COX) activity and peroxisome proliferator-activated receptor gamma co-activator 1-α protein content whilst also reducing mitochondrial respiration and increasing reactive oxygen species production during state 3 respiration in IMF mitochondria. Additionally, p53 KO mice exhibit marked reductions in exercise capacity (in the magnitude of 50 %) during fatiguing swimming, treadmill running and electrical stimulation protocols. p53 may regulate contractile-induced increases in mitochondrial content via modulating mitochondrial transcription factor A (Tfam) content and/or activity, given that p53 KO mice display reduced skeletal muscle mitochondrial DNA, Tfam messenger RNA and protein levels. Furthermore, upon muscle contraction, p53 is phosphorylated on serine 15 and subsequently translocates to the mitochondria where it forms a complex with Tfam to modulate expression of mitochondrial-encoded subunits of the COX complex. In human skeletal muscle, the exercise-induced phosphorylation of p53Ser15 is enhanced in conditions of reduced carbohydrate availability in association with enhanced upstream signalling through 5′adenosine monophosphate-activated protein kinase but not p38 mitogen-activated protein kinase. In this way, undertaking regular exercise in carbohydrate restricted states may therefore be a practical approach to achieve the physiological benefits of consistent p53 signalling. Although our knowledge of p53 in exercise metabolism has advanced considerably, much of our current understanding of p53 regulation and associated targets is derived from various non-muscle cells and tissues. As such, many fundamental questions remain unanswered in contracting skeletal muscle. Detailed studies concerning the time-course of p53 activation (including additional post-translational modifications and subsequent subcellular translocation), as well as the effects of exercise modality (endurance versus resistance), intensity, duration, fibre type, age, training status and nutrient availability, must now be performed so that we can optimise exercise prescription guidelines to strategically target p53 signalling. The emerging role of p53 in skeletal muscle metabolism therefore represents a novel and exciting research area for exercise and muscle physiologists.
Literatur
1.
Zurück zum Zitat Holloszy JO. Biochemical adaptations in muscle: effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;10(242):2278–82. Holloszy JO. Biochemical adaptations in muscle: effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem. 1967;10(242):2278–82.
2.
Zurück zum Zitat Joseph A-M, Joanisse DR, Baillot RG, et al. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res. 2012;2012:1–16.CrossRef Joseph A-M, Joanisse DR, Baillot RG, et al. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp Diabetes Res. 2012;2012:1–16.CrossRef
3.
Zurück zum Zitat Jelenik T, Roden M. Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid Redox Signal. 2013;20(19):258–68.CrossRef Jelenik T, Roden M. Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid Redox Signal. 2013;20(19):258–68.CrossRef
4.
Zurück zum Zitat Safdar A, Hamadeh MJ, Kaczor JJ, et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS ONE. 2010;5:e10778.PubMedCentralPubMedCrossRef Safdar A, Hamadeh MJ, Kaczor JJ, et al. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS ONE. 2010;5:e10778.PubMedCentralPubMedCrossRef
5.
Zurück zum Zitat Lago CU, Sung HJ, Ma W, et al. p53, aerobic metabolism, and cancer. Antioxid Redox Signal. 2011;15(15):1739–48.PubMedCrossRef Lago CU, Sung HJ, Ma W, et al. p53, aerobic metabolism, and cancer. Antioxid Redox Signal. 2011;15(15):1739–48.PubMedCrossRef
6.
Zurück zum Zitat Leblanc PJ, Howarth KR, Gibala MJ, et al. Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J Appl Physiol. 2004;97:2148–53.PubMedCrossRef Leblanc PJ, Howarth KR, Gibala MJ, et al. Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J Appl Physiol. 2004;97:2148–53.PubMedCrossRef
7.
Zurück zum Zitat Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.PubMed Bassett DR, Howley ET. Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc. 2000;32:70–84.PubMed
8.
Zurück zum Zitat Henriksson J. Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol. 1977;270:661–75.PubMed Henriksson J. Training induced adaptation of skeletal muscle and metabolism during submaximal exercise. J Physiol. 1977;270:661–75.PubMed
9.
Zurück zum Zitat Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29:218–22.PubMedCrossRef Hawley JA. Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol. 2002;29:218–22.PubMedCrossRef
10.
Zurück zum Zitat Holloszy JO. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol. 2011;1:921–40.PubMed Holloszy JO. Regulation of mitochondrial biogenesis and GLUT4 expression by exercise. Compr Physiol. 2011;1:921–40.PubMed
11.
Zurück zum Zitat Perry CGR, Lally J, Holloway GP, et al. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;1(588):4795–810.CrossRef Perry CGR, Lally J, Holloway GP, et al. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol. 2010;1(588):4795–810.CrossRef
12.
Zurück zum Zitat Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37:737–63.PubMedCrossRef Coffey VG, Hawley JA. The molecular bases of training adaptation. Sports Med. 2007;37:737–63.PubMedCrossRef
13.
Zurück zum Zitat Levine AJ, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13:1027–36.PubMedCrossRef Levine AJ, Hu W, Feng Z. The P53 pathway: what questions remain to be explored? Cell Death Differ. 2006;13:1027–36.PubMedCrossRef
14.
Zurück zum Zitat Matoba S, Kang J-G, Patino WD, et al. p53 regulates mitochondrial respiration. Science. 2006;16(312):1650–3.CrossRef Matoba S, Kang J-G, Patino WD, et al. p53 regulates mitochondrial respiration. Science. 2006;16(312):1650–3.CrossRef
15.
Zurück zum Zitat Park J-Y, Wang P-Y, Matsumoto T, et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res. 2009;25(105):705–12.CrossRef Park J-Y, Wang P-Y, Matsumoto T, et al. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content. Circ Res. 2009;25(105):705–12.CrossRef
16.
Zurück zum Zitat Saleem A, Adhihetty PJ, Hood DA. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol Genom. 2009;3(37):58–66.CrossRef Saleem A, Adhihetty PJ, Hood DA. Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiol Genom. 2009;3(37):58–66.CrossRef
17.
Zurück zum Zitat Bartlett JD, Hwa Joo C, Jeong T-S, et al. Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol. 2012;112:1135–43.PubMedCrossRef Bartlett JD, Hwa Joo C, Jeong T-S, et al. Matched work high-intensity interval and continuous running induce similar increases in PGC-1α mRNA, AMPK, p38, and p53 phosphorylation in human skeletal muscle. J Appl Physiol. 2012;112:1135–43.PubMedCrossRef
18.
Zurück zum Zitat Saleem A, Hood DA. Acute exercise induces p53 translocation to the mitochondria and promotes a p53–Tfam–mtDNA complex in skeletal muscle. J Physiol. 2013;591:3625–36.PubMed Saleem A, Hood DA. Acute exercise induces p53 translocation to the mitochondria and promotes a p53–Tfam–mtDNA complex in skeletal muscle. J Physiol. 2013;591:3625–36.PubMed
19.
Zurück zum Zitat Egan B, Carson BP, Garcia-Roves PM, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 2010;15(588):1779–90.CrossRef Egan B, Carson BP, Garcia-Roves PM, et al. Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 2010;15(588):1779–90.CrossRef
20.
Zurück zum Zitat Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J. 2005;19:786–8.PubMed Atherton PJ, Babraj J, Smith K, et al. Selective activation of AMPK-PGC-1alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. FASEB J. 2005;19:786–8.PubMed
21.
Zurück zum Zitat Rose AJ, Hargreaves M. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol. 2003;15(553):303–9.CrossRef Rose AJ, Hargreaves M. Exercise increases Ca2+-calmodulin-dependent protein kinase II activity in human skeletal muscle. J Physiol. 2003;15(553):303–9.CrossRef
22.
Zurück zum Zitat Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol. 2006;1(574):889–903.CrossRef Rose AJ, Kiens B, Richter EA. Ca2+-calmodulin-dependent protein kinase expression and signalling in skeletal muscle during exercise. J Physiol. 2006;1(574):889–903.CrossRef
23.
Zurück zum Zitat Coffey V, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20:190–2.PubMed Coffey V, Zhong Z, Shield A, et al. Early signaling responses to divergent exercise stimuli in skeletal muscle from well-trained humans. FASEB J. 2006;20:190–2.PubMed
24.
Zurück zum Zitat Benziane B, Burton TJ, Scanlan B, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295:E1427–38.PubMedCrossRef Benziane B, Burton TJ, Scanlan B, et al. Divergent cell signaling after short-term intensified endurance training in human skeletal muscle. Am J Physiol Endocrinol Metab. 2008;295:E1427–38.PubMedCrossRef
25.
Zurück zum Zitat Yeo WK, McGee SL, et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. 2010;95:351–8.PubMedCrossRef Yeo WK, McGee SL, et al. Acute signalling responses to intense endurance training commenced with low or normal muscle glycogen. Exp Physiol. 2010;95:351–8.PubMedCrossRef
26.
Zurück zum Zitat Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78–90.PubMedCrossRef Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. Endocr Rev. 2003;24:78–90.PubMedCrossRef
27.
Zurück zum Zitat Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;15(418):797–801.CrossRef Lin J, Wu H, Tarr PT, et al. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres. Nature. 2002;15(418):797–801.CrossRef
28.
Zurück zum Zitat Benton CR, Wright DC, Bonen A. PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions. Appl Physiol Nutr Metab. 2008;33:843–62.PubMedCrossRef Benton CR, Wright DC, Bonen A. PGC-1alpha-mediated regulation of gene expression and metabolism: implications for nutrition and exercise prescriptions. Appl Physiol Nutr Metab. 2008;33:843–62.PubMedCrossRef
29.
Zurück zum Zitat Wenz T, Rossi SG, Rotundo RL, et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA. 2009;1(106):20405–10.CrossRef Wenz T, Rossi SG, Rotundo RL, et al. Increased muscle PGC-1alpha expression protects from sarcopenia and metabolic disease during aging. Proc Natl Acad Sci USA. 2009;1(106):20405–10.CrossRef
30.
Zurück zum Zitat Calvo JA, Daniels TG, Wang X, et al. Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol. 2008;104:1304–12.PubMedCrossRef Calvo JA, Daniels TG, Wang X, et al. Muscle-specific expression of PPARgamma coactivator-1alpha improves exercise performance and increases peak oxygen uptake. J Appl Physiol. 2008;104:1304–12.PubMedCrossRef
31.
Zurück zum Zitat Fan M, Rhee J, St-Pierre J, et al. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev. 2004;1(18):278–89.CrossRef Fan M, Rhee J, St-Pierre J, et al. Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1alpha: modulation by p38 MAPK. Genes Dev. 2004;1(18):278–89.CrossRef
32.
Zurück zum Zitat Jäger S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;17(104):12017–22.CrossRef Jäger S, Handschin C, St-Pierre J, et al. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA. 2007;17(104):12017–22.CrossRef
33.
Zurück zum Zitat Little JP, Safdar A, Cermak N, et al. Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle. Am J Physio Regul Integr Comp Physiol. 2010;22(298):R912–7.CrossRef Little JP, Safdar A, Cermak N, et al. Acute endurance exercise increases the nuclear abundance of PGC-1alpha in trained human skeletal muscle. Am J Physio Regul Integr Comp Physiol. 2010;22(298):R912–7.CrossRef
34.
Zurück zum Zitat Safdar A, Little JP, Stokl AJ, et al. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2011;25(286):10605–17.CrossRef Safdar A, Little JP, Stokl AJ, et al. Exercise increases mitochondrial PGC-1alpha content and promotes nuclear-mitochondrial cross-talk to coordinate mitochondrial biogenesis. J Biol Chem. 2011;25(286):10605–17.CrossRef
35.
Zurück zum Zitat Wright D, Geiger P, Han D, et al. Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282(26):18793–9.PubMedCrossRef Wright D, Geiger P, Han D, et al. Calcium induces increases in peroxisome proliferator-activated receptor γ coactivator-1α and mitochondrial biogenesis by a pathway leading to p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282(26):18793–9.PubMedCrossRef
36.
Zurück zum Zitat Russell AP, Feilchenfeldt J, Schreiber S, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003;52:2874–81.PubMedCrossRef Russell AP, Feilchenfeldt J, Schreiber S, et al. Endurance training in humans leads to fiber type-specific increases in levels of peroxisome proliferator-activated receptor-gamma coactivator-1 and peroxisome proliferator-activated receptor-alpha in skeletal muscle. Diabetes. 2003;52:2874–81.PubMedCrossRef
37.
Zurück zum Zitat Morton JP, Croft L, Bartlett JD, et al. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol. 2009;106:1513–21.PubMedCrossRef Morton JP, Croft L, Bartlett JD, et al. Reduced carbohydrate availability does not modulate training-induced heat shock protein adaptations but does upregulate oxidative enzyme activity in human skeletal muscle. J Appl Physiol. 2009;106:1513–21.PubMedCrossRef
38.
Zurück zum Zitat Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;1(586):151–60. Burgomaster KA, Howarth KR, Phillips SM, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008;1(586):151–60.
39.
Zurück zum Zitat Uguccioni G, D’souza D, Hood DA. Regulation of PPARγ coactivator-1α function and expression in muscle: effect of exercise. PPAR Res. Epub 19 Aug 2010. doi:10.1155/2010/937123. Uguccioni G, D’souza D, Hood DA. Regulation of PPARγ coactivator-1α function and expression in muscle: effect of exercise. PPAR Res. Epub 19 Aug 2010. doi:10.​1155/​2010/​937123.
40.
Zurück zum Zitat Ljubicic V, Joseph A-M, Saleem A, et al. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta. 2010;1800:223–34.PubMedCrossRef Ljubicic V, Joseph A-M, Saleem A, et al. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta. 2010;1800:223–34.PubMedCrossRef
41.
Zurück zum Zitat Saleem A, Carter HN, Iqbal S, et al. Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis. Exerc Sport Sci Rev. 2011;39:199–205.PubMed Saleem A, Carter HN, Iqbal S, et al. Role of p53 within the regulatory network controlling muscle mitochondrial biogenesis. Exerc Sport Sci Rev. 2011;39:199–205.PubMed
42.
Zurück zum Zitat Bartlett JD, Louhelainen J, Iqbal Z, et al. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol. 2013;304:R450–8.PubMedCrossRef Bartlett JD, Louhelainen J, Iqbal Z, et al. Reduced carbohydrate availability enhances exercise-induced p53 signaling in human skeletal muscle: implications for mitochondrial biogenesis. Am J Physiol Regul Integr Comp Physiol. 2013;304:R450–8.PubMedCrossRef
43.
Zurück zum Zitat Madan E, Gogna R, Bhatt M, et al. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget. 2011;2:948–57.PubMed Madan E, Gogna R, Bhatt M, et al. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget. 2011;2:948–57.PubMed
44.
Zurück zum Zitat Yeo WK, Paton CD, Garnham AP, et al. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:1462–70.PubMedCrossRef Yeo WK, Paton CD, Garnham AP, et al. Skeletal muscle adaptation and performance responses to once a day versus twice every second day endurance training regimens. J Appl Physiol. 2008;105:1462–70.PubMedCrossRef
45.
Zurück zum Zitat Hulston C, Venables MC, Mann CH, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sport Exerc. 2010;42:2046–55. Hulston C, Venables MC, Mann CH, et al. Training with low muscle glycogen enhances fat metabolism in well-trained cyclists. Med Sci Sport Exerc. 2010;42:2046–55.
48.
Zurück zum Zitat Yeo WK, Lessard SJ, Chen Z-P, et al. Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. J Appl Physiol. 2008;105:1519–26.PubMedCrossRef Yeo WK, Lessard SJ, Chen Z-P, et al. Fat adaptation followed by carbohydrate restoration increases AMPK activity in skeletal muscle from trained humans. J Appl Physiol. 2008;105:1519–26.PubMedCrossRef
49.
Zurück zum Zitat Philp A, Chen A, Lan D, et al. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J Biol Chem. 2011;2(286):30561–70.CrossRef Philp A, Chen A, Lan D, et al. Sirtuin 1 (SIRT1) deacetylase activity is not required for mitochondrial biogenesis or peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) deacetylation following endurance exercise. J Biol Chem. 2011;2(286):30561–70.CrossRef
50.
Zurück zum Zitat Stambolsky P, Weisz L, Shats I, et al. Regulation of AIF expression by p53. Cell Death Differ. 2006;13:2140–9.PubMedCrossRef Stambolsky P, Weisz L, Shats I, et al. Regulation of AIF expression by p53. Cell Death Differ. 2006;13:2140–9.PubMedCrossRef
51.
Zurück zum Zitat Li J, Donath S, Li Y, et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet. 2010;6:e1000795.PubMedCentralPubMedCrossRef Li J, Donath S, Li Y, et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet. 2010;6:e1000795.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Wang W, Cheng X, Lu J, et al. Mitofusin-2 is a novel direct target of p53. Biochem Biophys Res Commun. 2010;1(400):587–92.CrossRef Wang W, Cheng X, Lu J, et al. Mitofusin-2 is a novel direct target of p53. Biochem Biophys Res Commun. 2010;1(400):587–92.CrossRef
Metadaten
Titel
The Emerging Role of p53 in Exercise Metabolism
verfasst von
Jonathan D. Bartlett
Graeme L. Close
Barry Drust
James P. Morton
Publikationsdatum
01.03.2014
Verlag
Springer International Publishing
Erschienen in
Sports Medicine / Ausgabe 3/2014
Print ISSN: 0112-1642
Elektronische ISSN: 1179-2035
DOI
https://doi.org/10.1007/s40279-013-0127-9

Weitere Artikel der Ausgabe 3/2014

Sports Medicine 3/2014 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.