Skip to main content
Erschienen in: International Journal of Emergency Medicine 1/2018

Open Access 01.12.2018 | Review

The impact of prothrombin complex concentrates when treating DOAC-associated bleeding: a review

verfasst von: Maureane Hoffman, Joshua N. Goldstein, Jerrold H. Levy

Erschienen in: International Journal of Emergency Medicine | Ausgabe 1/2018

Abstract

Background

Bleeding complications are a risk associated with all anticoagulants. Currently, the treatment options for the management of direct oral anticoagulant (DOAC)-associated bleeding are limited. Prothrombin complex concentrates (PCCs) have been proposed as a potential therapeutic option, and evidence regarding their use is increasing.

Review

Many studies supporting PCC have used preclinical models and healthy volunteers; however, more recently, observational studies have further improved insight into current DOAC reversal strategies. Multiple clinical practice guidelines now specifically suggest use of PCCs for this indication. Specific reversal agents for Factor Xa inhibitors may become available in the near future, but data on their efficacy are still emerging.

Conclusions

Ultimately, a multimodal approach may be the optimal strategy to restore haemostasis in patients presenting with DOAC-associated coagulopathy.
Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12245-018-0215-6) contains supplementary material, which is available to authorized users.
Abkürzungen
3F-PCC
Three-factor prothrombin complex concentrate
4F-PCC
Four-factor prothrombin complex concentrate
aPCC
Activated prothrombin complex concentrate
aPTT
Activated partial thromboplastin time
DOAC
Direct-acting oral anticoagulant
dTT
Diluted thrombin time
ECT
Ecarin clotting time
ETP
Endogenous thrombin potential
F
Factor
GIHP
Groupe d’Intérêt en Hémostase Périopératoire (French Working Group on Perioperative Haemostasis)
ICH
Intracranial haemorrhage
INR
International normalised ratio
ISTH
International Society on Thrombosis and Haemostasis
PCC
Prothrombin complex concentrate
PT
Prothrombin time
RASUNOA
Registry of Acute Stroke Under New Oral Anticoagulants
RE-VERSE AD
Reversal Effects of Idarucizumab on Active Dabigatran
ROTEM
Rotational thromboelastometry
TEE
Thromboembolic event
TEG
Thromboelastography
TGA
Thrombin generation assay
TT
Thrombin time
VKA
Vitamin K antagonist

Background

Direct oral anticoagulants (DOACs; also known as non-vitamin K oral anticoagulants or target-specific oral anticoagulants) specifically inhibit either coagulation factor IIa (FIIa; dabigatran) or factor Xa (FXa; rivaroxaban, apixaban and edoxaban; Fig. 1) [1]. DOAC use has grown in recent years, especially for stroke prevention in patients with non-valvular atrial fibrillation [1].
Most evidence suggests rates of major bleeding and intracranial haemorrhage (ICH) with DOACs are similar to or lower than those with warfarin [2], although some studies have highlighted a higher rate of gastrointestinal bleeding with particular DOACs [2, 3]; high-dose dabigatran and high-dose edoxaban were associated with an increased risk of gastrointestinal bleeding versus warfarin (p < 0.001 and p = 0.03 respectively) [4, 5], and rivaroxaban was associated with an increased incidence of major bleeding from a gastrointestinal site versus warfarin (3.2% vs 2.2%; p < 0.001) [6]. Rates of major bleeding for dabigatran, rivaroxaban, apixaban and edoxaban (as compared with warfarin) are listed in Table 1 [7].
Table 1
Comparative bleeding rates for warfarin versus dabigatran, rivaroxaban, apixaban and edoxaban [7]
 
RE-LY [5]
ROCKET-AF [6]
ARISTOTLE [136]
ENGAGE-AF TIMI [4]
Dabigatran 150 mg (n = 6076)
Dabigatran 110 mg (n = 6015)
Warfarin (n = 6022)
Rivaroxaban (n = 7111)
Warfarin (n = 7125)
Apixaban (n = 9088)
Warfarin (n = 9052)
Edoxaban 60 mg (n = 7012)
Edoxaban 30 mg (n = 7002)
Warfarin (n = 7012)
Major bleeding rate (%) per year
3.11
2.71
3.36
3.6
3.4
2.13
3.09
2.75
1.61
3.43
Hazard ratio vs warfarin
0.93 (0.81–1.07); p = 0.31
0.80 (0.69–0.93); p = 0.003
/
1.04 (0.90–1.20); p = 0.58
/
0.69 (0.60–0.80); p < 0.001
/
0.80 (0.71–0.91); p < 0.001
0.47 (0.41–0.55); p < 0.001
/
Guidance for the management of DOAC-associated bleeding is summarised in Fig. 2 and includes discontinuation of DOAC treatment (may be sufficient in cases of mild bleeding), local/surgical haemostatic control and blood volume replacement. However, these measures may not be sufficient to control bleeding and restore haemostasis in life-threatening situations.
Prothrombin complex concentrates (PCCs) routinely contain high concentrations of factors II, IX and X (three-factor [3F] PCCs) and potentially also high concentrations of factor VII (four-factor [4F] PCCs) [8]. These high clotting factor concentrations mean PCC administration may overcome the anticoagulant effects of DOAC administration by enhancing thrombin generation [9]. PCCs generally contain nonactivated clotting factors, but PCCs including activated factor VII (in conjunction with non-activated factors II, IX and X) are also available; these PCC types are referred to as nonactivated and activated PCCs respectively [10].
4F-PCCs are the established first-choice agent for urgent vitamin K antagonist (VKA) reversal in cases of major bleeding or prior to emergency surgery [11]. However, management of DOAC-associated bleeding remains a clinical challenge, especially with FXa inhibitors, for which there is only one specific reversal agent (Andexanet alfa) available [12].
PCCs have been extensively studied for their potential to correct DOAC-associated coagulopathy, but until recently, clinical data were limited. Key preclinical studies carried out prior to 2013 are described in our previous review [8]. Here, we aim to review more recent evidence and discuss the potential therapeutic role of PCCs in the treatment of DOAC-associated bleeding. Data for review were identified using the literature search strategy described in Additional file 1.

Clinical relevance of laboratory assays

Many studies evaluating the effects of haemostatic agents on DOAC-mediated anticoagulation have focused on effects on laboratory parameters.

Traditional coagulation assays

Traditional coagulation assays include prothrombin time (PT), activated partial prothromboplastin time (aPTT), international normalised ratio (INR), and thrombin time (TT). PT and aPTT are among the most commonly used screening tests for coagulation abnormalities and reflect the activity of the extrinsic and intrinsic coagulation pathways, respectively; INR is the standardised ratio of the patient’s PT and a normal PT value [13]. TT measures the fibrin polymerisation process following the addition of thrombin and is sensitive to the presence of thrombin inhibitors, such as heparin [14]. Although these assays provide information on clotting factor levels, overall they are poor predictors of bleeding [13].
The INR is used to monitor the degree of anticoagulation in VKA-treated patients and is not suitable for measuring the effect of DOACs [15]. The direct FXa inhibitors may prolong the PT, but the extent of prolongation is variable; impact varies by FXa inhibitor, thromboplastin reagent used and also the health status of the patient [16]. Other assays are generally not sensitive to these agents [15]. The direct thrombin inhibitor, dabigatran, prolongs aPTT (depending on the reagent/instrument system used) [17] and correlates with other assays when at therapeutic levels [18]. Specific assays, including calibrated anti-FXa assays for FXa inhibitors [15], and diluted TT (dTT) and ecarin clotting time (ECT; an assay that measures time to clot formation using ecarin as a reagent) for dabigatran [18], may be appropriate for monitoring the effects of DOACs, especially at lower plasma levels.

Thrombin generation assays

While traditional assays reflect the formation of a fibrin clot, the thrombin generation assay (TGA) corresponds to the overall function of the coagulation system [13]. In this assay, the time course of thrombin generation is represented graphically, from which various parameters can be derived: lag time (the time until a measurable amount of thrombin is formed), peak height (the maximum level of thrombin attained), time to peak and endogenous thrombin potential (ETP; total amount of thrombin formed, also described as the area under the curve). It has been suggested that TGAs show greater correlation with the degree of haemostatic impairment resulting from DOACs in vivo than other assays [8, 19, 20]. However, not all TGA results are comparable. The performance characteristics of TGAs depend on the agent used to initiate thrombin generation [19, 21] (for example, tissue factor or phospholipids), and results have historically been difficult to standardise between laboratories.

Viscoelastic tests

Thromboelastography (TEG) and rotational thromboelastometry (ROTEM) assays provide information on clot formation and dissolution, allowing measurement of the speed of clot formation, clot strength and clot lysis, among other characteristics [13]; both techniques have been shown to be of practical and diagnostic use in acute traumatic coagulopathy settings, but require further validation regarding therapeutic use [22]. Viscoelastic testing has not yet been proven to be useful for DOAC detection or reversal in general clinical practice, although preliminary testing of a commercial rapid TEG assay in healthy volunteers showed that detection and monitoring of rivaroxaban, apixaban and dabigatran is possible with this method [23]. New reagents are also being developed to facilitate these analyses [24, 25].

Clinical relevance of laboratory assays: Summary

Effects on laboratory parameters do not necessarily correlate with bleeding measures [19, 20, 2629], although some studies suggest that ETP may be an appropriate surrogate biomarker for assessing effects on bleeding [19, 30]. In addition, some of these tests are not available for use in emergency situations. Ultimately, studies evaluating the effect of various reversal agents on bleeding, rather than laboratory parameters, have more clinical relevance for evaluating treatment of DOAC-associated bleeding.

Overview of recent data (2013–2017)

A review and discussion of the most recent data are presented below. A limitation of many of the studies is that they were conducted in animal models or healthy volunteers.

Preclinical data

Animal studies

A number of studies have examined DOAC reversal in animals (Additional file 2) [19, 20, 28, 29, 3138]. Most found improvements in bleeding parameters after PCC treatment. Moreover, studies conducted using a pig polytrauma model also demonstrated an improved survival rate in dabigatran-treated animals administered 4F-PCC or activated PCC (aPCC) compared with controlled-treated animals [34, 35, 38]. Effects on laboratory parameters, however, were inconsistent; of the assays employed, TGAs had the best correlation with bleeding parameters.

In vitro and ex vivo human studies

The potential role for PCCs in treating DOAC-associated bleeding has also been evaluated in studies using blood samples from patients and healthy volunteers (Additional file 3) [21, 3956]. PCCs reversed some of the effects of DOACs on laboratory assays, including in two studies which utilised TEG and/or ROTEM to assess the impact of dabigatran/apixaban [41, 54]. However, these effects on laboratory assays do not necessarily correlate with bleeding.

Healthy volunteers

Several randomised trials have evaluated the effect of PCCs on DOAC-treated healthy volunteers (Table 2), but most assessed effects on laboratory parameters rather than bleeding.
Table 2
Randomised studies in healthy volunteers
Study
Design
N
DOAC
PCC
Results
Laboratory parameters tested
Reversal of DOAC effects with PCC
Bleeding
Barco et al. [58]
Randomised, double-blind, placebo-controlled, crossover
6
Rivaroxaban (15 mg BID)
4F-PCC (Cofact® 25 or 37.5 IU/kg)
PT
(+) with both doses of 4F-PCC
No deaths, SAEs or TEEs reported
ETP
(+) with 4F-PCC 37.5 IU/kg
Brown et al. [60]
Randomised, double-blind, placebo-controlled, three-way crossover
24
Edoxaban (60 or 120 mg)
3F-PCC (Bebulin® 25 or 50 IU/kg)
PT
(−)
No deaths, SAEs or TEEs reported
ETP
(+)
Cheung et al. [61]
Randomised, double-blind, placebo-controlled, crossover
6
Apixaban (10 mg BID)
4F-PCC (Cofact® 25 or 37.5 IU/kg)
PT
(+)
No deaths, SAEs or TEEs reported
ETP
Partial
Eerenberg et al. [9]
Randomised, double-blind, placebo-controlled, crossover
12
Dabigatran (150 mg BID)
4F-PCC (Cofact® 50 IU/kg)
TGA lag time, aPTT, ECT, TT
(−)
No deaths, SAEs or TEEs reported
Rivaroxaban (20 mg BID)
PT, ETP
(+)
Levi et al. [57]
Randomised, open-label, parallel-group
35
Rivaroxaban (20 mg BID)
4F-PCC (Beriplex® 50 IU/kg) and 3F-PCC (Profilnine® 50 IU/kg)
PT
(+) 4F-PCC > 3F-PCC
No deaths, SAEs or TEEs reported
TGA
 
 ETP
(+) 3F-PCC > 4F-PCC
 Peak TG
(+) with 3F-PCC only
 Time to peak
(+)
 Lag time
(-)
aPTT
(-)
Levy et al. [59]
Randomised, double-blind, parallel-group
147
Rivaroxaban (20 mg BID)
4F-PCC (Kcentra® 50 IU/kg)
PT
Partial
No deaths, SAEs or TEEs reported; no difference from saline control in reversal of effects on bleeding duration and volume after administration of 4F-PCC or TXA
TGA
 
 ETP
(+)
Nagalla et al. [63]
Randomised, two-period crossover, assessor-blinded
12
Apixaban
(5 mg BID)
4F-PCC (Kcentra®/Beriplex®
25 IU/kg)
PT
(+)
No deaths, SAEs or TEEs reported
TGA parameters (peak, lag time, ETP)
(+) (significan\ce dependent on reagents used)
TGA parameters (time to peak, maximum velocity)
(-)
aPTT
(-)
Song et al. [62]
Open-label, randomised, placebo-controlled, 3-period crossover
15
Apixaban (10 mg BID)
4F-PCC (Beriplex® or Cofact® 50 IU/kg)
TGA
(+)
No deaths, SAEs or TEEs reported
 ETP
(+)
 Peak height
(-)
 Lag time
(-)
 Time to peak
(-)
 Velocity index
(+)
PT
 
Zahir et al. [30]
Randomised, double-blind, placebo-controlled, two-sequence, two-period, crossover
93
Edoxaban (60 mg)
4F-PCC (Beriplex® 10, 25 or 50 IU/kg)
PT
Partial with 4F-PCC 50 IU/kg
No deaths, SAEs or TEEs reported; reversal of effects on bleeding duration and volume (with 50 IU/kg; partial reversal with 25 IU/kg)
ETP
(+) with 50?IU/kg (partial with 25?IU/kg)
(−), negative result; (+), positive result. 3F-PCC three-factor prothrombin complex concentrate, 4F-PCC four-factor prothrombin complex concentrate, aPCC activated prothrombin complex concentrate, aPTT activated partial thromboplastin time, BID bis in die (twice daily), ECT ecarin clotting time, ETP endogenous thrombin potential, PT prothrombin time, TG thrombin generation, TGA thrombin generation assay, TT thrombin time, TXA tranexamic acid

Laboratory parameters

Dabigatran and rivaroxaban
In a randomised, double-blind, placebo-controlled crossover study, administration of 4F-PCC was insufficient to correct the effects of dabigatran on various laboratory parameters, but did reverse the effects of rivaroxaban on ETP [9].
Rivaroxaban
Three additional studies investigated the effect of PCCs on rivaroxaban-induced anticoagulation. In the first, a randomised, open-label, parallel-group study, 3F-PCC reversed the effects of rivaroxaban on TGA parameters (ETP and time to peak) to a greater extent than 4F-PCC [57]. The second, a randomised, double-blind, placebo-controlled, crossover trial, demonstrated a significant effect of a 4F-PCC (37.5 IU/kg) on rivaroxaban-induced ETP inhibition (p = 0.03) [58]. The third, a randomised, double-blind, parallel-group study, showed that 4F-PCC (50 IU/kg) partially reversed the effects of rivaroxaban on PT and completely reversed the effects on ETP within 30 min following end of infusion, whereas tranexamic acid (1.0 g) showed no difference from saline on either PT or ETP [59].
Edoxaban
A phase 1 study in healthy volunteers (n = 24) showed 3F-PCC rapidly and completely reversed the effect of edoxaban on ETP versus placebo but had no effect on edoxaban-mediated PT prolongation [60].
Apixaban
Three studies evaluated the effect of PCCs in apixaban-treated healthy volunteers. In a single-centre, randomised, double-blind, placebo-controlled, crossover study, apixaban produced significant modifications in ETP and PT (p < 0.01 for both) [61]. Subsequent 4F-PCC administration increased ETP and normalised PT. Similarly, in an open-label, randomised, placebo-controlled 3-period crossover study, 4F-PCC rapidly reversed apixaban-mediated effects on PT, and ETP and peak height, but not other TGA parameters [62]. In another randomised, two-period crossover, assessor-blinded trial, 4F-PCC improved the effects of apixaban on some TGA parameters [63].

Bleeding

To date, two studies have investigated the effect of PCCs on bleeding parameters. The first was a phase 1 study conducted in two parts [30]. Part 1 determined the appropriate dose of edoxaban and assessed intra-individual variability of bleeding duration and volume following a skin punch biopsy in edoxaban-treated healthy volunteers. Part 2 was a double-blind, randomised, placebo-controlled, two-sequence, two-period crossover study with a relatively large sample size (n = 93). Based on its lower intra-individual variability in part 1 of the study, bleeding duration rather than volume was the primary endpoint. 4F-PCC administration dose-dependently reversed the effects of edoxaban on bleeding duration. Complete reversal was achieved following administration of 4F-PCC 50 IU/kg, with partial reversal at a dose of 25 IU/kg and no reversal at 10 IU/kg. A similar trend was observed for bleeding volume and ETP. A dose-dependent reversal of PT was also observed, but this parameter was less well correlated with bleeding effects than ETP.
In the second study, bleeding duration and volume were assessed following administration of rivaroxaban 20 mg twice daily for 4 days and then following administration of 4F-PCC 50 IU/kg or tranexamic acid 1.0 g. For both 4F-PCC and tranexamic acid, no difference from a saline control was observed in either bleeding duration or volume, despite 4F-PCC demonstrating effects on PT and ETP [59].

Clinical trials in healthy volunteers: summary

Overall, as observed in the preclinical studies, PCC administration led to alterations in some, but not all, laboratory parameters affected by DOACs. Studies with the FXa inhibitors suggest that anticoagulation reversal can be demonstrated using ETP assays [9, 30, 59, 60]. A good correlation between effects on ETP and bleeding parameters was observed in the phase 1 study by Zahir and colleagues; this has also been demonstrated in preclinical studies in animal models [19, 31], suggesting that ETP could be an appropriate surrogate biomarker for assessing the effect of PCCs on bleeding, as mentioned previously.
Generally, PCCs were well-tolerated in healthy volunteers treated with DOACs; there were no reported thromboembolic events (TEEs), serious adverse events or deaths [9, 30, 5761, 63]. However, it is important to consider that the risk of such events differs between healthy volunteers, patients with medical conditions requiring anticoagulation and patients suffering bleeding while receiving anticoagulants.

Clinical data from DOAC-treated patients

Few studies of anticoagulation reversal strategies have been conducted in patients presenting with major bleeding or requiring urgent surgery. However, data on patient outcomes are starting to emerge from registries and other observational studies, as well as in case reports from clinical practice.

Registries and observational studies

Major bleeding
According to ISTH criteria, major bleeding in non-surgical patients is defined as:
1)
Fatal bleeding
 
2)
Symptomatic bleeding in a critical area or organ
 
3)
Bleeding causing a fall in haemoglobin level of ≥ 20 g/L (≥ 1.24 mmol/L), or leading to transfusion of ≥ 2 units of whole blood or red cells [64]
 
Data from the large, prospective Dresden DOAC registry was used to analyse rates, management and outcomes of rivaroxaban-related bleeding in 1776 patients [65]. Sixty-six major bleeding events (defined according to ISTH criteria) were reported in 59 patients. Most cases were treated conservatively, with haemostatic intervention only considered necessary in nine patients, highlighting that reversal of DOAC-mediated anticoagulation is rarely needed. PCC was administered in six patients; time between admission and PCC administration was 1–22 h, and the dose was 18–47 IU/kg. Of the four cases for which coagulation tests were repeated after PCC administration, one patient showed improvement (INR, PT and aPTT). Haemorrhage stabilisation was reported in 5/6 patients; the remaining patient who did not respond received the lowest dose of PCC (18 IU/kg), suggesting that the effective dose may be greater than this. Although the most appropriate dose of PCC for treatment of DOAC-associated bleeding has not been established, preclinical studies suggest it to be 25–50 IU/kg.
The French Working Group on Perioperative Haemostasis (GIHP) has also conducted a large, prospective, multicentre registry to evaluate the management of major bleeding in 732 patients treated with dabigatran, rivaroxaban or apixaban [66]. Overall, 208/732 (28%) and 73/732 (10%) patients received 4F-PCC (either Confidex®/Beriplex®, Octaplex® or Kanokad®) and aPCC, respectively. Although the study was not designed to evaluate the efficacy of PCC, investigator-assessed haemostasis was totally or partially achieved in 44% and 37% of those who received these agents, respectively.
In another multicentre, prospective study (the Unactivated Prothrombin complex concentrates for the Reversal of Anti-factor Ten inhibitors [UPRATE] study) evaluating the use of 4F-PCC (Beriplex® or Octaplex®) for the management of rivaroxaban- or apixaban-associated major bleeding, haemostasis was judged effective in 58/84 (69%) patients [67].
A prospective, non-interventional, multicentre cohort study conducted in nine Canadian hospitals has evaluated the use of 4F-PCC (Beriplex® or Octaplex®) at a fixed dose of 2000 U for the management of major bleeding in 66 patients treated with rivaroxaban or apixaban [68]. Haemostatic effectiveness was assessed as good by the treating physician in 43 (65%) patients, moderate in 13 (20%) and poor/none in 10 (15%). It should be noted that there was a dose deviation in 12 (18%) patients.
Use of aPCC has been evaluated in a prospective study of 14 patients with dabigatran-associated bleeding [69]. The effectiveness of aPCC was considered by the treating physician to be good in nine (64%) patients and moderate in five (36%).
A further prospective, non-interventional study (the Reversal Agent use in patients treated with Direct Oral Anticoagulants or vitamin K antagonists [RADOA] registry) is currently being conducted in Germany to evaluate the reversal strategies used in patients treated with oral anticoagulants [70].
A small single-centre prospective trial monitoring laboratory parameters in 13 patients who received 4F-PCC (Beriplex®) following major bleeding (majority intra-cranial or subdural haemorrhage) found that the ETP and peak thrombin generation improved from baseline by 68% (p = 0.001) and 54% (p = 0.001), respectively, 10 min after completion of PCC treatment [71]. Improvements in several other laboratory parameters were observed and bleeding ceased in 77% of patients receiving 4F-PCC. No thromboses associated with treatment were identified at 7 days post administration [71].
Retrospective studies have also provided insight into DOAC-associated bleeding management in real-world settings. In a large chart review, PCCs (median dose 1500 IU) and aPCCs (median dose 3534 IU) were used in 57 (12.4%) and 24 (5.2%) out of 460 cases of DOAC-associated bleeding, respectively; however, clinical outcomes by treatment type were not reported [72]. In a retrospective review of 25 patients presenting with dabigatran- or rivaroxaban-associated haemorrhage, PCC (median dose 40 IU/kg) was administered in three cases (all rivaroxaban) [73]. Haemorrhages resolved in these cases. Based on data from this study, the institutions involved developed protocols for DOAC-associated haemorrhage, including use of PCCs for severe bleeding events. In another chart review, 28 patients received 4F-PCC (Kcentra®/Beriplex®) according to an institutional protocol designed for the treatment of FXa inhibitor-associated major bleeding or for those requiring emergency surgery [74]. One patient experienced a TEE; although the relationship between this event and 4F-PCC treatment was not established, the patient had a history of TEEs and was not re-anticoagulated after treatment. No data on bleeding outcomes were reported.
ICH
In cases of coagulopathic ICH, the hematoma may continue to expand for up to 24 h; it is therefore essential to apply coagulopathy reversal treatment promptly and at an effective dose in order to obtain the best outcome for the patient [75].
An analysis of data from the multicentre, prospective, observational Registry of Acute Stroke Under New Oral Anticoagulants (RASUNOA) was performed to evaluate the management of a subgroup of patients with DOAC-associated intracerebral haemorrhage (n = 61) [76]. Consistent with prescribing data [77], rivaroxaban was the most commonly used DOAC (80%), with 12% and 8% of patients receiving dabigatran and apixaban, respectively. 4F-PCC was administered to 35/61 (57%) patients (mean [SD] dose, 2390 [980] IU). When comparing patients who did/did not receive 4F-PCC, there was no significant difference with regard to early haematoma expansion (4F-PCC, 43%; no 4F-PCC, 29%; p = 0.53) or 3-month functional outcome. This may be attributed to delayed administration of 4F-PCC (which was often not administered for ≥ 5 h), or differences in patient baseline characteristics in each group; patients who received 4F-PCC generally had a worse clinical status, and more frequently had a deep haemorrhage location, than those who did not receive 4F-PCC. Timely intervention is thought to be critical in ICH cases [78] to limit haematoma expansion and improve patient outcomes.
The second part of the Germany-wide RETRACE study, a retrospective cohort analysis of 190 patients with DOAC-associated ICH, investigated the effect of PCC administration on haematoma enlargement [79]. Overall, PCC at any dose prior to follow-up imaging was not statistically significantly associated with a reduced risk of haematoma enlargement in the DOAC-ICH cohort (risk ratio (RR) = 1.150; 95% confidence interval (CI) 0.632–2.090). Importantly, the chance that the nonsignificant nature of these findings is a result of a power issue and small patient numbers cannot be excluded [79].
A single-centre retrospective analysis evaluated outcomes among 55 DOAC-anticoagulated patients presenting with ICH [80]. 4F-PCC (Beriplex® or Octaplex®) was administered in 31/55 (56%) cases (median dose 2000 IU). The 30-day mortality rate was 20%, which is slightly lower than the rate observed at discharge in the literature for patients with anticoagulation-related ICH [81].
In another retrospective study, 90-day outcomes were favourable in 6/18 (33%) patients treated with 4F-PCC (Kcentra®/Beriplex®) for FXa inhibitor-associated ICH, with the authors concluding that 4F-PCC appeared effective in reducing haematoma expansion in this small patient population [82].
Two small retrospective analyses investigated the effect of aPCC in patients presenting with DOAC-associated ICH [83, 84]. In one of the studies, 6/11 (55%) patients demonstrated stable ICH after aPCC administration [83], and in the other study, no cases of haematoma expansion occurred in the six patients who were previously receiving DOACs [84].
Periprocedural bleeding
In a retrospective, multicentre study, 4F-PCC (Kcentra®/Beriplex®) was part of the institutional protocol to mitigate the effects of FXa inhibitors [85]. Here, 4F-PCC was effective for the management of acute pericardial effusion in patients undergoing atrial fibrillation ablation while anticoagulated with rivaroxaban or apixaban.

Case studies/series

A number of case reports have discussed individualised treatment of DOAC-associated bleeding (Table 3) [27, 86107]. The number and diversity of these reports suggest that many hospitals are adopting PCCs as part of treatment strategies for DOAC-associated bleeding.
Table 3
Case studies on the use of PCC for DOAC reversal, January 2013–February 2017
Study citation
Study setting
Cases (N)
DOAC
PCC used
Outcomes following PCC administration
Patients presenting with major bleeding
 Denetclaw et al. [96]
Gluteal arterial extravasation
1
Apixaban
3F-PCC (Profilnine®)
• Clinical examination suggested the haematoma had not expanded since PCC administration
• The patient was discharged in a stable condition on Day 7
• No TEEs or VTEs reported
 Diaz et al. [97]
GI bleeding
5
Dabigatran
4F-PCC (Octaplex®)
• Cessation of bleeding in 4/5 patients
• No TEEs or VTEs reported during 6 months of follow-up
 Dibu et al. [86]
ICH
5
Rivaroxaban, apixaban, dabigatran
aPCC (FEIBA®)
• None of the patients had ICH expansion
• No TEEs, VTEs or haemorrhagic complications reported
 Durie et al. [101]
Life-threatening bleed due to trauma
1
Apixaban
4F-PCC (Kcentra®/Beriplex®)
• Despite aggressive treatment, and PCC administered at the maximum dose, haemostasis was not achieved and the patient died
 Faust et al. [102]
Subdural haematoma
3
Rivaroxaban
3F-PCC (Profilnine®)
• Haematoma volume remained stable in all patients
• No TEEs or VTEs reported
 Faust et al. [107]
Subdural haematoma
2
Apixaban
3F-PCC (Profilnine®)
• Minimal or no progression in haematoma volume
• No TEEs or VTEs reported
 Faust and Peterson [87]
Intracerebral haemorrhage
1
Dabigatran
aPCC (FEIBA®)
• Coagulation parameters were not normalised
• Despite initial increase in haematoma, the patient avoided surgical intervention and remained stable
• After approximately 2 weeks, the patient developed a new ischemic stroke and was discharged to a hospice
 Jones et al. [104]
GI bleeding and haemorrhagic shock
1
Dabigatran
4F-PCC (Kcentra®/Beriplex®)
• Rapid correction of coagulation parameters and achievement of haemostasis
• No TEEs or VTEs reported
 Kauffmann et al. [98]
Subdural haematoma
1
Rivaroxaban
4F-PCC (Kanokad®)
• Improvement in TGA parameters lasting at least 18 h (normalisation of lag time, elevated peak height and ETP)
• Favourable clinical outcome
• No TEEs or VTEs reported
 Masotti et al. [27]
GI bleeding
8
Dabigatran
4F-PCC (Confidex®/Beriplex®)
• Cessation of bleeding, despite uncorrected coagulation parameters (aPTT, PT/INR)
• No TEEs or VTEs reported
 McGovern et al. [99]
GI bleeding
1
Dabigatran
4F-PCC (unspecified)
• Normalisation of coagulation profile (PT, INR, aPTT)
• No active sites of bleeding identified, and no further blood transfusions required
• Patient discharged 4 days later, without experiencing any further morbidity related to his condition
• No TEEs or VTEs reported
 Means et al. [103]
Rectal bleeding
1
Rivaroxaban
3F-PCC (Profilnine®)
• PCC administration helped control bleeding
• No TEEs or VTEs reported
 Rinehart et al. [88]
Subdural haematoma
1
Apixaban
aPCC (FEIBA®)
• PT and INR normalised within 24 h
• Slight improvement in subdural haematoma on Day 2
• Patient remained stable, with further improvement in the subdural haematoma before discharge on Day 7
• No TEEs or VTEs reported
 Schulman et al. [100]
Subdural haematoma
1
Dabigatran
aPCC (FEIBA®)
• Normalisation of thrombin time at Day 3
• Patient underwent an uneventful haematoma drainage procedure and was discharged a day later
• No TEEs or VTEs reported
Intra-axial haemorrhage
1
• Mild increase in haematoma size after 3 days; no further progression of symptoms
• No TEEs or VTEs reported
Pericardial bleeding
1
• Cessation of bleeding
• No TEEs or VTEs reported
Upper GI bleeding
1
• Stabilisation of clinical condition
• No TEEs or VTEs reported
 Smith et al. [106]
Left frontal lobe parenchymal haemorrhage
1
Rivaroxaban
aPCC (FEIBA®)
• After aPCC administration, the patient was admitted to the trauma in-patient unit; neurological exam remained normal for 24 h and the patient was discharged
• No TEEs or VTEs reported
Patients requiring urgent/emergent surgery
 Beynon et al. [89]
Emergency neurosurgery
2
Apixaban
4F-PCC (Beriplex®)
• No bleeding complications occurred during surgery
• No symptoms suggestive of thromboembolic events
 Chic Acevedo et al. [90]
Urgent surgery due to an abdominal haematoma
1
Rivaroxaban
4F-PCC (Octaplex®)
• PT normalisation
• No complications reported during or after surgery
 Dager et al. [95]
Ablation procedure
1
Dabigatran
aPCC (FEIBA®)
• Normalisation of INR and aPTT, but not thrombin time
• Bleeding slowed 5 min into the infusion and had stopped by the end of the 15-min infusion
• No evidence of thrombosis observed
 Liu et al. [105]
Coronary artery bypass graft
1
Rivaroxaban
4F-PCC (Kcentra®/Beriplex®)
• Patient lost 650 mL blood during the procedure, necessitating the transfusion of 2 units each of PRBCs and platelets
• Patient was discharged with no sequalae on postoperative day 9
• Follow-up visit at 1 month did not reveal any new significant events
• No TEEs or VTEs reported
 Maurice-Szamburski et al. [91]
Subdural haematoma requiring neurosurgical intervention
1
Rivaroxaban
aPCC (FEIBA®)
• No abnormal bleeding during surgery
• Good surgical result with no rebleeding
• No TEEs or VTEs reported
 Neyens et al. [92]
Subdural haematoma requiring neurosurgical intervention
1
Dabigatran
aPCC (FEIBA®)
• Therapeutic impact uncertain
• Coagulation parameters (aPTT and TT) remained prolonged, delaying surgical intervention; thromboelastography may be more appropriate for monitoring dabigatran anticoagulation
• No TEEs or VTEs reported
 Puttick et al. [93]
Emergency surgery for an incarcerated femoral hernia
1
Dabigatran
aPCC (FEIBA®)
• Surgery was successful, with no complications
• The patient made an uneventful recovery and was discharged the next day
• No TEEs or VTEs reported
 Wong and Keeling [94]
Urgent percutaneous transhepatic drainage of a gall bladder empyema
1
Dabigatran
aPCC (FEIBA®)
• No bleeding complications occurred during surgery and the clinical state of the patient improved
• No TEEs or VTEs reported
3F-PCC three-factor prothrombin complex concentrate, 4F-PCC four-factor prothrombin complex concentrate, aPCC activated prothrombin complex concentrate, aPTT activated partial thromboplastin time, ETP endogenous thrombin potential, INR international normalised ratio, PRBC packed red blood cells, PT prothrombin time, TGA thrombin generation assay, TEE thromboembolic event, TT thrombin time, VTE venous thromboembolism

Clinical practice guidelines

Based on the data currently available, many clinical practice guidelines suggest that PCC administration should be considered in cases of serious or life-threatening bleeding (Table 4) [78, 108118]. This is also reflected in other expert proposals and recommendations [119122], in DOAC prescribing information [123, 124] and in a recent clinical practice survey in the Netherlands, in which most of the 61 neurologist respondents used PCC for the treatment of intracerebral haemorrhage associated with factor IIa inhibitors (74%) or factor Xa inhibitors (72%) [125].
Table 4
Use of PCCs to reverse the anticoagulant effect of DOACs: summary of guidelines and proposals
Society/group (citation)
Need for DOAC reversal
Guidelines or proposals regarding the use of PCCs
Thrombosis and Hemostasis Summit of North America [113]
Critical bleeding or emergent surgery
• Use of PCCs seems to be a reasonable approach in dire clinical situations
• Consensus was not reached because two authors believed that PCC could not be recommended due to absence of data at the time
Task Force for Advanced Bleeding Care in Trauma [117]
Life-threatening bleeding
• PCC (25–50 IU/kg) suggested for reversal of FXa inhibitors
• Not suggested for patients treated with dabigatran
European Society of Cardiology; European Heart Rhythm Association [111, 112]
Life-threatening bleeding
• Administration of PCC (25 IU/kg, repeated if clinically indicated) or aPCC (50 IU/kg) can be considered
European Society of Anaesthesiology [114]
Life-threatening bleeding or ICH
• PCC or aPCC suggested
Australasian Society of Thrombosis and Haemostasis [118]
Life- or limb-threatening bleeding
• Reasonable to consider the use of PCCs; risk and benefit of these agents should be assessed in each individual patient
Groupe d’Intérêt en Hémostase Périopératoire (GIHP; working group on perioperative haemostasis) [115]
ICH, or haemorrhage in a critical organ
• Use of aPCC (30–50 IU/kg) or PCC (50 IU/kg) warranted, possibly re-administered once after an 8-h interval
Emergent surgery
• PCCs should not be used for prophylactic reversal of anticoagulation, but PCC (25–50 IU/kg) or aPCC (30–50 IU/kg) should be considered to control perioperative bleeding events
Groupe d’Intérêt en Hémostase Périopératoire (GIHP; working group on perioperative haemostasis) [109]
Major intraoperative bleeding
• Multimodal approach, including 4F-PCC (25–50 IU/kg) or aPCC (30–50 IU/kg) administration
American Heart Association; American Stroke Association [78]
ICH
• aPCC or PCC may be considered on an individual basis
Neurocritical Care Society; Society of Critical Care Medicine [110]
ICH
• 4F-PCC (50 IU/kg) or aPCC (50 IU/kg) is suggested for FXa inhibitor-associated ICH
• aPCC (50 IU/kg) or 4F-PCC (50 IU/kg) is suggested for dabigatran-associated ICH (if idarucizumab is not available)
Anticoagulation Forum [108]
Severe haemorrhage
• 4F-PCC (50 IU/kg) or aPCC (80 IU/kg) may be considered for reversal of direct FXa inhibitors and direct thrombin inhibitors, respectively
American Heart Association [116]
Serious bleeding or ICH
• 4F-PCC (50 IU/kg) is suggested for the treatment of patients receiving FXa inhibitors until more specific antidotes bcome available
4F-PCC four-factor prothrombin complex concentrate, aPCC activated prothrombin complex concentrate, F factor, h hour, ICH intracranial haemorrhage, IU international unit, PCC prothrombin complex concentrate
Perioperative management of patients receiving DOACs remains a challenge, particularly in cases of emergency surgery. A treatment algorithm proposed by the GIHP and other experts in the field suggests a multimodal approach to managing perioperative bleeding, which includes haemodynamic monitoring, standard resuscitation measures, and then ultimately PCC or aPCC administration [109].
Despite proposals recommending use of PCCs for treatment of DOAC-associated bleeding in certain clinical situations, one recent review suggested PCCs may not be useful for this purpose [126]. The author emphasises that addition of PCC usually does not correct the PT and may not completely normalise TGA parameters in the presence of FXa inhibitors. In addition, PCCs do not reduce the level of anti-Xa activity present in the plasma. The latter finding is expected, because PCCs do not directly inactivate FXa inhibitors as a true “reversal agent” would. It is important to note that laboratory parameters do not necessarily correlate well with clinical bleeding [19, 20, 26, 27, 32, 33]. Therefore, in cases where laboratory parameters are not fully normalised, a lack of clinically relevant benefit should not be assumed.

Specific reversal agents

Specific reversal agents for DOACs are in development or have recently been licenced for DOAC-associated bleeding. The currently available agent, idarucizumab, is a monoclonal antibody fragment (Fab) that binds with high affinity to dabigatran. It was approved in the USA in October 2015 for dabigatran reversal in cases of major/uncontrolled bleeding or prior to emergency surgery/procedures [127]. This approval was based on data from studies in both healthy volunteers and patients requiring dabigatran reversal from the Reversal Effects of Idarucizumab on Active Dabigatran (RE-VERSE AD) cohort study [127, 128], which included a total of 503 patients presenting with serious bleeding (group A; n = 301) or requiring an urgent surgical or invasive procedure (group B; n = 202). dTT and ECT were normalised in 100% of patients in both groups A and group B, and the 30-day mortality rate was 13.5% in group A and 12.6% in group B, respectively.
Although idarucizumab is now licenced for dabigatran reversal, FXa inhibitors are more widely used than dabigatran [77]. The specific FXa inhibitor reversal agent Andexanet alfa (andexanet), a modified FXa mimetic that acts as a decoy and binds FXa inhibitors, has now received accelerated approval from the US Food and Drug Administration (FDA) for treatment of patients treated with rivaroxaban or apixaban who require reversal of the anticoagulant effects in life-threatening or uncontrolled bleeding. Although this agent reversed the anticoagulant effects of apixaban and rivaroxaban in a randomised controlled trial in healthy volunteers aged 50–75 years, data indicated that continuous infusions of andexanet are required to maintain this effect; anticoagulation reversal was maintained for the 2-h infusion period, with anti-Xa activity rebounding to placebo levels 1–3 h after the end of infusion [129]. The ETP increased above the normal range during the 2-h period, then declined after infusion was stopped. Of potential concern is that transient increases in D-dimer and prothrombin fragments 1 and 2 were observed in some patients, which may be related to the binding of andexanet to tissue factor pathway inhibitor [129]. In healthy volunteers, these elevations were not associated with thromboses; however, thrombotic events occurred in 12/67 (18%) patients included in a multicentre study evaluating andexanet in patients with acute major bleeding associated with the use of FXa inhibitors [130]. Patients (mean age, 77 years) presented predominantly with gastrointestinal or intracranial bleeding and were treated with an andexanet bolus (time from admission to therapy 4.8 ± 1.8 h), followed by a 2-h infusion. After bolus administration, median anti-factor Xa activity decreased by 89% and 93% in rivaroxaban- and apixaban-treated patients, respectively; these levels remained stable during the 2-h infusion, but partially returned to pre-treatment values shortly after. Clinical haemostasis 12 h after infusion was adjudicated as excellent or good in 37/47 (79%) patients included in the efficacy analysis, although it should be noted that TEEs occurred in 12 patients (18%).
Ciraparantag/aripazine (PER977), a small molecule that binds several anticoagulants, including DOACs and low molecular weight heparin, is in early phase 2 development [131]. A zymogen-like FXa variant is also in preclinical development [132].
Overall, more real-life data are needed for specific DOAC reversal agents, as there is some uncertainty about how they might perform in clinical practice. Agents have only been investigated in single-arm studies with no comparison group, making any effect on clinical haemostasis uncertain. Currently, there are no data in patients requiring FXa inhibitor reversal prior to emergency surgery.

PCCs versus specific reversal agents

As PCCs are the most commonly used DOAC reversal agents, it is important to compare their mechanism of action with those of the specific reversal agents. Specific reversal agents are enzymatically inactive and abrogate the effect of DOACs by direct binding, reducing the concentration of the anticoagulant in the blood. This effect can be measured by anti-Xa assays, in the case of FXa inhibitors, or the dTT, in the case of dabigatran. However, stoichiometric amounts of specific reversal agents (i.e. 1 molecule of antidote per molecule of anticoagulant) are needed to reverse the anticoagulant effect of DOACs (5 g of idarucizumab [127], 0.88–1.76 g of andexanet [129]). In contrast, PCCs are thought to mitigate the anticoagulant effect of DOACs by increasing the levels of non-activated clotting factors (Fig. 3), which can be activated in case of an active bleed. Therefore, small amounts of PCC can increase the potential to produce thrombin (which ultimately leads to the conversion of fibrinogen to fibrin and a stable clot). This suggests that administration of PCCs may be able to increase thrombin generation and reduce bleeding, without any effect on dTT or anti-Xa levels.
Although patient data on specific reversal agents are promising, the availability, cost and lack of data on these agents for surgical patients may impact widespread use [133]. The widespread use of PCCs for VKA reversal means that these agents are readily available in clinical practice.
In terms of safety, limited data are available regarding the incidence of thrombosis in patients receiving DOACs who are treated with PCCs; however, no such events occurred in the Dresden registry [65] or in a prospective observational study conducted in Japan [134]. A deep vein thrombosis was reported in a small chart review [74], and suspected or confirmed TEEs occurred in 3/84 patients treated with 4F-PCC (median dose 26.7 IU/kg) in the UPRATE study [67]. The authors note that this low rate (2.4%) is in line with that observed in VKA-treated patients or in cases where anticoagulation was discontinued without a reversal agent. TEEs were reported in 12/67 patients treated with andexanet for major bleeding associated with FXa inhibitors [130], and 5/90 patients treated with idarucizumab for dabigatran reversal due to serious bleeding or prior to urgent surgery [135]. Anticoagulant therapy had not been re-initiated in any of the cases in the idarucizumab study, which may suggest the occurrence of these events is due to underlying predisposing risk factors or a delay in re-initiating treatment, rather than the reversal agent used.
There have been no clinical studies directly comparing PCCs with specific antidotes; however, a preclinical study in a dabigatran-treated porcine polytrauma model showed that, as part of a multimodal therapy, high-dose 4F-PCC (50 IU/kg) was similarly effective to idarucizumab in reducing blood loss [38]. Furthermore, TEEs were not observed in either treatment group.

Conclusion: PCCs as part of a clinical strategy for DOAC-associated bleeding

Despite a paucity of clinical data from patients with bleeding complications, an expanding body of evidence from preclinical models, healthy volunteers and clinical reports suggests PCCs have a potential role in the management of DOAC-associated bleeding. This is also reflected in a number of patient management guidance and guideline documents. Data are beginning to emerge from observational studies and large patient registries, which may assist the development of specific guidelines and strategies for DOAC reversal.
Although specific reversal agents for DOACs are available or in development, there may still be a role for PCCs, for example, in centres without access to these specific agents and in situations where the anticoagulant agent is unknown. Furthermore, once the anticoagulant effects of DOACs have been reversed using a specific reversal agent, patients may continue to bleed [133]. Concentrations of endogenous coagulation factors may be reduced due to loss during bleeding, consumption and dilution if patients are treated with fluids. Therefore, in cases where the bleeding event is particularly severe or prolonged, removing the anticoagulant effect may be insufficient to correct the coagulopathy. General consensus is that a multimodal approach should be used to restore haemostasis in patients presenting with DOAC-associated bleeding, and this may include the use of PCCs and other haemostatic agents.

Acknowledgements

We would like to thank Amy Harman and Laurel Omert (CSL Behring GmbH, Marburg, Germany) for their valuable input and critical review of the manuscript. We would like to thank Jan Hoesche (CSL Behring GmbH, Marburg, Germany) for his critical review of the article. Medical writing assistance was provided by Leanne Regan PhD of Fishawack Communications Ltd., funded by CSL Behring.

Funding

Medical writing support was funded by CSL Behring.

Availability of data and materials

Not applicable.
Not applicable.
Not applicable.

Competing interests

M Hoffman received research funding from CSL Behring, Novo Nordisk and Boehringer Ingelheim and served as consultant for CSL Behring and Novo Nordisk. JH Levy serves on scientific advisory boards for CSL Behring, Boehringer Ingelheim, Octapharma, Instrumentation Labs, and Merck. JN Goldstein received research funding from Pfizer and Portola, and served as a consultant to CSL Behring and Octapharma.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
Literatur
1.
2.
Zurück zum Zitat Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955–62.CrossRefPubMed Ruff CT, Giugliano RP, Braunwald E, Hoffman EB, Deenadayalu N, Ezekowitz MD, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955–62.CrossRefPubMed
3.
Zurück zum Zitat Abraham NS, Singh S, Alexander GC, Heien H, Haas LR, Crown W, et al. Comparative risk of gastrointestinal bleeding with dabigatran, rivaroxaban, and warfarin: population based cohort study. BMJ. 2015;350:h1857.CrossRefPubMedPubMedCentral Abraham NS, Singh S, Alexander GC, Heien H, Haas LR, Crown W, et al. Comparative risk of gastrointestinal bleeding with dabigatran, rivaroxaban, and warfarin: population based cohort study. BMJ. 2015;350:h1857.CrossRefPubMedPubMedCentral
4.
Zurück zum Zitat Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.CrossRefPubMed Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.CrossRefPubMed
5.
Zurück zum Zitat Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.CrossRefPubMed Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.CrossRefPubMed
6.
Zurück zum Zitat Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.CrossRefPubMed Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.CrossRefPubMed
7.
Zurück zum Zitat Eikelboom J, Merli G. Bleeding with direct oral anticoagulants vs warfarin: clinical experience. Am J Med. 2016;129(11S):S33–40.CrossRefPubMed Eikelboom J, Merli G. Bleeding with direct oral anticoagulants vs warfarin: clinical experience. Am J Med. 2016;129(11S):S33–40.CrossRefPubMed
8.
Zurück zum Zitat Dickneite G, Hoffman M. Reversing the new oral anticoagulants with prothrombin complex concentrates (PCCs): what is the evidence? Thromb Haemost. 2014;111(2):189–98.CrossRefPubMed Dickneite G, Hoffman M. Reversing the new oral anticoagulants with prothrombin complex concentrates (PCCs): what is the evidence? Thromb Haemost. 2014;111(2):189–98.CrossRefPubMed
9.
Zurück zum Zitat Eerenberg ES, Kamphuisen PW, Sijpkens MK, Meijers JC, Buller HR, Levi M. Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation. 2011;124(14):1573–9.CrossRefPubMed Eerenberg ES, Kamphuisen PW, Sijpkens MK, Meijers JC, Buller HR, Levi M. Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation. 2011;124(14):1573–9.CrossRefPubMed
10.
Zurück zum Zitat Baumann Kreuziger LM, Keenan JC, Morton CT, Dries DJ. Management of the bleeding patient receiving new oral anticoagulants: a role for prothrombin complex concentrates. Biomed Res Int. 2014;2014:583794.CrossRefPubMedPubMedCentral Baumann Kreuziger LM, Keenan JC, Morton CT, Dries DJ. Management of the bleeding patient receiving new oral anticoagulants: a role for prothrombin complex concentrates. Biomed Res Int. 2014;2014:583794.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Holbrook A, Schulman S, Witt DM, Vandvik PO, Fish J, Kovacs MJ, et al. Evidence-based management of anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e152S–84S.CrossRefPubMedPubMedCentral Holbrook A, Schulman S, Witt DM, Vandvik PO, Fish J, Kovacs MJ, et al. Evidence-based management of anticoagulant therapy: antithrombotic therapy and prevention of thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(2 Suppl):e152S–84S.CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Bosch YPJ, Weerwind PW, Mochtar B, Al DR. Monitoring of haemostasis and anticoagulation in cardiopulmonary bypass patients. J Hematol Thrombo Dis. 2014;2:179.CrossRef Bosch YPJ, Weerwind PW, Mochtar B, Al DR. Monitoring of haemostasis and anticoagulation in cardiopulmonary bypass patients. J Hematol Thrombo Dis. 2014;2:179.CrossRef
14.
Zurück zum Zitat Curry ANG, Pierce TJM. Conventional and near-patient tests of coagulation. Contin Educ Anaesth Crit Care Pain. 2007;7:45–50.CrossRef Curry ANG, Pierce TJM. Conventional and near-patient tests of coagulation. Contin Educ Anaesth Crit Care Pain. 2007;7:45–50.CrossRef
15.
Zurück zum Zitat Baglin T, Hillarp A, Tripodi A, Elalamy I, Buller H, Ageno W. Measuring oral direct inhibitors (ODIs) of thrombin and factor Xa: a recommendation from the Subcommittee on Control of Anticoagulation of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost. 2013;11(4):756–60.CrossRef Baglin T, Hillarp A, Tripodi A, Elalamy I, Buller H, Ageno W. Measuring oral direct inhibitors (ODIs) of thrombin and factor Xa: a recommendation from the Subcommittee on Control of Anticoagulation of the Scientific and Standardisation Committee of the International Society on Thrombosis and Haemostasis. J Thromb Haemost. 2013;11(4):756–60.CrossRef
16.
Zurück zum Zitat Ciurus T, Sobczak S, Cichocka-Radwan A, Lelonek M. New oral anticoagulants - a practical guide. Kardiochir Torakochirurgia Pol. 2015;12(2):111–8.PubMedPubMedCentral Ciurus T, Sobczak S, Cichocka-Radwan A, Lelonek M. New oral anticoagulants - a practical guide. Kardiochir Torakochirurgia Pol. 2015;12(2):111–8.PubMedPubMedCentral
17.
Zurück zum Zitat Lindahl TL, Baghaei F, Blixter IF, Gustafsson KM, Stigendal L, Sten-Linder M, et al. Effects of the oral, direct thrombin inhibitor dabigatran on five common coagulation assays. Thromb Haemost. 2011;105(2):371–8.CrossRefPubMed Lindahl TL, Baghaei F, Blixter IF, Gustafsson KM, Stigendal L, Sten-Linder M, et al. Effects of the oral, direct thrombin inhibitor dabigatran on five common coagulation assays. Thromb Haemost. 2011;105(2):371–8.CrossRefPubMed
18.
Zurück zum Zitat Hawes EM, Deal AM, Funk-Adcock D, Gosselin R, Jeanneret C, Cook AM, et al. Performance of coagulation tests in patients on therapeutic doses of dabigatran: a cross-sectional pharmacodynamic study based on peak and trough plasma levels. J Thromb Haemost. 2013;11(8):1493–502.CrossRefPubMed Hawes EM, Deal AM, Funk-Adcock D, Gosselin R, Jeanneret C, Cook AM, et al. Performance of coagulation tests in patients on therapeutic doses of dabigatran: a cross-sectional pharmacodynamic study based on peak and trough plasma levels. J Thromb Haemost. 2013;11(8):1493–502.CrossRefPubMed
19.
Zurück zum Zitat Herzog E, Kaspereit F, Krege W, Mueller-Cohrs J, Doerr B, Niebl P, et al. Correlation of coagulation markers and 4F-PCC-mediated reversal of rivaroxaban in a rabbit model of acute bleeding. Thromb Res. 2015;135(3):554–60.CrossRefPubMed Herzog E, Kaspereit F, Krege W, Mueller-Cohrs J, Doerr B, Niebl P, et al. Correlation of coagulation markers and 4F-PCC-mediated reversal of rivaroxaban in a rabbit model of acute bleeding. Thromb Res. 2015;135(3):554–60.CrossRefPubMed
20.
Zurück zum Zitat Herzog E, Kaspereit F, Krege W, Mueller-Cohrs J, Doerr B, Niebl P, et al. Four-factor prothrombin complex concentrate reverses apixaban-associated bleeding in a rabbit model of acute hemorrhage. J Thromb Haemost. 2015;13(12):2220–6.CrossRefPubMedPubMedCentral Herzog E, Kaspereit F, Krege W, Mueller-Cohrs J, Doerr B, Niebl P, et al. Four-factor prothrombin complex concentrate reverses apixaban-associated bleeding in a rabbit model of acute hemorrhage. J Thromb Haemost. 2015;13(12):2220–6.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Escolar G, Fernandez-Gallego V, Arellano-Rodrigo E, Roquer J, Reverter JC, Sanz VV, et al. Reversal of apixaban induced alterations in hemostasis by different coagulation factor concentrates: significance of studies in vitro with circulating human blood. PLoS One. 2013;8(11):e78696.CrossRefPubMedPubMedCentral Escolar G, Fernandez-Gallego V, Arellano-Rodrigo E, Roquer J, Reverter JC, Sanz VV, et al. Reversal of apixaban induced alterations in hemostasis by different coagulation factor concentrates: significance of studies in vitro with circulating human blood. PLoS One. 2013;8(11):e78696.CrossRefPubMedPubMedCentral
22.
Zurück zum Zitat Frith D, Davenport R, Brohi K. Acute traumatic coagulopathy. Curr Opin Anaesthesiol. 2012;25(2):229–34.CrossRefPubMed Frith D, Davenport R, Brohi K. Acute traumatic coagulopathy. Curr Opin Anaesthesiol. 2012;25(2):229–34.CrossRefPubMed
23.
Zurück zum Zitat Dias JD, Norem K, Doorneweerd DD, Thurer RL, Popovsky MA, Omert LA. Use of thromboelastography (TEG) for detection of new oral anticoagulants. Arch Pathol Lab Med. 2015;139(5):665–73.CrossRefPubMed Dias JD, Norem K, Doorneweerd DD, Thurer RL, Popovsky MA, Omert LA. Use of thromboelastography (TEG) for detection of new oral anticoagulants. Arch Pathol Lab Med. 2015;139(5):665–73.CrossRefPubMed
24.
Zurück zum Zitat Bliden K, Muresan A, Cohen E, Zaman F, Saadin K, Mohammed N, et al. Monitoring new oral anticoagulants (NOACS) using new-generation thrombelastography TEG®6S system. J Thromb Haemost. 2015;13(Suppl 2):1–997. Bliden K, Muresan A, Cohen E, Zaman F, Saadin K, Mohammed N, et al. Monitoring new oral anticoagulants (NOACS) using new-generation thrombelastography TEG®6S system. J Thromb Haemost. 2015;13(Suppl 2):1–997.
25.
Zurück zum Zitat Artang R, Galloway G, Amiral J, Nielsen JD. Monitoring novel anticoagulants dabigatran, rivaroxaban and apixaban using the new fully automated thrombelastography technique TEG®6S. J Thromb Haemost. 2015;13(Suppl 2):389–90. Artang R, Galloway G, Amiral J, Nielsen JD. Monitoring novel anticoagulants dabigatran, rivaroxaban and apixaban using the new fully automated thrombelastography technique TEG®6S. J Thromb Haemost. 2015;13(Suppl 2):389–90.
26.
Zurück zum Zitat Costin J, Ansell J, Laulicht B, Bakhru S, Steiner S. Reversal agents in development for the new oral anticoagulants. Postgrad Med. 2014;126(7):19–24.CrossRefPubMed Costin J, Ansell J, Laulicht B, Bakhru S, Steiner S. Reversal agents in development for the new oral anticoagulants. Postgrad Med. 2014;126(7):19–24.CrossRefPubMed
27.
Zurück zum Zitat Masotti L, Lorenzini G, Seravalle C, Panigada G, Landini G, Cappelli R, et al. Management of new oral anticoagulants related life threatening or major bleedings in real life: a brief report. J Thromb Thrombolysis. 2015;39(4):427–33.CrossRefPubMed Masotti L, Lorenzini G, Seravalle C, Panigada G, Landini G, Cappelli R, et al. Management of new oral anticoagulants related life threatening or major bleedings in real life: a brief report. J Thromb Thrombolysis. 2015;39(4):427–33.CrossRefPubMed
28.
Zurück zum Zitat van Ryn J, Schurer J, Kink-Eiband M, Clemens A. Reversal of dabigatran-induced bleeding by coagulation factor concentrates in a rat-tail bleeding model and lack of effect on assays of coagulation. Anesthesiology. 2014;120(6):1429–40.CrossRefPubMed van Ryn J, Schurer J, Kink-Eiband M, Clemens A. Reversal of dabigatran-induced bleeding by coagulation factor concentrates in a rat-tail bleeding model and lack of effect on assays of coagulation. Anesthesiology. 2014;120(6):1429–40.CrossRefPubMed
29.
Zurück zum Zitat Zhou W, Zorn M, Nawroth P, Butehorn U, Perzborn E, Heitmeier S, et al. Hemostatic therapy in experimental intracerebral hemorrhage associated with rivaroxaban. Stroke. 2013;44(3):771–8.CrossRefPubMed Zhou W, Zorn M, Nawroth P, Butehorn U, Perzborn E, Heitmeier S, et al. Hemostatic therapy in experimental intracerebral hemorrhage associated with rivaroxaban. Stroke. 2013;44(3):771–8.CrossRefPubMed
30.
Zurück zum Zitat Zahir H, Brown KS, Vandell AG, Desai M, Maa JF, Dishy V, et al. Edoxaban effects on bleeding following punch biopsy and reversal by a 4-factor prothrombin complex concentrate. Circulation. 2015;131(1):82–90.CrossRefPubMed Zahir H, Brown KS, Vandell AG, Desai M, Maa JF, Dishy V, et al. Edoxaban effects on bleeding following punch biopsy and reversal by a 4-factor prothrombin complex concentrate. Circulation. 2015;131(1):82–90.CrossRefPubMed
31.
Zurück zum Zitat Herzog E, Kaspereit F, Krege W, Doerr B, Mueller-Cohrs J, Pragst I, et al. Effective reversal of edoxaban-associated bleeding with four-factor prothrombin complex concentrate in a rabbit model of acute hemorrhage. Anesthesiology. 2015;122(2):387–98.CrossRefPubMed Herzog E, Kaspereit F, Krege W, Doerr B, Mueller-Cohrs J, Pragst I, et al. Effective reversal of edoxaban-associated bleeding with four-factor prothrombin complex concentrate in a rabbit model of acute hemorrhage. Anesthesiology. 2015;122(2):387–98.CrossRefPubMed
32.
Zurück zum Zitat Herzog E, Kaspereit FJ, Krege W, Doerr B, van Ryn J, Dickneite G, et al. Thrombotic safety of prothrombin complex concentrate (Beriplex P/N) for dabigatran reversal in a rabbit model. Thromb Res. 2014;134(3):729–36.CrossRefPubMed Herzog E, Kaspereit FJ, Krege W, Doerr B, van Ryn J, Dickneite G, et al. Thrombotic safety of prothrombin complex concentrate (Beriplex P/N) for dabigatran reversal in a rabbit model. Thromb Res. 2014;134(3):729–36.CrossRefPubMed
33.
Zurück zum Zitat Hoffman M, Volovyk Z, Monroe DM. Reversal of dabigatran effects in models of thrombin generation and hemostasis by factor VIIa and prothrombin complex concentrate. Anesthesiology. 2015;122(2):353–62.CrossRefPubMed Hoffman M, Volovyk Z, Monroe DM. Reversal of dabigatran effects in models of thrombin generation and hemostasis by factor VIIa and prothrombin complex concentrate. Anesthesiology. 2015;122(2):353–62.CrossRefPubMed
34.
Zurück zum Zitat Honickel M, Braunschweig T, van Ryn J, Ten Cate H, Spronk HM, Rossaint R, et al. Prothrombin complex concentrate is effective in treating the anticoagulant effects of dabigatran in a porcine polytrauma model. Anesthesiology. 2015;123(6):1350–61.CrossRefPubMed Honickel M, Braunschweig T, van Ryn J, Ten Cate H, Spronk HM, Rossaint R, et al. Prothrombin complex concentrate is effective in treating the anticoagulant effects of dabigatran in a porcine polytrauma model. Anesthesiology. 2015;123(6):1350–61.CrossRefPubMed
35.
Zurück zum Zitat Honickel M, Maron B, van Ryn J, Braunschweig T, Ten Cate H, Spronk HM, et al. Therapy with activated prothrombin complex concentrate is effective in reducing dabigatran-associated blood loss in a porcine polytrauma model. Thromb Haemostasis. 2016;115(2):271–84. Honickel M, Maron B, van Ryn J, Braunschweig T, Ten Cate H, Spronk HM, et al. Therapy with activated prothrombin complex concentrate is effective in reducing dabigatran-associated blood loss in a porcine polytrauma model. Thromb Haemostasis. 2016;115(2):271–84.
36.
Zurück zum Zitat Martin AC, Le Bonniec B, Fischer AM, Marchand-Leroux C, Gaussem P, Samama CM, et al. Evaluation of recombinant activated factor VII, prothrombin complex concentrate, and fibrinogen concentrate to reverse apixaban in a rabbit model of bleeding and thrombosis. Int J Cardiol. 2013;168(4):4228–33.CrossRefPubMed Martin AC, Le Bonniec B, Fischer AM, Marchand-Leroux C, Gaussem P, Samama CM, et al. Evaluation of recombinant activated factor VII, prothrombin complex concentrate, and fibrinogen concentrate to reverse apixaban in a rabbit model of bleeding and thrombosis. Int J Cardiol. 2013;168(4):4228–33.CrossRefPubMed
37.
Zurück zum Zitat Perzborn E, Gruber A, Tinel H, Marzec UM, Buetehorn U, Buchmueller A, et al. Reversal of rivaroxaban anticoagulation by haemostatic agents in rats and primates. Thromb Haemost. 2013;110(1):162–72.PubMed Perzborn E, Gruber A, Tinel H, Marzec UM, Buetehorn U, Buchmueller A, et al. Reversal of rivaroxaban anticoagulation by haemostatic agents in rats and primates. Thromb Haemost. 2013;110(1):162–72.PubMed
38.
Zurück zum Zitat Honickel M, Braunschweig T, Rossaint R, Stoppe C, Ten Cate H, Grottke O. Reversing dabigatran anticoagulation with prothrombin complex concentrate versus idarucizumab as part of multimodal hemostatic intervention in an animal model of polytrauma. Anesthesiology. 2017;127(5):852–61.CrossRefPubMed Honickel M, Braunschweig T, Rossaint R, Stoppe C, Ten Cate H, Grottke O. Reversing dabigatran anticoagulation with prothrombin complex concentrate versus idarucizumab as part of multimodal hemostatic intervention in an animal model of polytrauma. Anesthesiology. 2017;127(5):852–61.CrossRefPubMed
39.
Zurück zum Zitat Arellano-Rodrigo E, Lopez-Vilchez I, Galan AM, Molina P, Reverter JC, Carne X, et al. Coagulation factor concentrates fail to restore alterations in fibrin formation caused by rivaroxaban or dabigatran in studies with flowing blood from treated healthy volunteers. Transfus Med Rev. 2015;29(4):242–9.CrossRefPubMed Arellano-Rodrigo E, Lopez-Vilchez I, Galan AM, Molina P, Reverter JC, Carne X, et al. Coagulation factor concentrates fail to restore alterations in fibrin formation caused by rivaroxaban or dabigatran in studies with flowing blood from treated healthy volunteers. Transfus Med Rev. 2015;29(4):242–9.CrossRefPubMed
40.
Zurück zum Zitat Dinkelaar J, Molenaar PJ, Ninivaggi M, de Laat B, Brinkman HJ, Leyte A. In vitro assessment, using thrombin generation, of the applicability of prothrombin complex concentrate as an antidote for rivaroxaban. J Thromb Haemost. 2013;11(6):1111–8.CrossRefPubMed Dinkelaar J, Molenaar PJ, Ninivaggi M, de Laat B, Brinkman HJ, Leyte A. In vitro assessment, using thrombin generation, of the applicability of prothrombin complex concentrate as an antidote for rivaroxaban. J Thromb Haemost. 2013;11(6):1111–8.CrossRefPubMed
41.
Zurück zum Zitat Dinkelaar J, Patiwael S, Harenberg J, Leyte A, Brinkman HJ. Global coagulation tests: their applicability for measuring direct factor Xa- and thrombin inhibition and reversal of anticoagulation by prothrombin complex concentrate. Clin Chem Lab Med. 2014;52(11):1615–23.PubMed Dinkelaar J, Patiwael S, Harenberg J, Leyte A, Brinkman HJ. Global coagulation tests: their applicability for measuring direct factor Xa- and thrombin inhibition and reversal of anticoagulation by prothrombin complex concentrate. Clin Chem Lab Med. 2014;52(11):1615–23.PubMed
42.
Zurück zum Zitat Escolar G, Arellano-Rodrigo E, Lopez-Vilchez I, Molina P, Sanchis J, Reverter JC, et al. Reversal of rivaroxaban-induced alterations on hemostasis by different coagulation factor concentrates - in vitro studies with steady and circulating human blood. Circ J. 2015;79(2):331–8.CrossRefPubMed Escolar G, Arellano-Rodrigo E, Lopez-Vilchez I, Molina P, Sanchis J, Reverter JC, et al. Reversal of rivaroxaban-induced alterations on hemostasis by different coagulation factor concentrates - in vitro studies with steady and circulating human blood. Circ J. 2015;79(2):331–8.CrossRefPubMed
43.
Zurück zum Zitat Halim AB, Samama MM, Mendell J. Ex vivo reversal of the anticoagulant effects of edoxaban. Thromb Res. 2014;134(4):909–13.CrossRefPubMed Halim AB, Samama MM, Mendell J. Ex vivo reversal of the anticoagulant effects of edoxaban. Thromb Res. 2014;134(4):909–13.CrossRefPubMed
44.
Zurück zum Zitat Herrmann R, Thom J, Wood A, Phillips M, Muhammad S, Baker R. Thrombin generation using the calibrated automated thrombinoscope to assess reversibility of dabigatran and rivaroxaban. Thromb Haemost. 2014;111(5):989–95.CrossRefPubMed Herrmann R, Thom J, Wood A, Phillips M, Muhammad S, Baker R. Thrombin generation using the calibrated automated thrombinoscope to assess reversibility of dabigatran and rivaroxaban. Thromb Haemost. 2014;111(5):989–95.CrossRefPubMed
45.
Zurück zum Zitat Iba T, Emmi M, Hiki M, Nagayama M, Aihara K, Tabe Y, et al. Comparison of prothrombin time tests used in the monitoring of edoxaban and their evaluation as indicators of the reversal effect. Int J Hematol. 2016;103(6):665–72.CrossRefPubMed Iba T, Emmi M, Hiki M, Nagayama M, Aihara K, Tabe Y, et al. Comparison of prothrombin time tests used in the monitoring of edoxaban and their evaluation as indicators of the reversal effect. Int J Hematol. 2016;103(6):665–72.CrossRefPubMed
46.
Zurück zum Zitat Khoo TL, Weatherburn C, Kershaw G, Reddel CJ, Curnow J, Dunkley S. The use of FEIBA(R) in the correction of coagulation abnormalities induced by dabigatran. Int J Lab Hematol. 2013;35(2):222–4.CrossRefPubMed Khoo TL, Weatherburn C, Kershaw G, Reddel CJ, Curnow J, Dunkley S. The use of FEIBA(R) in the correction of coagulation abnormalities induced by dabigatran. Int J Lab Hematol. 2013;35(2):222–4.CrossRefPubMed
47.
Zurück zum Zitat Korber MK, Langer E, Kaufner L, Sander M, Von Heymann C. In vitro reversal of supratherapeutic rivaroxaban levels with coagulation factor concentrates. Blood Transfus. 2016;14(5):481–6.PubMedPubMedCentral Korber MK, Langer E, Kaufner L, Sander M, Von Heymann C. In vitro reversal of supratherapeutic rivaroxaban levels with coagulation factor concentrates. Blood Transfus. 2016;14(5):481–6.PubMedPubMedCentral
48.
Zurück zum Zitat Körber MK, Langer E, Ziemer S, Perzborn E, Gericke C, Heymann C. Measurement and reversal of prophylactic and therapeutic peak levels of rivaroxaban: an in vitro study. Clin Appl Thromb Hemost. 2014;20(7):735–40.CrossRefPubMed Körber MK, Langer E, Ziemer S, Perzborn E, Gericke C, Heymann C. Measurement and reversal of prophylactic and therapeutic peak levels of rivaroxaban: an in vitro study. Clin Appl Thromb Hemost. 2014;20(7):735–40.CrossRefPubMed
49.
Zurück zum Zitat Lindahl TL, Wallstedt M, Gustafsson KM, Persson E, Hillarp A. More efficient reversal of dabigatran inhibition of coagulation by activated prothrombin complex concentrate or recombinant factor VIIa than by four-factor prothrombin complex concentrate. Thromb Res. 2015;135(3):544–7.CrossRefPubMed Lindahl TL, Wallstedt M, Gustafsson KM, Persson E, Hillarp A. More efficient reversal of dabigatran inhibition of coagulation by activated prothrombin complex concentrate or recombinant factor VIIa than by four-factor prothrombin complex concentrate. Thromb Res. 2015;135(3):544–7.CrossRefPubMed
50.
Zurück zum Zitat Martin AC, Gouin-Thibault I, Siguret V, Mordohay A, Samama CM, Gaussem P, et al. Multimodal assessment of non-specific hemostatic agents for apixaban reversal. J Thromb Haemost. 2015;13(3):426–36.CrossRefPubMed Martin AC, Gouin-Thibault I, Siguret V, Mordohay A, Samama CM, Gaussem P, et al. Multimodal assessment of non-specific hemostatic agents for apixaban reversal. J Thromb Haemost. 2015;13(3):426–36.CrossRefPubMed
51.
Zurück zum Zitat Perzborn E, Heitmeier S, Laux V, Buchmuller A. Reversal of rivaroxaban-induced anticoagulation with prothrombin complex concentrate, activated prothrombin complex concentrate and recombinant activated factor VII in vitro. Thromb Res. 2014;133(4):671–81.CrossRefPubMed Perzborn E, Heitmeier S, Laux V, Buchmuller A. Reversal of rivaroxaban-induced anticoagulation with prothrombin complex concentrate, activated prothrombin complex concentrate and recombinant activated factor VII in vitro. Thromb Res. 2014;133(4):671–81.CrossRefPubMed
52.
Zurück zum Zitat Schenk B, Wurtinger P, Streif W, Sturm W, Fries D, Bachler M. Ex vivo reversal of effects of rivaroxaban evaluated using thromboelastometry and thrombin generation assay. Br J Anaesth. 2016;117(5):583–91.CrossRefPubMedPubMedCentral Schenk B, Wurtinger P, Streif W, Sturm W, Fries D, Bachler M. Ex vivo reversal of effects of rivaroxaban evaluated using thromboelastometry and thrombin generation assay. Br J Anaesth. 2016;117(5):583–91.CrossRefPubMedPubMedCentral
53.
Zurück zum Zitat Schultz NH, Tran HT, Bjornsen S, Henriksson CE, Sandset PM, Holme PA. The reversal effect of prothrombin complex concentrate (PCC), activated PCC and recombinant activated factor VII against anticoagulation of Xa inhibitor. Thromb J. 2017;15:6.CrossRefPubMedPubMedCentral Schultz NH, Tran HT, Bjornsen S, Henriksson CE, Sandset PM, Holme PA. The reversal effect of prothrombin complex concentrate (PCC), activated PCC and recombinant activated factor VII against anticoagulation of Xa inhibitor. Thromb J. 2017;15:6.CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Solbeck S, Meyer MA, Johansson PI, Meyer AS, Cotton BA, Stensballe J, et al. Monitoring of dabigatran anticoagulation and its reversal in vitro by thrombelastography. Int J Cardiol. 2014;176(3):794–9.CrossRefPubMed Solbeck S, Meyer MA, Johansson PI, Meyer AS, Cotton BA, Stensballe J, et al. Monitoring of dabigatran anticoagulation and its reversal in vitro by thrombelastography. Int J Cardiol. 2014;176(3):794–9.CrossRefPubMed
55.
Zurück zum Zitat Solbeck S, Nilsson CU, Engstrom M, Ostrowski SR, Johansson PI. Dabigatran and its reversal with recombinant factor VIIa and prothrombin complex concentrate: a Sonoclot in vitro study. Scand J Clin Lab Invest. 2014;74(7):591–8.CrossRefPubMed Solbeck S, Nilsson CU, Engstrom M, Ostrowski SR, Johansson PI. Dabigatran and its reversal with recombinant factor VIIa and prothrombin complex concentrate: a Sonoclot in vitro study. Scand J Clin Lab Invest. 2014;74(7):591–8.CrossRefPubMed
56.
Zurück zum Zitat Nagakari K, Emmi M, Iba T. Prothrombin time tests for the monitoring of direct oral anticoagulants and their evaluation as indicators of the reversal effect. Clin Appl Thromb Hemost. 2017;23(6):677–84.CrossRefPubMed Nagakari K, Emmi M, Iba T. Prothrombin time tests for the monitoring of direct oral anticoagulants and their evaluation as indicators of the reversal effect. Clin Appl Thromb Hemost. 2017;23(6):677–84.CrossRefPubMed
57.
Zurück zum Zitat Levi M, Moore KT, Castillejos CF, Kubitza D, Berkowitz SD, Goldhaber SZ, et al. Comparison of three-factor and four-factor prothrombin complex concentrates regarding reversal of the anticoagulant effects of rivaroxaban in healthy volunteers. J Thromb Haemost. 2014;12(9):1428–36.CrossRefPubMed Levi M, Moore KT, Castillejos CF, Kubitza D, Berkowitz SD, Goldhaber SZ, et al. Comparison of three-factor and four-factor prothrombin complex concentrates regarding reversal of the anticoagulant effects of rivaroxaban in healthy volunteers. J Thromb Haemost. 2014;12(9):1428–36.CrossRefPubMed
58.
Zurück zum Zitat Barco S, Whitney Cheung Y, Coppens M, Hutten BA, Meijers JC, Middeldorp S. In vivo reversal of the anticoagulant effect of rivaroxaban with four-factor prothrombin complex concentrate. Br J Haematol. 2015;172(2):255–61.CrossRefPubMed Barco S, Whitney Cheung Y, Coppens M, Hutten BA, Meijers JC, Middeldorp S. In vivo reversal of the anticoagulant effect of rivaroxaban with four-factor prothrombin complex concentrate. Br J Haematol. 2015;172(2):255–61.CrossRefPubMed
59.
Zurück zum Zitat Levy JH, Moore KT, Neal MD, Schneider D, Marcsisin VS, Ariyawansa J, et al. Rivaroxaban reversal with prothrombin complex concentrate or tranexamic acid in healthy volunteers. J Thromb Haemost. 2018;16(1):54–64.CrossRefPubMed Levy JH, Moore KT, Neal MD, Schneider D, Marcsisin VS, Ariyawansa J, et al. Rivaroxaban reversal with prothrombin complex concentrate or tranexamic acid in healthy volunteers. J Thromb Haemost. 2018;16(1):54–64.CrossRefPubMed
60.
Zurück zum Zitat Brown KS, Wickremasingha P, Parasrampuria DA, Weiss D, Kochan J, Dishy V, et al. The impact of a three-factor prothrombin complex concentrate on the anticoagulatory effects of the factor Xa inhibitor edoxaban. Thromb Res. 2015;136(4):825–31.CrossRefPubMed Brown KS, Wickremasingha P, Parasrampuria DA, Weiss D, Kochan J, Dishy V, et al. The impact of a three-factor prothrombin complex concentrate on the anticoagulatory effects of the factor Xa inhibitor edoxaban. Thromb Res. 2015;136(4):825–31.CrossRefPubMed
61.
Zurück zum Zitat Cheung YW, Barco S, Hutten BA, Meijers JC, Middeldorp S, Coppens M. In vivo increase in thrombin generation by four-factor prothrombin complex concentrate in apixaban-treated healthy volunteers. J Thromb Haemost. 2015;13(10):1799–805.CrossRefPubMed Cheung YW, Barco S, Hutten BA, Meijers JC, Middeldorp S, Coppens M. In vivo increase in thrombin generation by four-factor prothrombin complex concentrate in apixaban-treated healthy volunteers. J Thromb Haemost. 2015;13(10):1799–805.CrossRefPubMed
62.
Zurück zum Zitat Song Y, Wang Z, Perlstein I, Wang J, LaCreta F, Frost RJA, et al. Reversal of apixaban anticoagulation by 4-factor prothrombin complex concentrates in healthy subjects: a randomized 3-period crossover study. J Thromb Haemost. 2017;15(11):2125–37.CrossRefPubMed Song Y, Wang Z, Perlstein I, Wang J, LaCreta F, Frost RJA, et al. Reversal of apixaban anticoagulation by 4-factor prothrombin complex concentrates in healthy subjects: a randomized 3-period crossover study. J Thromb Haemost. 2017;15(11):2125–37.CrossRefPubMed
63.
Zurück zum Zitat Nagalla S, Thomson L, Oppong Y, Bachman B, Chervoneva I, Kraft WK. Reversibility of apixaban anticoagulation with a four-factor prothrombin complex concentrate in healthy volunteers. Clin Transl Sci. 2016;9(3):176–80.CrossRefPubMedPubMedCentral Nagalla S, Thomson L, Oppong Y, Bachman B, Chervoneva I, Kraft WK. Reversibility of apixaban anticoagulation with a four-factor prothrombin complex concentrate in healthy volunteers. Clin Transl Sci. 2016;9(3):176–80.CrossRefPubMedPubMedCentral
64.
Zurück zum Zitat Schulman S, Kearon C. Subcommittee on Control of Anticoagulation of the S, Standardization Committee of the International Society on T, Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3(4):692–4.CrossRefPubMed Schulman S, Kearon C. Subcommittee on Control of Anticoagulation of the S, Standardization Committee of the International Society on T, Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost. 2005;3(4):692–4.CrossRefPubMed
65.
Zurück zum Zitat Beyer-Westendorf J, Forster K, Pannach S, Ebertz F, Gelbricht V, Thieme C, et al. Rates, management, and outcome of rivaroxaban bleeding in daily care: results from the Dresden NOAC registry. Blood. 2014;124(6):955–62.CrossRefPubMedPubMedCentral Beyer-Westendorf J, Forster K, Pannach S, Ebertz F, Gelbricht V, Thieme C, et al. Rates, management, and outcome of rivaroxaban bleeding in daily care: results from the Dresden NOAC registry. Blood. 2014;124(6):955–62.CrossRefPubMedPubMedCentral
66.
Zurück zum Zitat Albaladejo P, Samama CM, Sie P, Kauffmann S, Memier V, Suchon P, et al. Management of severe bleeding in patients treated with direct oral anticoagulants: an observational registry analysis. Anesthesiology. 2017;127(1):111–20.CrossRefPubMed Albaladejo P, Samama CM, Sie P, Kauffmann S, Memier V, Suchon P, et al. Management of severe bleeding in patients treated with direct oral anticoagulants: an observational registry analysis. Anesthesiology. 2017;127(1):111–20.CrossRefPubMed
67.
Zurück zum Zitat Majeed A, Agren A, Holmstrom M, Bruzelius M, Chaireti R, Odeberg J, et al. Management of rivaroxaban or apixaban associated major bleeding with prothrombin complex concentrates: a cohort study. Blood. 2017;130(15):1706–12.CrossRefPubMed Majeed A, Agren A, Holmstrom M, Bruzelius M, Chaireti R, Odeberg J, et al. Management of rivaroxaban or apixaban associated major bleeding with prothrombin complex concentrates: a cohort study. Blood. 2017;130(15):1706–12.CrossRefPubMed
68.
Zurück zum Zitat Schulman S, Gross PL, Ritchie B, Nahirniak S, Lin Y, Lieberman L, et al. Prothrombin complex concentrate for major bleeding on factor Xa inhibitors: a prospective cohort study. Thromb Haemost. 2018;118(05):842–51.CrossRefPubMed Schulman S, Gross PL, Ritchie B, Nahirniak S, Lin Y, Lieberman L, et al. Prothrombin complex concentrate for major bleeding on factor Xa inhibitors: a prospective cohort study. Thromb Haemost. 2018;118(05):842–51.CrossRefPubMed
69.
Zurück zum Zitat Schulman S, Ritchie B, Nahirniak S, Gross PL, Carrier M, Majeed A, et al. Reversal of dabigatran-associated major bleeding with activated prothrombin concentrate: a prospective cohort study. Thromb Res. 2017;152:44–8.CrossRefPubMed Schulman S, Ritchie B, Nahirniak S, Gross PL, Carrier M, Majeed A, et al. Reversal of dabigatran-associated major bleeding with activated prothrombin concentrate: a prospective cohort study. Thromb Res. 2017;152:44–8.CrossRefPubMed
70.
Zurück zum Zitat Lindhoff-Last E. Direct oral anticoagulants (DOAC) - management of emergency situations. Rationale and design of the RADOA-Registry. Hamostaseologie. 2017;37(04):257–66.CrossRefPubMed Lindhoff-Last E. Direct oral anticoagulants (DOAC) - management of emergency situations. Rationale and design of the RADOA-Registry. Hamostaseologie. 2017;37(04):257–66.CrossRefPubMed
71.
Zurück zum Zitat Schenk B, Goerke S, Beer R, Helbok R, Fries D, Bachler M. Four-factor prothrombin complex concentrate improves thrombin generation and prothrombin time in patients with bleeding complications related to rivaroxaban: a single-center pilot trial. Thromb J. 2018;16:1.CrossRefPubMedPubMedCentral Schenk B, Goerke S, Beer R, Helbok R, Fries D, Bachler M. Four-factor prothrombin complex concentrate improves thrombin generation and prothrombin time in patients with bleeding complications related to rivaroxaban: a single-center pilot trial. Thromb J. 2018;16:1.CrossRefPubMedPubMedCentral
72.
Zurück zum Zitat Xu Y, Schulman S, Dowlatshahi D, Holbrook AM, Simpson CS, Shepherd LE, et al. Direct oral anticoagulant- or warfarin-related major bleeding: characteristics, reversal strategies and outcomes from a multi-center observational study. Chest. 2017;152(1):81–91.CrossRefPubMed Xu Y, Schulman S, Dowlatshahi D, Holbrook AM, Simpson CS, Shepherd LE, et al. Direct oral anticoagulant- or warfarin-related major bleeding: characteristics, reversal strategies and outcomes from a multi-center observational study. Chest. 2017;152(1):81–91.CrossRefPubMed
73.
Zurück zum Zitat Pahs L, Beavers C, Schuler P. The real-world treatment of hemorrhages associated with dabigatran and rivaroxaban: a multicenter evaluation. Crit Pathw Cardiol. 2015;14(2):53–61.CrossRefPubMed Pahs L, Beavers C, Schuler P. The real-world treatment of hemorrhages associated with dabigatran and rivaroxaban: a multicenter evaluation. Crit Pathw Cardiol. 2015;14(2):53–61.CrossRefPubMed
74.
Zurück zum Zitat Tellor KB, Barasch NS, Lee BM. Clinical experience reversing factor Xa inhibitors with four-factor prothrombin complex concentrate in a community hospital. Blood Transfus. 2018;16(4):382–86. Tellor KB, Barasch NS, Lee BM. Clinical experience reversing factor Xa inhibitors with four-factor prothrombin complex concentrate in a community hospital. Blood Transfus. 2018;16(4):382–86.
76.
Zurück zum Zitat Purrucker JC, Haas K, Rizos T, Khan S, Wolf M, Hennerici MG, et al. Early clinical and radiological course, management, and outcome of intracerebral hemorrhage related to new oral anticoagulants. JAMA Neurol. 2016;73(2):169–77. Purrucker JC, Haas K, Rizos T, Khan S, Wolf M, Hennerici MG, et al. Early clinical and radiological course, management, and outcome of intracerebral hemorrhage related to new oral anticoagulants. JAMA Neurol. 2016;73(2):169–77.
77.
Zurück zum Zitat IMS Health. Prescription audit. 2015. IMS Health. Prescription audit. 2015.
78.
Zurück zum Zitat Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.CrossRefPubMed Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.CrossRefPubMed
79.
Zurück zum Zitat Gerner ST, Kuramatsu JB, Sembill JA, Sprugel MI, Endres M, Haeusler KG, et al. Association of prothrombin complex concentrate administration and hematoma enlargement in non-vitamin K antagonist oral anticoagulant-related intracerebral hemorrhage. Ann Neurol. 2018;83(1):186–96.CrossRefPubMed Gerner ST, Kuramatsu JB, Sembill JA, Sprugel MI, Endres M, Haeusler KG, et al. Association of prothrombin complex concentrate administration and hematoma enlargement in non-vitamin K antagonist oral anticoagulant-related intracerebral hemorrhage. Ann Neurol. 2018;83(1):186–96.CrossRefPubMed
80.
Zurück zum Zitat Beynon C, Sakowitz OW, Storzinger D, Orakcioglu B, Radbruch A, Potzy A, et al. Intracranial haemorrhage in patients treated with direct oral anticoagulants. Thromb Res. 2015;136(3):560–5.CrossRefPubMed Beynon C, Sakowitz OW, Storzinger D, Orakcioglu B, Radbruch A, Potzy A, et al. Intracranial haemorrhage in patients treated with direct oral anticoagulants. Thromb Res. 2015;136(3):560–5.CrossRefPubMed
81.
Zurück zum Zitat Kuramatsu JB, Gerner ST, Schellinger PD, Glahn J, Endres M, Sobesky J, et al. Anticoagulant reversal, blood pressure levels, and anticoagulant resumption in patients with anticoagulation-related intracerebral hemorrhage. JAMA. 2015;313(8):824–36.CrossRefPubMed Kuramatsu JB, Gerner ST, Schellinger PD, Glahn J, Endres M, Sobesky J, et al. Anticoagulant reversal, blood pressure levels, and anticoagulant resumption in patients with anticoagulation-related intracerebral hemorrhage. JAMA. 2015;313(8):824–36.CrossRefPubMed
82.
Zurück zum Zitat Grandhi R, Newman WC, Zhang X, Harrison G, Moran C, Okonkwo DO, et al. Administration of 4-factor prothrombin complex concentrate as an antidote for intracranial bleeding in patients taking direct factor Xa inhibitors. World Neurosurg. 2015;84(6):1956–61.CrossRefPubMed Grandhi R, Newman WC, Zhang X, Harrison G, Moran C, Okonkwo DO, et al. Administration of 4-factor prothrombin complex concentrate as an antidote for intracranial bleeding in patients taking direct factor Xa inhibitors. World Neurosurg. 2015;84(6):1956–61.CrossRefPubMed
83.
Zurück zum Zitat Mao G, King L, Young S, Kaplan R. Factor eight inhibitor bypassing agent (FEIBA) for reversal of target-specific oral anticoagulants in life-threatening intracranial bleeding. J Emerg Med. 2017;52(5):731–7.CrossRefPubMed Mao G, King L, Young S, Kaplan R. Factor eight inhibitor bypassing agent (FEIBA) for reversal of target-specific oral anticoagulants in life-threatening intracranial bleeding. J Emerg Med. 2017;52(5):731–7.CrossRefPubMed
84.
Zurück zum Zitat Yin EB, Tan B, Nguyen T, Salazar M, Putney K, Gupta P, et al. Safety and effectiveness of factor VIII inhibitor bypassing activity (FEIBA) and fresh frozen plasma in oral anticoagulant-associated intracranial hemorrhage: a retrospective analysis. Neurocrit Care. 2017;27(1):51–9.CrossRefPubMed Yin EB, Tan B, Nguyen T, Salazar M, Putney K, Gupta P, et al. Safety and effectiveness of factor VIII inhibitor bypassing activity (FEIBA) and fresh frozen plasma in oral anticoagulant-associated intracranial hemorrhage: a retrospective analysis. Neurocrit Care. 2017;27(1):51–9.CrossRefPubMed
85.
Zurück zum Zitat Gianni C, Di Biase L, Mohanty S, Trivedi C, Bai R, Al-Ahmad A, et al. Management of periprocedural and early pericardial effusions with tamponade following ablation of atrial fibrillation with uninterrupted factor Xa inhibitors: a case series. J Cardiovasc Electrophysiol. 2016;27(4):399–403.CrossRefPubMed Gianni C, Di Biase L, Mohanty S, Trivedi C, Bai R, Al-Ahmad A, et al. Management of periprocedural and early pericardial effusions with tamponade following ablation of atrial fibrillation with uninterrupted factor Xa inhibitors: a case series. J Cardiovasc Electrophysiol. 2016;27(4):399–403.CrossRefPubMed
86.
Zurück zum Zitat Dibu JR, Weimer JM, Ahrens C, Manno E, Frontera JA. The role of FEIBA in reversing novel oral anticoagulants in intracerebral hemorrhage. Neurocrit Care. 2016;24(3):413–9.CrossRefPubMed Dibu JR, Weimer JM, Ahrens C, Manno E, Frontera JA. The role of FEIBA in reversing novel oral anticoagulants in intracerebral hemorrhage. Neurocrit Care. 2016;24(3):413–9.CrossRefPubMed
87.
Zurück zum Zitat Faust AC, Peterson EJ. Management of dabigatran-associated intracerebral and intraventricular hemorrhage: a case report. J Emerg Med. 2014;46(4):525–9.CrossRefPubMed Faust AC, Peterson EJ. Management of dabigatran-associated intracerebral and intraventricular hemorrhage: a case report. J Emerg Med. 2014;46(4):525–9.CrossRefPubMed
88.
Zurück zum Zitat Rinehart DR, Lockhart NR, Hamilton LA, Langdon JR, Rowe AS. Management of apixaban-associated subdural hematoma: a case report on the use of factor eight inhibitor bypassing activity. Crit Care Med. 2015;43(6):e203–7.CrossRefPubMed Rinehart DR, Lockhart NR, Hamilton LA, Langdon JR, Rowe AS. Management of apixaban-associated subdural hematoma: a case report on the use of factor eight inhibitor bypassing activity. Crit Care Med. 2015;43(6):e203–7.CrossRefPubMed
89.
Zurück zum Zitat Beynon C, Potzy A, Unterberg AW, Sakowitz OW. Emergency neurosurgical care in patients treated with apixaban: report of 2 cases. Am J Emerg Med. 2015;33(6):858 e5–7.CrossRefPubMed Beynon C, Potzy A, Unterberg AW, Sakowitz OW. Emergency neurosurgical care in patients treated with apixaban: report of 2 cases. Am J Emerg Med. 2015;33(6):858 e5–7.CrossRefPubMed
90.
Zurück zum Zitat Chic Acevedo C, Velasco F, Herrera C. Reversal of rivaroxaban anticoagulation by nonactivated prothrombin complex concentrate in urgent surgery. Futur Cardiol. 2015;11(5):525–9.CrossRef Chic Acevedo C, Velasco F, Herrera C. Reversal of rivaroxaban anticoagulation by nonactivated prothrombin complex concentrate in urgent surgery. Futur Cardiol. 2015;11(5):525–9.CrossRef
91.
Zurück zum Zitat Maurice-Szamburski A, Graillon T, Bruder N. Favorable outcome after a subdural hematoma treated with feiba in a 77-year-old patient treated by rivaroxaban. J Neurosurg Anesthesiol. 2014;26(2):183.CrossRefPubMed Maurice-Szamburski A, Graillon T, Bruder N. Favorable outcome after a subdural hematoma treated with feiba in a 77-year-old patient treated by rivaroxaban. J Neurosurg Anesthesiol. 2014;26(2):183.CrossRefPubMed
92.
Zurück zum Zitat Neyens R, Bohm N, Cearley M, Andrews C, Chalela J. Dabigatran-associated subdural hemorrhage: using thromboelastography (TEG((R))) to guide decision-making. J Thromb Thrombolysis. 2014;37(2):80–3.CrossRefPubMed Neyens R, Bohm N, Cearley M, Andrews C, Chalela J. Dabigatran-associated subdural hemorrhage: using thromboelastography (TEG((R))) to guide decision-making. J Thromb Thrombolysis. 2014;37(2):80–3.CrossRefPubMed
94.
Zurück zum Zitat Wong H, Keeling D. Activated prothrombin complex concentrate for the prevention of dabigatran-associated bleeding. Br J Haematol. 2014;166(1):152–3.CrossRefPubMed Wong H, Keeling D. Activated prothrombin complex concentrate for the prevention of dabigatran-associated bleeding. Br J Haematol. 2014;166(1):152–3.CrossRefPubMed
95.
Zurück zum Zitat Dager WE, Gosselin RC, Roberts AJ. Reversing dabigatran in life-threatening bleeding occurring during cardiac ablation with factor eight inhibitor bypassing activity. Crit Care Med. 2013;41(5):e42–6.CrossRefPubMed Dager WE, Gosselin RC, Roberts AJ. Reversing dabigatran in life-threatening bleeding occurring during cardiac ablation with factor eight inhibitor bypassing activity. Crit Care Med. 2013;41(5):e42–6.CrossRefPubMed
96.
Zurück zum Zitat Denetclaw TH, Tam J, Arias V, Kim R, Martin C. Case report: apixaban-associated gluteal artery extravasation reversed with PCC3 without FFP. J Pharm Pract. 2016;29(4):427–30.CrossRefPubMed Denetclaw TH, Tam J, Arias V, Kim R, Martin C. Case report: apixaban-associated gluteal artery extravasation reversed with PCC3 without FFP. J Pharm Pract. 2016;29(4):427–30.CrossRefPubMed
97.
Zurück zum Zitat Diaz MQ, Borobia AM, Nunez MA, Virto AM, Fabra S, Casado MS, et al. Use of prothrombin complex concentrates for urgent reversal of dabigatran in the emergency department. Haematologica. 2013;98(11):e143–4.CrossRefPubMedPubMedCentral Diaz MQ, Borobia AM, Nunez MA, Virto AM, Fabra S, Casado MS, et al. Use of prothrombin complex concentrates for urgent reversal of dabigatran in the emergency department. Haematologica. 2013;98(11):e143–4.CrossRefPubMedPubMedCentral
98.
Zurück zum Zitat Kauffmann S, Chabanne R, Coste A, Longeras F, Sinegre T, Schmidt J, et al. Favorable outcome of rivaroxaban-associated intracerebral hemorrhage reversed by 4-factor prothrombin complex concentrate: impact on thrombin generation. A A Case Rep. 2015;4(11):151–4.CrossRefPubMed Kauffmann S, Chabanne R, Coste A, Longeras F, Sinegre T, Schmidt J, et al. Favorable outcome of rivaroxaban-associated intracerebral hemorrhage reversed by 4-factor prothrombin complex concentrate: impact on thrombin generation. A A Case Rep. 2015;4(11):151–4.CrossRefPubMed
99.
Zurück zum Zitat McGovern TR, McNamee JJ, Malabanan C, Fouad MA, Patel N. Use of 4-factor prothrombin complex concentrate in the treatment of a gastrointestinal hemorrhage complicated by dabigatran. Int J Emerg Med. 2015;8:10.CrossRefPubMedPubMedCentral McGovern TR, McNamee JJ, Malabanan C, Fouad MA, Patel N. Use of 4-factor prothrombin complex concentrate in the treatment of a gastrointestinal hemorrhage complicated by dabigatran. Int J Emerg Med. 2015;8:10.CrossRefPubMedPubMedCentral
100.
Zurück zum Zitat Schulman S, Ritchie B, Goy JK, Nahirniak S, Almutawa M, Ghanny S. Activated prothrombin complex concentrate for dabigatran-associated bleeding. Br J Haematol. 2014;164(2):308–10.CrossRefPubMed Schulman S, Ritchie B, Goy JK, Nahirniak S, Almutawa M, Ghanny S. Activated prothrombin complex concentrate for dabigatran-associated bleeding. Br J Haematol. 2014;164(2):308–10.CrossRefPubMed
101.
Zurück zum Zitat Durie R, Kohute M, Fernandez C, Knight M. Prothrombin complex concentrate for the management of severe traumatic bleeding in a patient anticoagulated with apixaban. J Clin Pharm Ther. 2016;41(1):92–3.CrossRefPubMed Durie R, Kohute M, Fernandez C, Knight M. Prothrombin complex concentrate for the management of severe traumatic bleeding in a patient anticoagulated with apixaban. J Clin Pharm Ther. 2016;41(1):92–3.CrossRefPubMed
102.
Zurück zum Zitat Faust AC, Woodard S, Koehl JL, Mees W, Steinke D, Denetclaw TH. Managing subdural bleeding associated with rivaroxaban: a series of 3 cases. J Pharm Pract. 2016;29(3):257–62.CrossRefPubMed Faust AC, Woodard S, Koehl JL, Mees W, Steinke D, Denetclaw TH. Managing subdural bleeding associated with rivaroxaban: a series of 3 cases. J Pharm Pract. 2016;29(3):257–62.CrossRefPubMed
103.
Zurück zum Zitat Means L, Gimbar RP. Prothrombin complex concentrate administration through intraosseous access for reversal of rivaroxaban. Am J Emerg Med. 2016;34(3):685 e1–2.CrossRefPubMed Means L, Gimbar RP. Prothrombin complex concentrate administration through intraosseous access for reversal of rivaroxaban. Am J Emerg Med. 2016;34(3):685 e1–2.CrossRefPubMed
104.
Zurück zum Zitat Jones JM, Ryan HM, Tieszen M, Leedahl DD. Successful hemostasis and reversal of highly elevated PT/INR after dabigatran etexilate use in a patient with acute kidney injury. Am J Emerg Med. 2016;34(4):758 e5–6.CrossRefPubMed Jones JM, Ryan HM, Tieszen M, Leedahl DD. Successful hemostasis and reversal of highly elevated PT/INR after dabigatran etexilate use in a patient with acute kidney injury. Am J Emerg Med. 2016;34(4):758 e5–6.CrossRefPubMed
105.
Zurück zum Zitat Liu M, Aguele C, Darr U. Use of four-factor prothrombin complex concentrate for the mitigation of rivaroxaban-induced bleeding in an emergent coronary artery bypass graft. Clin Case Rep. 2017;5(5):636–9.CrossRefPubMedPubMedCentral Liu M, Aguele C, Darr U. Use of four-factor prothrombin complex concentrate for the mitigation of rivaroxaban-induced bleeding in an emergent coronary artery bypass graft. Clin Case Rep. 2017;5(5):636–9.CrossRefPubMedPubMedCentral
106.
Zurück zum Zitat Smith AT, Wrenn KD, Barrett TW, Jones ID, Rohde JP, Slovis CM, et al. Delayed intracranial hemorrhage after head trauma in patients on direct-acting oral anticoagulants. Am J Emerg Med. 2017;35(2):377 e1-.e2.CrossRefPubMed Smith AT, Wrenn KD, Barrett TW, Jones ID, Rohde JP, Slovis CM, et al. Delayed intracranial hemorrhage after head trauma in patients on direct-acting oral anticoagulants. Am J Emerg Med. 2017;35(2):377 e1-.e2.CrossRefPubMed
107.
Zurück zum Zitat Faust AC, Tran DM, Lo C, Lai S, Sheperd L, Liu M, et al. Managing nonoperable intracranial bleeding associated with apixaban: a series of 2 cases. J Pharm Pract. 2018;31(1):107–11.CrossRefPubMed Faust AC, Tran DM, Lo C, Lai S, Sheperd L, Liu M, et al. Managing nonoperable intracranial bleeding associated with apixaban: a series of 2 cases. J Pharm Pract. 2018;31(1):107–11.CrossRefPubMed
108.
Zurück zum Zitat Burnett AE, Mahan CE, Vazquez SR, Oertel LB, Garcia DA, Ansell J. Guidance for the practical management of the direct oral anticoagulants (DOACs) in VTE treatment. J Thromb Thrombolysis. 2016;41(1):206–32.CrossRefPubMedPubMedCentral Burnett AE, Mahan CE, Vazquez SR, Oertel LB, Garcia DA, Ansell J. Guidance for the practical management of the direct oral anticoagulants (DOACs) in VTE treatment. J Thromb Thrombolysis. 2016;41(1):206–32.CrossRefPubMedPubMedCentral
109.
Zurück zum Zitat Faraoni D, Levy JH, Albaladejo P, Samama CM. Updates in the perioperative and emergency management of non-vitamin K antagonist oral anticoagulants. Crit Care. 2015;19:203.CrossRefPubMedPubMedCentral Faraoni D, Levy JH, Albaladejo P, Samama CM. Updates in the perioperative and emergency management of non-vitamin K antagonist oral anticoagulants. Crit Care. 2015;19:203.CrossRefPubMedPubMedCentral
110.
Zurück zum Zitat Frontera JA, Lewin JJ, Rabinstein AA, Aisiku IP, Alexandrov AW, Cook AM, et al. Guideline for reversal of antithrombotics in intracranial hemorrhage : a statement for healthcare professionals from the Neurocritical Care Society and Society of Critical Care Medicine. Neurocrit Care. 2016;24(1):6–46.CrossRefPubMed Frontera JA, Lewin JJ, Rabinstein AA, Aisiku IP, Alexandrov AW, Cook AM, et al. Guideline for reversal of antithrombotics in intracranial hemorrhage : a statement for healthcare professionals from the Neurocritical Care Society and Society of Critical Care Medicine. Neurocrit Care. 2016;24(1):6–46.CrossRefPubMed
111.
Zurück zum Zitat Heidbuchel H, Verhamme P, Alings M, Antz M, Diener HC, Hacke W, et al. Updated European heart rhythm association practical guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace. 2015;17(10):1467–507.CrossRefPubMed Heidbuchel H, Verhamme P, Alings M, Antz M, Diener HC, Hacke W, et al. Updated European heart rhythm association practical guide on the use of non-vitamin K antagonist anticoagulants in patients with non-valvular atrial fibrillation. Europace. 2015;17(10):1467–507.CrossRefPubMed
112.
Zurück zum Zitat Heidbuchel H, Verhamme P, Alings M, Antz M, Hacke W, Oldgren J, et al. European Heart Rhythm Association Practical Guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation. Europace. 2013;15(5):625–51.CrossRefPubMed Heidbuchel H, Verhamme P, Alings M, Antz M, Hacke W, Oldgren J, et al. European Heart Rhythm Association Practical Guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation. Europace. 2013;15(5):625–51.CrossRefPubMed
113.
Zurück zum Zitat Kaatz S, Kouides PA, Garcia DA, Spyropolous AC, Crowther M, Douketis JD, et al. Guidance on the emergent reversal of oral thrombin and factor Xa inhibitors. Am J Hematol. 2012;87(Suppl 1):S141–5.CrossRefPubMed Kaatz S, Kouides PA, Garcia DA, Spyropolous AC, Crowther M, Douketis JD, et al. Guidance on the emergent reversal of oral thrombin and factor Xa inhibitors. Am J Hematol. 2012;87(Suppl 1):S141–5.CrossRefPubMed
114.
Zurück zum Zitat Kozek-Langenecker SA, Afshari A, Albaladejo P, Santullano CA, De Robertis E, Filipescu DC, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30(6):270–382.CrossRefPubMed Kozek-Langenecker SA, Afshari A, Albaladejo P, Santullano CA, De Robertis E, Filipescu DC, et al. Management of severe perioperative bleeding: guidelines from the European Society of Anaesthesiology. Eur J Anaesthesiol. 2013;30(6):270–382.CrossRefPubMed
115.
Zurück zum Zitat Pernod G, Albaladejo P, Godier A, Samama CM, Susen S, Gruel Y, et al. Management of major bleeding complications and emergency surgery in patients on long-term treatment with direct oral anticoagulants, thrombin or factor-Xa inhibitors: proposals of the working group on perioperative haemostasis (GIHP) - March 2013. Arch Cardiovasc Dis. 2013;106(6–7):382–93.CrossRefPubMed Pernod G, Albaladejo P, Godier A, Samama CM, Susen S, Gruel Y, et al. Management of major bleeding complications and emergency surgery in patients on long-term treatment with direct oral anticoagulants, thrombin or factor-Xa inhibitors: proposals of the working group on perioperative haemostasis (GIHP) - March 2013. Arch Cardiovasc Dis. 2013;106(6–7):382–93.CrossRefPubMed
116.
Zurück zum Zitat Raval AN, Cigarroa JE, Chung MK, Diaz-Sandoval LJ, Diercks D, Piccini JP, et al. Management of patients on non-vitamin K antagonist oral anticoagulants in the acute care and periprocedural setting: a scientific statement from the American Heart Association. Circulation. 2017;135(10):e604–e33.CrossRefPubMedPubMedCentral Raval AN, Cigarroa JE, Chung MK, Diaz-Sandoval LJ, Diercks D, Piccini JP, et al. Management of patients on non-vitamin K antagonist oral anticoagulants in the acute care and periprocedural setting: a scientific statement from the American Heart Association. Circulation. 2017;135(10):e604–e33.CrossRefPubMedPubMedCentral
117.
Zurück zum Zitat Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76.CrossRefPubMedPubMedCentral Spahn DR, Bouillon B, Cerny V, Coats TJ, Duranteau J, Fernandez-Mondejar E, et al. Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit Care. 2013;17(2):R76.CrossRefPubMedPubMedCentral
118.
Zurück zum Zitat Tran HA, Chunilal SD, Harper PL, Tran H, Wood EM, Gallus AS, et al. An update of consensus guidelines for warfarin reversal. Med J Aust. 2013;198(4):198–9.CrossRefPubMed Tran HA, Chunilal SD, Harper PL, Tran H, Wood EM, Gallus AS, et al. An update of consensus guidelines for warfarin reversal. Med J Aust. 2013;198(4):198–9.CrossRefPubMed
119.
Zurück zum Zitat Peacock WF, Gearhart MM, Mills RM. Emergency management of bleeding associated with old and new oral anticoagulants. Clin Cardiol. 2012;35(12):730–7.CrossRefPubMed Peacock WF, Gearhart MM, Mills RM. Emergency management of bleeding associated with old and new oral anticoagulants. Clin Cardiol. 2012;35(12):730–7.CrossRefPubMed
120.
Zurück zum Zitat Fawole A, Daw HA, Crowther MA. Practical management of bleeding due to the anticoagulants dabigatran, rivaroxaban, and apixaban. Cleve Clin J Med. 2013;80(7):443–51.CrossRefPubMed Fawole A, Daw HA, Crowther MA. Practical management of bleeding due to the anticoagulants dabigatran, rivaroxaban, and apixaban. Cleve Clin J Med. 2013;80(7):443–51.CrossRefPubMed
121.
Zurück zum Zitat Turpie AG, Kreutz R, Llau J, Norrving B, Haas S. Management consensus guidance for the use of rivaroxaban--an oral, direct factor Xa inhibitor. Thromb Haemost. 2012;108(5):876–86.PubMed Turpie AG, Kreutz R, Llau J, Norrving B, Haas S. Management consensus guidance for the use of rivaroxaban--an oral, direct factor Xa inhibitor. Thromb Haemost. 2012;108(5):876–86.PubMed
122.
Zurück zum Zitat Levy JH, Faraoni D, Spring JL, Douketis JD, Samama CM. Managing new oral anticoagulants in the perioperative and intensive care unit setting. Anesthesiology. 2013;118(6):1466–74.CrossRefPubMed Levy JH, Faraoni D, Spring JL, Douketis JD, Samama CM. Managing new oral anticoagulants in the perioperative and intensive care unit setting. Anesthesiology. 2013;118(6):1466–74.CrossRefPubMed
125.
Zurück zum Zitat de Schipper LJ, Baharoglu MI, Roos Y, de Beer F. Medical treatment for spontaneous anticoagulation-related intracerebral hemorrhage in the Netherlands. J Stroke Cerebrovasc Dis. 2017;26(7):1427–32.CrossRefPubMed de Schipper LJ, Baharoglu MI, Roos Y, de Beer F. Medical treatment for spontaneous anticoagulation-related intracerebral hemorrhage in the Netherlands. J Stroke Cerebrovasc Dis. 2017;26(7):1427–32.CrossRefPubMed
126.
Zurück zum Zitat Dzik WH. Reversal of oral factor Xa inhibitors by prothrombin complex concentrates: a re-appraisal. J Thromb Haemost. 2015;13(Suppl 1):S187–94.CrossRefPubMed Dzik WH. Reversal of oral factor Xa inhibitors by prothrombin complex concentrates: a re-appraisal. J Thromb Haemost. 2015;13(Suppl 1):S187–94.CrossRefPubMed
128.
Zurück zum Zitat Pollack CV Jr, Reilly PA, van Ryn J, Eikelboom JW, Glund S, Bernstein RA, et al. Idarucizumab for dabigatran reversal - full cohort analysis. N Engl J Med. 2017;377(5):431–41.CrossRefPubMed Pollack CV Jr, Reilly PA, van Ryn J, Eikelboom JW, Glund S, Bernstein RA, et al. Idarucizumab for dabigatran reversal - full cohort analysis. N Engl J Med. 2017;377(5):431–41.CrossRefPubMed
129.
Zurück zum Zitat Siegal DM, Curnutte JT, Connolly SJ, Lu G, Conley PB, Wiens BL, et al. Andexanet alfa for the reversal of factor Xa inhibitor activity. N Engl J Med. 2015;373(25):2413–24.CrossRefPubMed Siegal DM, Curnutte JT, Connolly SJ, Lu G, Conley PB, Wiens BL, et al. Andexanet alfa for the reversal of factor Xa inhibitor activity. N Engl J Med. 2015;373(25):2413–24.CrossRefPubMed
130.
Zurück zum Zitat Connolly SJ, Milling TJ Jr, Eikelboom JW, Gibson CM, Curnutte JT, Gold A, et al. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors. N Engl J Med. 2016;375(12):1131–41.CrossRefPubMedPubMedCentral Connolly SJ, Milling TJ Jr, Eikelboom JW, Gibson CM, Curnutte JT, Gold A, et al. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors. N Engl J Med. 2016;375(12):1131–41.CrossRefPubMedPubMedCentral
131.
Zurück zum Zitat Ansell JE, Bakhru SH, Laulicht BE, Steiner SS, Grosso M, Brown K, et al. Use of PER977 to reverse the anticoagulant effect of edoxaban. N Engl J Med. 2014;371(22):2141–2.CrossRefPubMed Ansell JE, Bakhru SH, Laulicht BE, Steiner SS, Grosso M, Brown K, et al. Use of PER977 to reverse the anticoagulant effect of edoxaban. N Engl J Med. 2014;371(22):2141–2.CrossRefPubMed
132.
Zurück zum Zitat Thalji NK, Ivanciu L, Davidson R, Gimotty PA, Krishnaswamy S, Camire RM. A rapid pro-hemostatic approach to overcome direct oral anticoagulants. Nat Med. 2016;22(8):924–32.CrossRefPubMed Thalji NK, Ivanciu L, Davidson R, Gimotty PA, Krishnaswamy S, Camire RM. A rapid pro-hemostatic approach to overcome direct oral anticoagulants. Nat Med. 2016;22(8):924–32.CrossRefPubMed
133.
Zurück zum Zitat Levy JH, Ageno W, Chan NC, Crowther M, Verhamme P, Weitz JI. When and how to use antidotes for the reversal of direct oral anticoagulants: guidance from the SSC of the ISTH. J Thromb Haemost. 2016;14(3):623–7.CrossRefPubMed Levy JH, Ageno W, Chan NC, Crowther M, Verhamme P, Weitz JI. When and how to use antidotes for the reversal of direct oral anticoagulants: guidance from the SSC of the ISTH. J Thromb Haemost. 2016;14(3):623–7.CrossRefPubMed
134.
Zurück zum Zitat Yoshimura S, Sato S, Todo K, Okada Y, Furui E, Matsuki T, et al. Prothrombin complex concentrate administration for bleeding associated with non-vitamin K antagonist oral anticoagulants: the SAMURAI-NVAF study. J Neurol Sci. 2017;375:150–7.CrossRefPubMed Yoshimura S, Sato S, Todo K, Okada Y, Furui E, Matsuki T, et al. Prothrombin complex concentrate administration for bleeding associated with non-vitamin K antagonist oral anticoagulants: the SAMURAI-NVAF study. J Neurol Sci. 2017;375:150–7.CrossRefPubMed
135.
Zurück zum Zitat Pollack CV Jr, Reilly PA, Eikelboom J, Glund S, Verhamme P, Bernstein RA, et al. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373(6):511–20.CrossRefPubMed Pollack CV Jr, Reilly PA, Eikelboom J, Glund S, Verhamme P, Bernstein RA, et al. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373(6):511–20.CrossRefPubMed
136.
Zurück zum Zitat Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.CrossRefPubMed Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.CrossRefPubMed
Metadaten
Titel
The impact of prothrombin complex concentrates when treating DOAC-associated bleeding: a review
verfasst von
Maureane Hoffman
Joshua N. Goldstein
Jerrold H. Levy
Publikationsdatum
01.12.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
International Journal of Emergency Medicine / Ausgabe 1/2018
Print ISSN: 1865-1372
Elektronische ISSN: 1865-1380
DOI
https://doi.org/10.1186/s12245-018-0215-6

Weitere Artikel der Ausgabe 1/2018

International Journal of Emergency Medicine 1/2018 Zur Ausgabe

State of International Emergency medicine

Aligning emergency care with global health priorities