Skip to main content
Erschienen in: Current Geriatrics Reports 4/2018

29.10.2018 | Dermatology and Wound Care (C Sayed and D Culton, Section Editors)

The Impact of Sunlight on Skin Aging

verfasst von: Hisham Kaddurah, Taylor L. Braunberger, Gautham Vellaichamy, Amanda F. Nahhas, Henry W. Lim, Iltefat H. Hamzavi

Erschienen in: Current Geriatrics Reports | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

In this review, we summarize and discuss the current literature on photoaging. We focus on the molecular effects of UV radiation, and the histological and clinical features of chronically sun-exposed skin.

Recent Findings

The expression of numerous proteins is altered in habitually sun-exposed skin, including sirtuins and hedgehog signaling proteins. Pharmacological manipulation of the levels of these proteins can potentially downregulate the photoaging process.

Summary

Mitochondrial and nuclear DNA damage, reactive oxygen species (ROS) production, and altered gene expression patterns are critical components of both photoaging and chronological aging. Chronic UVA and UVB exposure result in the photoaged phenotype through distinct molecular mechanisms, with UVA being primarily ROS-mediated and UVB being DNA damage-mediated. Molecular effects result in an altered dermal and epidermal environment that manifests as the photoaged phenotype. Importantly, skin phototype and environmental influences impact individual responses to chronic UV radiation.
Literatur
1.
Zurück zum Zitat Poon F, Kang S, Chien AL. Mechanisms and treatments of photoaging. Photodermatol Photoimmunol Photomed. 2015;31(2):65–74.PubMed Poon F, Kang S, Chien AL. Mechanisms and treatments of photoaging. Photodermatol Photoimmunol Photomed. 2015;31(2):65–74.PubMed
2.
Zurück zum Zitat Gilchrest BA. Photoaging. J Investig Dermatol. 2013;133(E1):E2–6.PubMed Gilchrest BA. Photoaging. J Investig Dermatol. 2013;133(E1):E2–6.PubMed
3.
Zurück zum Zitat Sklar LR, Almutawa F, Lim HW, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci. 2013;12(1):54–64.PubMed Sklar LR, Almutawa F, Lim HW, Hamzavi I. Effects of ultraviolet radiation, visible light, and infrared radiation on erythema and pigmentation: a review. Photochem Photobiol Sci. 2013;12(1):54–64.PubMed
4.
Zurück zum Zitat •• Battie C, Jitsukawa S, Bernerd F, del Bino S, Marionnet C, Verschoore M. New insights in photoaging, UVA induced damage and skin types. Exp Dermatol. 2014;23(Suppl 1):7–12 Article provides a thorough description of the mechanisms of UVA-induced photodamage. PubMed •• Battie C, Jitsukawa S, Bernerd F, del Bino S, Marionnet C, Verschoore M. New insights in photoaging, UVA induced damage and skin types. Exp Dermatol. 2014;23(Suppl 1):7–12 Article provides a thorough description of the mechanisms of UVA-induced photodamage. PubMed
5.
Zurück zum Zitat D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222–48.PubMedPubMedCentral D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci. 2013;14(6):12222–48.PubMedPubMedCentral
6.
Zurück zum Zitat Tobin DJ. Introduction to skin aging. J Tissue Viability. 2017;26(1):37–46.PubMed Tobin DJ. Introduction to skin aging. J Tissue Viability. 2017;26(1):37–46.PubMed
7.
Zurück zum Zitat Han A, Chien AL, Kang S. Photoaging. Dermatol Clin. 2014;32(3):291–9 vii.PubMed Han A, Chien AL, Kang S. Photoaging. Dermatol Clin. 2014;32(3):291–9 vii.PubMed
8.
Zurück zum Zitat Young AR, Claveau J, Rossi AB. Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection. J Am Acad Dermatol. 2017;76(3s1):S100–s109.PubMed Young AR, Claveau J, Rossi AB. Ultraviolet radiation and the skin: photobiology and sunscreen photoprotection. J Am Acad Dermatol. 2017;76(3s1):S100–s109.PubMed
9.
Zurück zum Zitat Kohli I, Chaowattanapanit S, Mohammad TF, Nicholson CL, Fatima S, Jacobsen G, et al. Synergistic effects of long-wavelength ultraviolet A1 and visible light on pigmentation and erythema. Br J Dermatol. 2018;178(5):1173–80.PubMed Kohli I, Chaowattanapanit S, Mohammad TF, Nicholson CL, Fatima S, Jacobsen G, et al. Synergistic effects of long-wavelength ultraviolet A1 and visible light on pigmentation and erythema. Br J Dermatol. 2018;178(5):1173–80.PubMed
10.
Zurück zum Zitat Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, et al. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun. 2012;3:884.PubMedPubMedCentral Noonan FP, Zaidi MR, Wolnicka-Glubisz A, Anver MR, Bahn J, Wielgus A, et al. Melanoma induction by ultraviolet A but not ultraviolet B radiation requires melanin pigment. Nat Commun. 2012;3:884.PubMedPubMedCentral
11.
Zurück zum Zitat Yaar M, Gilchrest BA. Photoageing: mechanism, prevention and therapy. Br J Dermatol. 2007;157(5):874–87.PubMed Yaar M, Gilchrest BA. Photoageing: mechanism, prevention and therapy. Br J Dermatol. 2007;157(5):874–87.PubMed
12.
Zurück zum Zitat Sabziparvar AA, Shine KP, Forster PMDF. A model-derived global climatology of UV irradiation at the earth’s surface. Photochem Photobiol. 1999;69(2):193–202.PubMed Sabziparvar AA, Shine KP, Forster PMDF. A model-derived global climatology of UV irradiation at the earth’s surface. Photochem Photobiol. 1999;69(2):193–202.PubMed
13.
Zurück zum Zitat Grigalavicius M, Moan J, Dahlback A, Juzeniene A. Daily, seasonal, and latitudinal variations in solar ultraviolet A and B radiation in relation to vitamin D production and risk for skin cancer. Int J Dermatol. 2016;55(1):e23–8.PubMed Grigalavicius M, Moan J, Dahlback A, Juzeniene A. Daily, seasonal, and latitudinal variations in solar ultraviolet A and B radiation in relation to vitamin D production and risk for skin cancer. Int J Dermatol. 2016;55(1):e23–8.PubMed
14.
Zurück zum Zitat Almutawa F, Vandal R, Wang, SQ, Lim HW. Current status of photoprotection. Photodermatol Photoimmunol Photomed. 2013;29:65–72. Almutawa F, Vandal R, Wang, SQ, Lim HW. Current status of photoprotection. Photodermatol Photoimmunol Photomed. 2013;29:65–72.
15.
Zurück zum Zitat • Cavinato M, Jansen-Durr P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Exp Gerontol. 2017;94:78–82 Relevant molecular information about the senescence endpoint of photoaging due to chronic UVB. PubMed • Cavinato M, Jansen-Durr P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Exp Gerontol. 2017;94:78–82 Relevant molecular information about the senescence endpoint of photoaging due to chronic UVB. PubMed
16.
Zurück zum Zitat Krutmann J, Schroeder P. Role of mitochondria in photoaging of human skin: the defective powerhouse model. J Investig Dermatol Symp Proc. 2009;14(1):44–9.PubMed Krutmann J, Schroeder P. Role of mitochondria in photoaging of human skin: the defective powerhouse model. J Investig Dermatol Symp Proc. 2009;14(1):44–9.PubMed
17.
Zurück zum Zitat Yaar M, Gilchrest BA. Studies of photoaging. Boston: Springer; 1990. Yaar M, Gilchrest BA. Studies of photoaging. Boston: Springer; 1990.
18.
Zurück zum Zitat •• Naidoo K, Hanna R, Birch-Machin MA. What is the role of mitochondrial dysfunction in skin photoaging? Exp Dermatol. 2018;27(2):124–8 Important information on the mechanism and effects of mtDNA mutations due to UVR in photoaging. PubMed •• Naidoo K, Hanna R, Birch-Machin MA. What is the role of mitochondrial dysfunction in skin photoaging? Exp Dermatol. 2018;27(2):124–8 Important information on the mechanism and effects of mtDNA mutations due to UVR in photoaging. PubMed
19.
Zurück zum Zitat Gange RW. Comparison of pigment responses in human skin to UVB and UVA radiation. Prog Clin Biol Res. 1988;256:475–85.PubMed Gange RW. Comparison of pigment responses in human skin to UVB and UVA radiation. Prog Clin Biol Res. 1988;256:475–85.PubMed
20.
Zurück zum Zitat Ou-Yang H, Stamatas G, Saliou C, Kollias N. A chemiluminescence study of UVA-induced oxidative stress in human skin in vivo. J Investig Dermatol. 2004;122(4):1020–9.PubMed Ou-Yang H, Stamatas G, Saliou C, Kollias N. A chemiluminescence study of UVA-induced oxidative stress in human skin in vivo. J Investig Dermatol. 2004;122(4):1020–9.PubMed
21.
Zurück zum Zitat Berneburg M, Plettenberg H, Krutmann J. Photoaging of human skin. Photodermatol Photoimmunol Photomed. 2000;16(6):239–44.PubMed Berneburg M, Plettenberg H, Krutmann J. Photoaging of human skin. Photodermatol Photoimmunol Photomed. 2000;16(6):239–44.PubMed
22.
Zurück zum Zitat Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–70.PubMed Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, et al. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138(11):1462–70.PubMed
23.
Zurück zum Zitat Bosch R, Philips N, Suárez-Pérez J, Juarranz A, Devmurari A, Chalensouk-Khaosaat J, et al. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants (Basel). 2015;4(2):248–68. Bosch R, Philips N, Suárez-Pérez J, Juarranz A, Devmurari A, Chalensouk-Khaosaat J, et al. Mechanisms of photoaging and cutaneous photocarcinogenesis, and photoprotective strategies with phytochemicals. Antioxidants (Basel). 2015;4(2):248–68.
24.
Zurück zum Zitat Douki T, Reynaud-Angelin A, Cadet J, Sage E. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry. 2003;42(30):9221–6.PubMed Douki T, Reynaud-Angelin A, Cadet J, Sage E. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry. 2003;42(30):9221–6.PubMed
25.
Zurück zum Zitat Borodkina A, Shatrova A, Abushik P, Nikolsky N, Burova E. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging (Albany NY). 2014;6(6):481–95. Borodkina A, Shatrova A, Abushik P, Nikolsky N, Burova E. Interaction between ROS dependent DNA damage, mitochondria and p38 MAPK underlies senescence of human adult stem cells. Aging (Albany NY). 2014;6(6):481–95.
26.
Zurück zum Zitat Cadet J, Grand A, Douki T. Solar UV radiation-induced DNA bipyrimidine photoproducts: formation and mechanistic insights. Top Curr Chem. 2015;356:249–75.PubMed Cadet J, Grand A, Douki T. Solar UV radiation-induced DNA bipyrimidine photoproducts: formation and mechanistic insights. Top Curr Chem. 2015;356:249–75.PubMed
27.
Zurück zum Zitat Khan AQ, Travers JB, Kemp MG. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ Mol Mutagen. 2018. Khan AQ, Travers JB, Kemp MG. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis. Environ Mol Mutagen. 2018.
28.
Zurück zum Zitat Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol. 2004;165(3):741–51.PubMedPubMedCentral Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-beta type II receptor/Smad signaling. Am J Pathol. 2004;165(3):741–51.PubMedPubMedCentral
29.
Zurück zum Zitat Quan T, He T, Voorhees JJ, Fisher GJ. Ultraviolet irradiation induces Smad7 via induction of transcription factor AP-1 in human skin fibroblasts. J Biol Chem. 2005;280(9):8079–85.PubMed Quan T, He T, Voorhees JJ, Fisher GJ. Ultraviolet irradiation induces Smad7 via induction of transcription factor AP-1 in human skin fibroblasts. J Biol Chem. 2005;280(9):8079–85.PubMed
30.
Zurück zum Zitat Shosuke I, Kazumasa W, Tadeusz S. Photodegradation of eumelanin and pheomelanin and its pathophysiological implications. Photochem Photobiol. 2018;94(3):409–20. Shosuke I, Kazumasa W, Tadeusz S. Photodegradation of eumelanin and pheomelanin and its pathophysiological implications. Photochem Photobiol. 2018;94(3):409–20.
31.
Zurück zum Zitat Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3):539–49.PubMedPubMedCentral Brenner M, Hearing VJ. The protective role of melanin against UV damage in human skin. Photochem Photobiol. 2008;84(3):539–49.PubMedPubMedCentral
32.
Zurück zum Zitat Takeuchi H, Runger TM. Longwave UV light induces the aging-associated progerin. J Investig Dermatol. 2013;133(7):1857–62.PubMed Takeuchi H, Runger TM. Longwave UV light induces the aging-associated progerin. J Investig Dermatol. 2013;133(7):1857–62.PubMed
33.
Zurück zum Zitat Skoczyńska A, Budzisz E, Dana A, Rotsztejn H. New look at the role of progerin in skin aging. Prz Menopauzalny. 2015;14(1):53–8.PubMedPubMedCentral Skoczyńska A, Budzisz E, Dana A, Rotsztejn H. New look at the role of progerin in skin aging. Prz Menopauzalny. 2015;14(1):53–8.PubMedPubMedCentral
34.
Zurück zum Zitat Moan J, Baturaite Z, Porojnicu AC, Dahlback A, Juzeniene A. UVA, UVB and incidence of cutaneous malignant melanoma in Norway and Sweden. Photochem Photobiol Sci. 2012;11(1):191–8.PubMed Moan J, Baturaite Z, Porojnicu AC, Dahlback A, Juzeniene A. UVA, UVB and incidence of cutaneous malignant melanoma in Norway and Sweden. Photochem Photobiol Sci. 2012;11(1):191–8.PubMed
35.
Zurück zum Zitat Le Clair MZ, Cockburn MG. Tanning bed use and melanoma: Establishing risk and improving prevention interventions. Prev Med Rep. 2016;3:139–44.PubMedPubMedCentral Le Clair MZ, Cockburn MG. Tanning bed use and melanoma: Establishing risk and improving prevention interventions. Prev Med Rep. 2016;3:139–44.PubMedPubMedCentral
36.
Zurück zum Zitat Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis. BMJ. 2012;345:e4757.PubMedPubMedCentral Boniol M, Autier P, Boyle P, Gandini S. Cutaneous melanoma attributable to sunbed use: systematic review and meta-analysis. BMJ. 2012;345:e4757.PubMedPubMedCentral
37.
Zurück zum Zitat • Murray HC, Maltby VE, Smith DW, Bowden NA. Nucleotide excision repair deficiency in melanoma in response to UVA. Exp Hematol Oncol. 2016;5:6 This study provides information on the molecular mechanisms of melanoma formation due to ultraviolet radiation. PubMedPubMedCentral • Murray HC, Maltby VE, Smith DW, Bowden NA. Nucleotide excision repair deficiency in melanoma in response to UVA. Exp Hematol Oncol. 2016;5:6 This study provides information on the molecular mechanisms of melanoma formation due to ultraviolet radiation. PubMedPubMedCentral
38.
Zurück zum Zitat Agar N, Young AR. Melanogenesis: a photoprotective response to DNA damage? Mutat Res. 2005;571(1–2):121–32.PubMed Agar N, Young AR. Melanogenesis: a photoprotective response to DNA damage? Mutat Res. 2005;571(1–2):121–32.PubMed
39.
Zurück zum Zitat Osakabe A, Tachiwana H, Kagawa W, Horikoshi N, Matsumoto S, Hasegawa M, et al. Structural basis of pyrimidine-pyrimidone (6–4) photoproduct recognition by UV-DDB in the nucleosome. Sci Report. 2015;5:16330. Osakabe A, Tachiwana H, Kagawa W, Horikoshi N, Matsumoto S, Hasegawa M, et al. Structural basis of pyrimidine-pyrimidone (6–4) photoproduct recognition by UV-DDB in the nucleosome. Sci Report. 2015;5:16330.
40.
Zurück zum Zitat Brash DE. Roles of the transcription factor p53 in keratinocyte carcinomas. Br J Dermatol. 2006;154(Suppl 1):8–10.PubMed Brash DE. Roles of the transcription factor p53 in keratinocyte carcinomas. Br J Dermatol. 2006;154(Suppl 1):8–10.PubMed
41.
Zurück zum Zitat Burke KE. Mechanisms of aging and development—a new understanding of environmental damage to the skin and prevention with topical antioxidants. Mech Ageing Dev. 2017;172:123–30.PubMed Burke KE. Mechanisms of aging and development—a new understanding of environmental damage to the skin and prevention with topical antioxidants. Mech Ageing Dev. 2017;172:123–30.PubMed
42.
Zurück zum Zitat Niu T, Tian Y, Ren Q, Wei L, Li X, Cai Q. Red light interferes in UVA-induced photoaging of human skin fibroblast cells. Photochem Photobiol. 2014;90(6):1349–58.PubMed Niu T, Tian Y, Ren Q, Wei L, Li X, Cai Q. Red light interferes in UVA-induced photoaging of human skin fibroblast cells. Photochem Photobiol. 2014;90(6):1349–58.PubMed
43.
Zurück zum Zitat Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005;41(1):45–60.PubMed Gandini S, Sera F, Cattaruzza MS, Pasquini P, Picconi O, Boyle P, et al. Meta-analysis of risk factors for cutaneous melanoma: II. Sun exposure. Eur J Cancer. 2005;41(1):45–60.PubMed
44.
Zurück zum Zitat Kim C, Ryu HC, Kim JH. Low-dose UVB irradiation stimulates matrix metalloproteinase-1 expression via a BLT2-linked pathway in HaCaT cells. Exp Mol Med. 2010;42(12):833–41.PubMedPubMedCentral Kim C, Ryu HC, Kim JH. Low-dose UVB irradiation stimulates matrix metalloproteinase-1 expression via a BLT2-linked pathway in HaCaT cells. Exp Mol Med. 2010;42(12):833–41.PubMedPubMedCentral
45.
Zurück zum Zitat Garcia-Peterson LM, Wilking-Busch MJ, Ndiaye MA, Philippe CGA, Setaluri V, Ahmad N. Sirtuins in skin and skin cancers. Skin Pharmacol Physiol. 2017;30(4):216–24.PubMedPubMedCentral Garcia-Peterson LM, Wilking-Busch MJ, Ndiaye MA, Philippe CGA, Setaluri V, Ahmad N. Sirtuins in skin and skin cancers. Skin Pharmacol Physiol. 2017;30(4):216–24.PubMedPubMedCentral
46.
Zurück zum Zitat • Wahedi HM, Lee TH, Moon EY, Kim SY. Juglone up-regulates sirt1 in skin cells under normal and UVB irradiated conditions. J Dermatol Sci. 2016;81(3):210–2 Sirtuins have been identified as important players in photoaging. This study provides important information on compounds that may be protective against UV by upregulating sirtuin. PubMed • Wahedi HM, Lee TH, Moon EY, Kim SY. Juglone up-regulates sirt1 in skin cells under normal and UVB irradiated conditions. J Dermatol Sci. 2016;81(3):210–2 Sirtuins have been identified as important players in photoaging. This study provides important information on compounds that may be protective against UV by upregulating sirtuin. PubMed
47.
Zurück zum Zitat • Kim W, Kim EG, Yang HJ, Kwon TW, Han SY, Lee S, et al. Inhibition of hedgehog signalling attenuates UVB-induced skin photoageing. Exp Dermatol. 2015;24(8):611–7 Study provides new information about molecular mechanisms of UVB in causing photoaging. PubMed • Kim W, Kim EG, Yang HJ, Kwon TW, Han SY, Lee S, et al. Inhibition of hedgehog signalling attenuates UVB-induced skin photoageing. Exp Dermatol. 2015;24(8):611–7 Study provides new information about molecular mechanisms of UVB in causing photoaging. PubMed
48.
Zurück zum Zitat Yaar, M., ed. Clinical and histological features of intrinsic versus extrinsic skin aging. 2006. 9–21. Yaar, M., ed. Clinical and histological features of intrinsic versus extrinsic skin aging. 2006. 9–21.
49.
Zurück zum Zitat Gilchrest BA. Skin aging 2003: recent advances and current concepts. Cutis. 2003;72(3 Suppl):5–10 discussion 10.PubMed Gilchrest BA. Skin aging 2003: recent advances and current concepts. Cutis. 2003;72(3 Suppl):5–10 discussion 10.PubMed
50.
Zurück zum Zitat Kaidbey KH, Agin PP, Sayre RM, Kligman AM. Photoprotection by melanin—a comparison of black and Caucasian skin. J Am Acad Dermatol. 1979;1(3):249–60.PubMed Kaidbey KH, Agin PP, Sayre RM, Kligman AM. Photoprotection by melanin—a comparison of black and Caucasian skin. J Am Acad Dermatol. 1979;1(3):249–60.PubMed
51.
Zurück zum Zitat Ito S, Wakamatsu K, Ozeki H. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Res. 2000;13(Suppl 8):103–9.PubMed Ito S, Wakamatsu K, Ozeki H. Chemical analysis of melanins and its application to the study of the regulation of melanogenesis. Pigment Cell Res. 2000;13(Suppl 8):103–9.PubMed
53.
Zurück zum Zitat Schmid FF, Groeber-Becker F, Schwab S, Thude S, Walles H, Hansmann J. A standardized method based on pigmented epidermal models evaluates sensitivity against UV-irradiation. ALTEX. 2018;35(3):390–6.PubMed Schmid FF, Groeber-Becker F, Schwab S, Thude S, Walles H, Hansmann J. A standardized method based on pigmented epidermal models evaluates sensitivity against UV-irradiation. ALTEX. 2018;35(3):390–6.PubMed
54.
Zurück zum Zitat Vashi NA, Buainain De Castro Maymone M, Kundu RV. Aging differences in ethnic skin. J Clin Aesthet Dermatol. 2016;9(1):31–8.PubMedPubMedCentral Vashi NA, Buainain De Castro Maymone M, Kundu RV. Aging differences in ethnic skin. J Clin Aesthet Dermatol. 2016;9(1):31–8.PubMedPubMedCentral
55.
Zurück zum Zitat Makrantonaki E, Bekou V, Zouboulis CC. Genetics and skin aging. Dermatoendocrinology. 2012;4(3):280–4. Makrantonaki E, Bekou V, Zouboulis CC. Genetics and skin aging. Dermatoendocrinology. 2012;4(3):280–4.
56.
Zurück zum Zitat Tschachler E, Morizot F. Ethnic differences in skin aging. In: Gilchrest BA, Krutmann J, editors. Skin Aging. Berlin: Springer; 2006. p. 23–31. Tschachler E, Morizot F. Ethnic differences in skin aging. In: Gilchrest BA, Krutmann J, editors. Skin Aging. Berlin: Springer; 2006. p. 23–31.
57.
Zurück zum Zitat Bosset S, Bonnet-Duquennoy M, Barre P, Chalon A, Lazou K, Kurfurst R, et al. Decreased expression of keratinocyte beta1 integrins in chronically sun-exposed skin in vivo. Br J Dermatol. 2003;148(4):770–8.PubMed Bosset S, Bonnet-Duquennoy M, Barre P, Chalon A, Lazou K, Kurfurst R, et al. Decreased expression of keratinocyte beta1 integrins in chronically sun-exposed skin in vivo. Br J Dermatol. 2003;148(4):770–8.PubMed
58.
Zurück zum Zitat Kwon OS, Yoo HG, Han JH, Lee SR, Chung JH, Eun HC. Photoaging-associated changes in epidermal proliferative cell fractions in vivo. Arch Dermatol Res. 2008;300(1):47–52.PubMed Kwon OS, Yoo HG, Han JH, Lee SR, Chung JH, Eun HC. Photoaging-associated changes in epidermal proliferative cell fractions in vivo. Arch Dermatol Res. 2008;300(1):47–52.PubMed
59.
Zurück zum Zitat • Olivier E, Dutot M, Regazzetti A, Dargère D, Auzeil N, Laprévote O, et al. Lipid deregulation in UV irradiated skin cells: role of 25-hydroxycholesterol in keratinocyte differentiation during photoaging. J Steroid Biochem Mol Biol. 2017;169:189–97 Study elucidating an important component of epidermal changes in photoaging. PubMed • Olivier E, Dutot M, Regazzetti A, Dargère D, Auzeil N, Laprévote O, et al. Lipid deregulation in UV irradiated skin cells: role of 25-hydroxycholesterol in keratinocyte differentiation during photoaging. J Steroid Biochem Mol Biol. 2017;169:189–97 Study elucidating an important component of epidermal changes in photoaging. PubMed
60.
Zurück zum Zitat • Jin S-P, Han SB, Kim YK, Park EE, Doh EJ, Kim KH, et al. Changes in tight junction protein expression in intrinsic aging and photoaging in human skin in vivo. J Dermatol Sci. 2016;84(1):99–101 Changes in claudin-1, an important component of tight junctions and the epidermal barrier, seen in photoaging. PubMed • Jin S-P, Han SB, Kim YK, Park EE, Doh EJ, Kim KH, et al. Changes in tight junction protein expression in intrinsic aging and photoaging in human skin in vivo. J Dermatol Sci. 2016;84(1):99–101 Changes in claudin-1, an important component of tight junctions and the epidermal barrier, seen in photoaging. PubMed
61.
Zurück zum Zitat Alaluf S, Atkins D, Barrett K, Blount M, Carter N, Heath A. Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin. Pigment Cell Res. 2002;15(2):112–8.PubMed Alaluf S, Atkins D, Barrett K, Blount M, Carter N, Heath A. Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin. Pigment Cell Res. 2002;15(2):112–8.PubMed
62.
Zurück zum Zitat Yaar M, Gilchrest BA. Ageing and photoageing of keratinocytes and melanocytes. Clin Exp Dermatol. 2001;26(7):583–91.PubMed Yaar M, Gilchrest BA. Ageing and photoageing of keratinocytes and melanocytes. Clin Exp Dermatol. 2001;26(7):583–91.PubMed
63.
Zurück zum Zitat Dumay O, Karam A, Vian L, Moyal D, Hourseau C, Stoebner P, et al. Ultraviolet AI exposure of human skin results in Langerhans cell depletion and reduction of epidermal antigen-presenting cell function: partial protection by a broad-spectrum sunscreen. Br J Dermatol. 2001;144(6):1161–8.PubMed Dumay O, Karam A, Vian L, Moyal D, Hourseau C, Stoebner P, et al. Ultraviolet AI exposure of human skin results in Langerhans cell depletion and reduction of epidermal antigen-presenting cell function: partial protection by a broad-spectrum sunscreen. Br J Dermatol. 2001;144(6):1161–8.PubMed
64.
Zurück zum Zitat Ouhtit A, Nakazawa H, Yamasaki H, Armstrong BK, Kricker A, Tan E, et al. UV-radiation-specific p53 mutation frequency in normal skin as a predictor of risk of basal cell carcinoma. J Natl Cancer Inst. 1998;90(7):523–31.PubMed Ouhtit A, Nakazawa H, Yamasaki H, Armstrong BK, Kricker A, Tan E, et al. UV-radiation-specific p53 mutation frequency in normal skin as a predictor of risk of basal cell carcinoma. J Natl Cancer Inst. 1998;90(7):523–31.PubMed
65.
Zurück zum Zitat Rittie L, Fisher GJ. Natural and sun-induced aging of human skin. Cold Spring Harb Perspect Med. 2015;5(1):a015370.PubMedPubMedCentral Rittie L, Fisher GJ. Natural and sun-induced aging of human skin. Cold Spring Harb Perspect Med. 2015;5(1):a015370.PubMedPubMedCentral
66.
Zurück zum Zitat Fisher GJ, Voorhees JJ. Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. J Investig Dermatol Symp Proc. 1998;3(1):61–8.PubMed Fisher GJ, Voorhees JJ. Molecular mechanisms of photoaging and its prevention by retinoic acid: ultraviolet irradiation induces MAP kinase signal transduction cascades that induce Ap-1-regulated matrix metalloproteinases that degrade human skin in vivo. J Investig Dermatol Symp Proc. 1998;3(1):61–8.PubMed
67.
Zurück zum Zitat Mora Huertas AC, Schmelzer CE, Hoehenwarter W, Heyroth F, Heinz A. Molecular-level insights into aging processes of skin elastin. Biochimie. 2016;128–129:163–73.PubMed Mora Huertas AC, Schmelzer CE, Hoehenwarter W, Heyroth F, Heinz A. Molecular-level insights into aging processes of skin elastin. Biochimie. 2016;128–129:163–73.PubMed
68.
Zurück zum Zitat Makrantonaki E, Zouboulis CC. Molecular mechanisms of skin aging: state of the art. Ann N Y Acad Sci. 2007;1119:40–50.PubMed Makrantonaki E, Zouboulis CC. Molecular mechanisms of skin aging: state of the art. Ann N Y Acad Sci. 2007;1119:40–50.PubMed
69.
Zurück zum Zitat Shin J, Kim JH, Kim EK. Repeated exposure of human fibroblasts to UVR induces secretion of stem cell factor and senescence. J Eur Acad Dermatol Venereol. 2012;26(12):1577–80.PubMed Shin J, Kim JH, Kim EK. Repeated exposure of human fibroblasts to UVR induces secretion of stem cell factor and senescence. J Eur Acad Dermatol Venereol. 2012;26(12):1577–80.PubMed
70.
Zurück zum Zitat Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.PubMedPubMedCentral Coppe JP, Desprez PY, Krtolica A, Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118.PubMedPubMedCentral
71.
Zurück zum Zitat Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 2011;30(8):1536–48.PubMedPubMedCentral Freund A, Patil CK, Campisi J. p38MAPK is a novel DNA damage response-independent regulator of the senescence-associated secretory phenotype. EMBO J. 2011;30(8):1536–48.PubMedPubMedCentral
72.
Zurück zum Zitat Passarino G, De Rango F, Montesanto A. Human longevity: genetics or lifestyle? It takes two to tango. Immun Ageing. 2016;13:12.PubMedPubMedCentral Passarino G, De Rango F, Montesanto A. Human longevity: genetics or lifestyle? It takes two to tango. Immun Ageing. 2016;13:12.PubMedPubMedCentral
73.
Zurück zum Zitat Dreesen O, Stewart CL. Accelerated aging syndromes, are they relevant to normal human aging? Aging (Albany). 2011;3(9):889–95. Dreesen O, Stewart CL. Accelerated aging syndromes, are they relevant to normal human aging? Aging (Albany). 2011;3(9):889–95.
74.
Zurück zum Zitat Moriwaki S. Human DNA repair disorders in dermatology: a historical perspective, current concepts and new insight. J Dermatol Sci. 2016;81(2):77–84.PubMed Moriwaki S. Human DNA repair disorders in dermatology: a historical perspective, current concepts and new insight. J Dermatol Sci. 2016;81(2):77–84.PubMed
75.
Zurück zum Zitat Musich PR, Zou Y. Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany). 2009;1(1):28–37. Musich PR, Zou Y. Genomic instability and DNA damage responses in progeria arising from defective maturation of prelamin A. Aging (Albany). 2009;1(1):28–37.
76.
Zurück zum Zitat Phipps SM, Berletch JB, Andrews LG, Tollefsbol TO. Aging cell culture: methods and observations. Methods Mol Biol. 2007;371:9–19.PubMedPubMedCentral Phipps SM, Berletch JB, Andrews LG, Tollefsbol TO. Aging cell culture: methods and observations. Methods Mol Biol. 2007;371:9–19.PubMedPubMedCentral
77.
Zurück zum Zitat von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP. Human cell senescence as a DNA damage response. Mech Ageing Dev. 2005;126(1):111–7. von Zglinicki T, Saretzki G, Ladhoff J, d’Adda di Fagagna F, Jackson SP. Human cell senescence as a DNA damage response. Mech Ageing Dev. 2005;126(1):111–7.
78.
Zurück zum Zitat Choi M, Lee C. Immortalization of primary keratinocytes and its application to skin research. Biomol Ther (Seoul). 2015;23(5):391–9. Choi M, Lee C. Immortalization of primary keratinocytes and its application to skin research. Biomol Ther (Seoul). 2015;23(5):391–9.
79.
Zurück zum Zitat Yokoo S, Furumoto K, Hiyama E, Miwa N. Slow-down of age-dependent telomere shortening is executed in human skin keratinocytes by hormesis-like-effects of trace hydrogen peroxide or by anti-oxidative effects of pro-vitamin C in common concurrently with reduction of intracellular oxidative stress. J Cell Biochem. 2004;93(3):588–97.PubMed Yokoo S, Furumoto K, Hiyama E, Miwa N. Slow-down of age-dependent telomere shortening is executed in human skin keratinocytes by hormesis-like-effects of trace hydrogen peroxide or by anti-oxidative effects of pro-vitamin C in common concurrently with reduction of intracellular oxidative stress. J Cell Biochem. 2004;93(3):588–97.PubMed
80.
Zurück zum Zitat Buckingham EM, Klingelhutz AJ. The role of telomeres in the ageing of human skin. Exp Dermatol. 2011;20(4):297–302.PubMedPubMedCentral Buckingham EM, Klingelhutz AJ. The role of telomeres in the ageing of human skin. Exp Dermatol. 2011;20(4):297–302.PubMedPubMedCentral
81.
Zurück zum Zitat Kosmadaki MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron. 2004;35(3):155–9.PubMed Kosmadaki MG, Gilchrest BA. The role of telomeres in skin aging/photoaging. Micron. 2004;35(3):155–9.PubMed
82.
Zurück zum Zitat Counter CM. The roles of telomeres and telomerase in cell life span. Mutat Res. 1996;366(1):45–63.PubMed Counter CM. The roles of telomeres and telomerase in cell life span. Mutat Res. 1996;366(1):45–63.PubMed
83.
Zurück zum Zitat Marrone A, Walne A, Dokal I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr Opin Genet Dev. 2005;15(3):249–57.PubMed Marrone A, Walne A, Dokal I. Dyskeratosis congenita: telomerase, telomeres and anticipation. Curr Opin Genet Dev. 2005;15(3):249–57.PubMed
85.
Zurück zum Zitat Holbek S, Bendtsen KM, Juul J. Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model. Phys Rev E Stat Nonlinear Soft Matter Phys. 2013;88(4):042706. Holbek S, Bendtsen KM, Juul J. Moderate stem-cell telomere shortening rate postpones cancer onset in a stochastic model. Phys Rev E Stat Nonlinear Soft Matter Phys. 2013;88(4):042706.
86.
Zurück zum Zitat Coluzzi E, Colamartino M, Cozzi R, Leone S, Meneghini C, O’Callaghan N, et al. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One. 2014;9(10):e110963.PubMedPubMedCentral Coluzzi E, Colamartino M, Cozzi R, Leone S, Meneghini C, O’Callaghan N, et al. Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One. 2014;9(10):e110963.PubMedPubMedCentral
87.
Zurück zum Zitat Rochette PJ, Brash DE. Human telomeres are hypersensitive to UV-induced DNA damage and refractory to repair. PLoS Genet. 2010;6(4):e1000926.PubMedPubMedCentral Rochette PJ, Brash DE. Human telomeres are hypersensitive to UV-induced DNA damage and refractory to repair. PLoS Genet. 2010;6(4):e1000926.PubMedPubMedCentral
88.
Zurück zum Zitat Stout GJ, Blasco MA. Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C. Cancer Res. 2013;73(6):1844–54.PubMed Stout GJ, Blasco MA. Telomere length and telomerase activity impact the UV sensitivity syndrome xeroderma pigmentosum C. Cancer Res. 2013;73(6):1844–54.PubMed
89.
Zurück zum Zitat Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149(6):1269–83.PubMedPubMedCentral Li T, Kon N, Jiang L, Tan M, Ludwig T, Zhao Y, et al. Tumor suppression in the absence of p53-mediated cell-cycle arrest, apoptosis, and senescence. Cell. 2012;149(6):1269–83.PubMedPubMedCentral
90.
Zurück zum Zitat Lu J, Guo JH, Tu XL, Zhang C, Zhao M, Zhang QW, et al. Tiron inhibits UVB-induced AP-1 binding sites transcriptional activation on MMP-1 and MMP-3 promoters by MAPK signaling pathway in human dermal fibroblasts. PLoS One. 2016;11(8):e0159998.PubMedPubMedCentral Lu J, Guo JH, Tu XL, Zhang C, Zhao M, Zhang QW, et al. Tiron inhibits UVB-induced AP-1 binding sites transcriptional activation on MMP-1 and MMP-3 promoters by MAPK signaling pathway in human dermal fibroblasts. PLoS One. 2016;11(8):e0159998.PubMedPubMedCentral
91.
Zurück zum Zitat Quan T, Fisher GJ. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review. Gerontology. 2015;61(5):427–34.PubMedPubMedCentral Quan T, Fisher GJ. Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: a mini-review. Gerontology. 2015;61(5):427–34.PubMedPubMedCentral
92.
Zurück zum Zitat Velarde MC, Demaria M. Targeting senescent cells: possible implications for delaying skin aging: a mini-review. Gerontology. 2016;62(5):513–8.PubMed Velarde MC, Demaria M. Targeting senescent cells: possible implications for delaying skin aging: a mini-review. Gerontology. 2016;62(5):513–8.PubMed
93.
Zurück zum Zitat Rinnerthaler M, Bischof J, Streubel M, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89.PubMedPubMedCentral Rinnerthaler M, Bischof J, Streubel M, Trost A, Richter K. Oxidative stress in aging human skin. Biomolecules. 2015;5(2):545–89.PubMedPubMedCentral
94.
Zurück zum Zitat Bo H, Jiang N, Ji LL, Zhang Y. Mitochondrial redox metabolism in aging: effect of exercise interventions. J Sport Health Sci. 2013;2(2):67–74. Bo H, Jiang N, Ji LL, Zhang Y. Mitochondrial redox metabolism in aging: effect of exercise interventions. J Sport Health Sci. 2013;2(2):67–74.
95.
Zurück zum Zitat Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci. 2017;85(3):152–61.PubMed Krutmann J, Bouloc A, Sore G, Bernard BA, Passeron T. The skin aging exposome. J Dermatol Sci. 2017;85(3):152–61.PubMed
96.
Zurück zum Zitat Puri P, Nandar SK, Kathuria S, Ramesh V. Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol. 2017;83(4):415–23.PubMed Puri P, Nandar SK, Kathuria S, Ramesh V. Effects of air pollution on the skin: a review. Indian J Dermatol Venereol Leprol. 2017;83(4):415–23.PubMed
97.
Zurück zum Zitat Burke K, Wei H. Synergistic damage by UVA radiation and pollutants. Toxicol Ind Health. 2009;25(4–5):219–24.PubMed Burke K, Wei H. Synergistic damage by UVA radiation and pollutants. Toxicol Ind Health. 2009;25(4–5):219–24.PubMed
98.
Zurück zum Zitat Ushio H, Nohara K, Fujimaki H. Effect of environmental pollutants on the production of pro-inflammatory cytokines by normal human dermal keratinocytes. Toxicol Lett. 1999;105(1):17–24.PubMed Ushio H, Nohara K, Fujimaki H. Effect of environmental pollutants on the production of pro-inflammatory cytokines by normal human dermal keratinocytes. Toxicol Lett. 1999;105(1):17–24.PubMed
99.
Zurück zum Zitat Drakaki E, Dessinioti C, Antoniou CV. Air pollution and the skin. Front Environ Sci. 2014;2(11). Drakaki E, Dessinioti C, Antoniou CV. Air pollution and the skin. Front Environ Sci. 2014;2(11).
Metadaten
Titel
The Impact of Sunlight on Skin Aging
verfasst von
Hisham Kaddurah
Taylor L. Braunberger
Gautham Vellaichamy
Amanda F. Nahhas
Henry W. Lim
Iltefat H. Hamzavi
Publikationsdatum
29.10.2018
Verlag
Springer US
Erschienen in
Current Geriatrics Reports / Ausgabe 4/2018
Elektronische ISSN: 2196-7865
DOI
https://doi.org/10.1007/s13670-018-0262-0

Weitere Artikel der Ausgabe 4/2018

Current Geriatrics Reports 4/2018 Zur Ausgabe

Nutrition, Obesity and Diabetes (L Falque-Madrid and H Florez, Section Editors)

Multilevel Risk Factors Associated with Obesity in Older Latinos Ages 65 Years and Over

Geriatric Orthopedics (E Meinberg, Section Editor)

Current Evaluation and Management of Vertebral Compression Fractures

Infectious Diseases in the Elderly (T Rowe, Section Editor)

Vaccinations for Older Adults

Geriatric Orthopedics (E Meinberg, Section Editor)

Academic Geriatric Orthopedics: a New Paradigm for Inpatient Care

Geriatric Orthopedics (E Meinberg, Section Editor)

Fragility Fractures in the Developing World: a Rising Challenge

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.