Skip to main content
Erschienen in: BMC Musculoskeletal Disorders 1/2020

Open Access 01.12.2020 | Research article

The influence of adipose-derived stromal vascular fraction cells on the treatment of knee osteoarthritis

verfasst von: Masanori Tsubosaka, Tomoyuki Matsumoto, Satoshi Sobajima, Takehiko Matsushita, Hideki Iwaguro, Ryosuke Kuroda

Erschienen in: BMC Musculoskeletal Disorders | Ausgabe 1/2020

Abstract

Background

Adipose-derived stromal vascular fraction (SVF) cells are a mixed cell population that includes cells with multilineage potential, similar to bone marrow-derived mesenchymal stem cells. Our purpose is to investigate the influence of SVF cells in patients with knee osteoarthritis (OA) and the short-term treatment effects.

Methods

Fifty-seven patients were enrolled and treated with intra-articular injection of 2.5 × 107 SVF cells into the knee joint between September 2017 and March 2018. All patients were followed up for 12 months or longer. Mean age at treatment and follow-up period were 69.4 ± 6.9 years and 13.7 ± 2.0 months, respectively. The mean preoperative hip-knee-ankle angle was 6.7 ± 3.6°. SVF cells were prepared using the Celution®800/CRS system from the patients’ abdominal or breech subcutaneous fat. The mean SVF cell viability was 90.6 ± 2.7%. Clinical evaluations were performed for range of motion, Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), visual analog scale (VAS) for pain, and the Knee injury and Osteoarthritis Score (KOOS). Imaging evaluations, which included the hip-knee-ankle angle assessed via radiography, and T2 mapping value using a 1.5-T magnetic resonance imaging unit were also assessed. Both clinical and imaging evaluations were performed preoperatively, 1, 3, 6, and 12 months postoperatively, and compared among all timepoints (p < 0.05).

Results

Knee extension angle at 6 and 12 months postoperatively was significantly better than the preoperative angle. Total WOMAC, VAS, and KOOS scores at 1, 3, 6 and 12 months postoperatively were significantly better than preoperative scores. There was no significant difference in hip-knee-ankle angle among the five time periods. T2 mapping values of lateral femur and tibia were significantly higher 12 months postoperatively than preoperatively.

Conclusions

The short-term clinical effects of intra-articular SVF cell injection on knee OA were excellent. Intra-articular SVF cell injection is a novel and innovative approach for treating patients with knee OA.
Hinweise

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12891-020-03231-3.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
OA
Osteoarthritis
ADSCs
Adipose tissue-derived mesenchymal stem cells
BMSCs
Bone marrow-derived mesenchymal stem cells
SVF
Stromal vascular fraction
KL
Kellgren-Lawrence
ROM
range of motion
WOMAC
Western Ontario and McMaster Universities Osteoarthritis Index
VAS
Visual analog scale
JKOM
Japanese Knee Osteoarthritis Measure
KOOS
Knee injury and Osteoarthritis Outcome Score
HKA
Hip-knee-ankle
MRI
Magnetic resonance imaging
ADL
Activities of daily living

Background

Osteoarthritis (OA), a chronic degenerative joint disorder characterized by articular cartilage destruction and osteophyte formation, is a prevalent cause of significant disability. Disability is particularly evident in the elderly, where 10–50% of the senior population is affected by OA and many are severely disabled [1, 2]. Knee OA initiates changes in the cartilage, ligaments, tendons, and muscles of the knee joint [3], which lead to knee buckling, poor psychosocial outcomes, increased risk of falls, balance deficits, and limitation in certain physical activities [46]. The altered clinical status and functional disability lead to a decrease in the quality of life [7]. Recently, cell therapy with adipose tissue-derived mesenchymal stem cells (ADSCs) is attracting attention as a novel potential therapy for knee OA [8, 9]. ADSCs share similar properties with bone marrow-derived mesenchymal stem cells (BMSCs), but they are easier to collect for clinical application, with higher isolation yields [9]. ADSCs, however, require culturing, and it takes a few weeks between isolation and application.
Adipose-derived stromal vascular fraction (SVF) cells contain regenerative cells, such as ADSCs, macrophages, blood cells, pericytes, fibroblasts, vessel-forming cells like endothelial and smooth muscle cells, and their progenitors [1012]. SVF cells can be easily isolated in large amounts from autologous adipose tissue and used without culturing or differentiation [13, 14]. The safety and efficacy of SVF cells have been examined in several clinical settings, such as cardiology [15], urology [16], plastic, and reconstructive surgery [17, 18]. Studies have also reported the effectiveness of SVF cells in orthopedic clinical settings [1921]. However, the detailed clinical evaluation of SVF cell treatment for knee OA while securing the sample size has not yet been reported in a large number of patients.
Based on this scientific background, we report a prospective case series of intra-articular injection of autologous SVF cells in knee OA. We investigated the short-term treatment effects in detail, and evaluated the safety, feasibility, and efficacy of intra-articular injections of autologous SVF cells.

Methods

Study design and criteria for subject enrollment

This clinical study was designed to evaluate the safety, feasibility, and efficacy of autologous SVF cells in patients with knee OA. The grade of knee OA was evaluated by the Kellgren-Lawrence (KL) classification, and all patients with grades I to IV OA participated in this study. The study protocol conformed to the Declaration of Helsinki and was approved by the appropriate ethics committees. All patients provided informed consent prior to participation.
The inclusion criteria were (a) patients diagnosed with knee OA at any age, (b) exhibiting substantial pain and loss of function, (c) ineffectiveness of conservative treatment including rehabilitation, medication, and intra-articular injection of hyaluronic acid or steroids, and (d) written informed consent. The exclusion criteria were (a) severe bony defect seen on preoperative radiographs, (b) previous knee injury requiring operation, (c) active or previous knee joint infection, and (d) a serious past history, such as systemic inflammatory diseases and vascular changes.
Patients were asked to perform daily home exercises by themselves according to a standardized rehabilitation protocol of the hospital after treatment, in addition to rehabilitation by a physical therapist through regular hospital visits.

Treatment procedures (Fig. 1)

The Celution® 800/CRS system (Cytori Therapeutics Inc., San Diego, CA) was used to extract SVF cells from the patient’s abdominal or breech subcutaneous fat. This system consists of two parts: one for tissue washing and digestion, and the other for cell concentration. All subjects underwent a liposuction procedure to obtain 100–360 mL of adipose tissue under general anesthesia; the extracted tissue was then processed using the Celution® 800/CRS System according to manufacturer instructions. Briefly, the tissue was washed to remove blood and debris. Celase® GMP, which was a mixture of highly purified collagenase and neutral protease enzymes, was then added and incubated at ~ 37 °C for 20 min with continuous mixing to digest the aspirated adipose tissue. After digestion, the SVF cells were concentrated using centrifugation and washed to remove the Celase® reagent. SVF cells were then extracted from the system and counted to prepare the specified dose in 5 mL of lactated Ringer’s solution. The whole system can be operated aseptically using clinical-grade solutions such as saline and lactated Ringer’s, and single-use Celution™ consumable sets. The SVF cell count and viability were determined at each investigational site using the NC-100™ NucleoCounter® Automated Cell Counting System (Chemometec, Allerod, Denmark). This system is an image cytometer based on fluorescence from the fluorescent dye, propidium iodide. When a sample is mixed with Reagent A100 and Reagent B, lysis of the viable cell membrane occurs, rendering all the cell nuclei susceptible to staining with propidium iodide facillitating in a total cell count. However, non-viable cells are permeable without treatment and are therefore stained directly with propidium iodide, resulting in a non-viable cell count. Thus, the cell viability of a sample is determined using the total cell count and the count of non-viable cells.
We administered an intra-articular injection of 2.5 × 107 SVF cells to each patient according to the number of purified SVF cells and guidelines previously stated in a similar report [22]. Cell transplantation into the knee joint was performed without anesthetic and under echo guidance after aspiration if the joint fluid level was excessive.

Endpoints

The primary endpoint of this study was patient improvement based on clinical evaluations and scores. Clinical evaluations included knee range of motion (ROM) and muscle force of knee extension and flexion using a hand-held dynamometer. Clinical scores included Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), visual analog scale (VAS) for pain (0–100), Japanese Knee Osteoarthritis Measure (JKOM), and Knee injury and Osteoarthritis Outcome Score (KOOS). For measurement of muscle force of knee extension and flexion, patients were tested in a prone position with their knee at 45 degrees flexion. The hand-held dynamometer was placed at the center of their lower leg. The examiner asked subjects to bend their knee and hold for 3 s to measure hamstrings strength, and to straighten their knee and hold for 3 s to measure quadriceps strength. The examiner added resistance to maintain the knee at 45° and measured the displayed value as muscle strength. These tests were performed three times and the average value was recorded.
As a secondary endpoint, imaging evaluations, which included the hip-knee-ankle (HKA) angle assessed via radiography, and T2 mapping value using a 1.5-T magnetic resonance imaging (MRI) unit (Sigma Exite HDx; GE Healthcare, Waukesha, Wis) [23, 24] were also assessed. The method of calculating the T2 mapping value is as follows; we selected a central slice that passed through the center of the weight-bearing cartilage surrounded by the anterior and posterior margins of the meniscus on a sagittal slice of T1-weighted fast-field echo images. In addition to the central slice, we added two slices neighboring the central slice anteriorly and posteriorly (Fig. 2a). The region of interest (ROI) was then set at the weight-bearing full-thickness cartilage of the medial and lateral femoral condyle and medial and lateral tibial plateau on the central slice of the coronal image (Fig. 2b). The ROI was also set using the same method on both the anterior and posterior slice. Overall, the T2 mapping values of 12 ROIs were measured. According to this analysis, the lower the T2 mapping value, the lower the degree of articular cartilage degeneration.
Both clinical and imaging evaluations were performed preoperatively and at 1, 3, 6 and 12 months postoperatively after intra-articular injection of SVF cells. Clinical evaluations were performed by an independent experienced physiotherapist. Image analyses were performed by an independent orthopedic surgeon with 15 years of experience in MRI analysis of knee OA features. For safety evaluations, incidence, severity, and outcome of all adverse events were recorded.

Statistical analysis

All values were expressed as mean ± standard deviation. Results were analyzed using a statistical software package (Statview 5.0; Abacus Concepts, Inc., Berkeley, CA, USA). Clinical and imaging evaluations were compared between the five time periods using repeated measures analysis of variance. Furthermore, we evaluated the clinical scores preoperatively and at 12 months postoperatively, and investigated the improvement rate of clinical scores from preoperatively to 12 months postoperatively among the KL classification by using repeated measures analysis of variance. P < 0.05 was considered statistically significant. A statistical power analysis was performed prior to the study, which was expected to require a power of 0.8, based on a prespecified significance level of α < 0.05 and assuming a medium effect size (effect size = 0.30) using G power 3 [25]. The estimated sample size was 45 patients.

Results

In total, 543 patients visited our clinic for SVF cell treatment between September 2017 and March 2018. Of them, 367 were excluded because they showed improvements in symptoms with conservative treatment including rehabilitation, medication, and intra-articular injection of hyaluronic acid or steroids. Eighty-seven patients refused to participate in this study. Twenty-nine were excluded based on exclusion criteria: (a) patients with severe bony defect observed on preoperative radiographs (7 patients), (b) patients with previous knee injury requiring operation (2 patients), (c) patients with active or previous knee joint infection (1 patients), and (d) patients with a serious past history (19 patients). As a result, 60 patients were enrolled and treated with intra-articular injection of SVF cells into the knee joint. Three patients were lost to follow-up, leaving a total of 57 patients (57 knees) available for the study. The follow-up rate was 95.0%. (Fig. 3). All patients were followed up for 12 months or longer. Mean age at treatment, follow-up period, and body mass index were 69.4 ± 6.9 years, 13.7 ± 2.0 months, and 25.1 ± 3.1 kg/m2, respectively. Patients were divided based on the KL classification: grade I, 0 patients; grade II, 11 patients; grade III, 36 patients; and grade IV, 10 patients. The mean preoperative HKA angle was 6.7 ± 3.6° (varus type knee OA, 53 knees; valgus knee OA, 4 knees), and the mean preoperative knee extension and flexion angles were − 6.0 ± 5.9° and 131.3 ± 14.2°, respectively (Table 1).
Table 1
Patient characteristics
Characteristics
Baseline Data
Sex (M/F); n (%)
41/16 (72%/28%)
Age (mean ± standard deviation); yrs
69.4 ± 6.9
Body mass index; kg/m2
25.1 ± 3.1
Duration of follow-up; months
13.7 ± 2.0
Hip-knee-ankle angle at baseline; degree
6.7 ± 3.6
Knee extension angle; degree
− 6.0 ± 5.9
Knee flexion angle; degree
131.3 ± 14.2
Kellgren- Lawrence classificationn (%)
 I
0 (0%)
 II
11 (19%)
 III
36 (63%)
 IV
10 (18%)
The mean volume of liposuction and number of purified SVF cells were 334.3 ± 44.0 mL and 7.6 × 107 ± 2.5 × 107, respectively. Mean SVF cell viability was 90.6% ± 2.7%.

Clinical evaluation

The mean ROM improved from a baseline of − 6.0°–131.3° to − 4.8°–133.9° at 1 month, − 4.3°–134.3° at 3 months, − 3.7°–134.5° at 6 months, and − 3.5°–132.6° at 12 months postoperatively. The improvement in the mean extension angle from baseline to 6 and 12 months was statistically significant. Muscle force of knee extension and flexion improved from a baseline of 202.5 Nm and 99.5 Nm, respectively, to 198.9 Nm and 108.2 Nm at 1 month, 219.0 Nm and 116.6 Nm at 3 months, 235.4 Nm and 124.2 Nm at 6 months, and 261.9 Nm and 126.8 Nm at 12 months postoperatively, respectively. The mean muscle force of knee extension and flexion was significantly better at 12 months postoperatively than preoperatively.
The improvement in the mean total WOMAC scores from baseline to 12 months postoperatively was from 33.4 to 22.6 points, which showed a statistically and clinically significant difference (Table 2). The improvement in VAS scores from baseline to 12 months postoperatively was from 46.5 to 32.8 points, which showed a statistically and clinically significant difference (Table 2). An improvement was also evident in the mean total JKOM scores from baseline to 12 months postoperatively (from 34.9 to 26.8 points), which showed a statistically significant difference (Table 2). Improvements in the KOOS score were also evident, including an average score of 5 subscales and all subscale scores 12 months postoperatively (Table 2, Additional file 1). The improvements from baseline in the mean scores of pain, symptoms, activities of daily living, sports, and quality of life subscales were from 53.1 to 66.3 points, 57.8 to 67.0 points, 70.0 to 77.5 points, 27.6 to 37.5 points, and 33.6 to 44.6 points with statistical significance, respectively. The improvements in the mean scores of pain, symptoms, sports, and quality of life subscales also showed clinically significant differences (Additional file 1).
Table 2
Clinical evaluation results
Range of motion of the knee
Extension
Mean value ± S.D. (°)
Pvalue
Flexion
Mean value ± S.D. (°)
Pvalue
Preoperative
−6.0 ± 5.9
 
Preoperative
131.3 ± 14.2
 
1 month
−4.8 ± 4.8
0.23
1 month
133.9 ± 12.5
0.37
3 months
−4.3 ± 4.5
0.10
3 months
134.3 ± 11.9
0.29
6 months
−3.7 ± 4.4
0.02a
6 months
134.5 ± 12.4
0.26
12 months
−3.5 ± 4.1
0.02a
12 months
132.6 ± 15.2
0.67
Muscle force
Extension (Quadriceps)
Mean value ± S.D. (Nm)
Pvalue
Flexion (Hamstrings)
Mean value ± S.D. (Nm)
Pvalue
Preoperative
202.5 ± 85.9
 
Preoperative
99.5 ± 39.7
 
1 month
198.9 ± 91.1
0.86
1 month
108.2 ± 41.3
0.36
3 months
219.0 ± 103.8
0.43
3 months
116.6 ± 59.8
0.07
6 months
235.4 ± 104.5
0.11
6 months
124.2 ± 41.7
< 0.01a
12 months
261.9 ± 106.7
< 0.01a
12 months
126.8 ± 38.7
< 0.01a
Western Ontario and McMaster Universities Osteoarthritis Index
Visual analog scale
Total Score
Mean value ± S.D.
Pvalue
 
Mean value ± S.D.
Pvalue
Preoperative
33.4 ± 18.2
 
Preoperative
46.5 ± 23.5
 
1 month
26.3 ± 14.6
0.046a
1 month
30.1 ± 18.8
< 0.01a
3 months
22.8 ± 15.7
< 0.01a
3 months
27.3 ± 17.6
< 0.01a
6 months
22.6 ± 16.4
< 0.01a
6 months
27.4 ± 18.8
< 0.01a
12 months
22.6 ± 17.5
< 0.01a
12 months
32.8 ± 24.7
< 0.01a
Japanese Knee Osteoarthritis Measure
Knee injury and Osteoarthritis Outcome Score
Total Score
Mean value ± S.D.
Pvalue
Average Score of 5 subscales
Mean value ± S.D.
Pvalue
Preoperative
34.9 ± 18.2
 
Preoperative
48.7 ± 15.8
 
1 month
30.5 ± 17.1
0.26
1 month
55.2 ± 17.6
0.04a
3 months
25.8 ± 17.6
0.02a
3 months
58.6 ± 15.4
< 0.01a
6 months
24.5 ± 17.8
< 0.01a
6 months
59.2 ± 15.8
< 0.01a
12 months
26.8 ± 19.7
0.04a
12 months
58.6 ± 16.8
< 0.01a
a Statistically significant, Standard deviation (S.D.)
According to the KL classification, there were no grade I patients in this study. There was no significant difference in preoperative clinical scores of WOMAC, VAS, JKOM, and KOOS among the KL classifications. Clinical scores of WOMAC, JKOM and KOOS at 12 months postoperatively were significantly better for grade II than for grade III. Furthermore, clinical scores of WOMAC, VAS, and JKOM at 12 months postoperatively were also significantly better for grade II than for grade IV. The improvement rate of WOMAC from baseline to 12 months was significantly better for grade II than for grade III. There was no significant difference in improvement rates of VAS, JKOM, and KOOS among the KL classifications (Table 3).
Table 3
Improvement rate from baseline to 12-month postoperatively in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC), visual analog scale (VAS) for pain, Japanese Knee Osteoarthritis Measure (JKOM), and Knee injury and Osteoarthritis Outcome Score (KOOS) scores among Kellgren-Lawrence classifications
 
Clinical score
Kellgren-Lawrence classification
P value
Grade II (11 patients)
Grade III (36 patients)
Grade IV (10 patients)
GradeII vs III
GradeII vs IV
GradeIII vs IV
Preoperative
WOMAC
27.7 ± 15.1
35.1 ± 17.5
37.6 ± 21.5
0.27
0.21
0.70
score
VAS
35.5 ± 18.6
52.1 ± 22.7
55.4 ± 30.8
0.07
0.06
0.70
 
JKOM
27.4 ± 15.3
37.4 ± 18.5
37.1 ± 20.8
0.15
0.24
0.97
 
KOOS
52.9 ± 12.0
48.6 ± 17.5
45.4 ± 14.6
0.46
0.28
0.56
12 months
WOMAC
11.2 ± 9.4
26.0 ± 16.6
25.7 ± 17.1
0.01a
0.04a
0.96
score
VAS
20.7 ± 20.2
37.4 ± 24.6
42.4 ± 25.8
0.07
0.045a
0.56
 
JKOM
14.4 ± 9.6
31.6 ± 20.1
32.2 ± 18.5
0.01a
0.03a
0.92
 
KOOS
68.5 ± 14.3
56.3 ± 17.9
56.1 ± 14.0
0.048a
0.08
0.97
Improvement
WOMAC
58.5 ± 26.5
22.8 ± 46.8
28.8 ± 22.1
0.02a
0.09
0.67
rate
VAS
14.8 ± 20.0
14.7 ± 20.9
13.0 ± 18.3
0.99
0.84
0.81
 
JKOM
34.4 ± 49.9
7.4 ± 56.6
5.7 ± 27.8
0.15
0.20
0.92
 
KOOS
19.1 ± 24.2
11.2 ± 27.9
17.7 ± 21.2
0.41
0.90
0.47
Mean value ± Standard deviation (S.D.) a Statistically significant

Imaging evaluation

The mean HKA angles changed from a baseline of 6.7° to 7.1° at 1 month, 6.7° at 3 months, 6.6° at 6 months, and 6.8° at 12 months postoperatively. However, this change was not statistically significant at any time. In contrast, the mean T2 mapping values of the lateral femur and tibia in the anterior areas at 12 months postoperatively were significantly lower than those preoperatively. The mean T2 mapping value of the medial tibia in the central area at 6 and 12 months postoperatively was also significantly better than that preoperatively. Furthermore, the mean T2 mapping value of the lateral femur in the posterior area at 12 months postoperatively was significantly better than that preoperatively (Table 4, Fig. 4).
Table 4
Imaging evaluation results
Hip-knee-ankle angle
Mean value ± S.D.
P value
      
Preoperative
6.7 ± 3.6
       
1 month
7.1 ± 3.5
0.59
      
3 months
6.7 ± 3.9
0.94
      
6 months
6.6 ± 3.6
0.92
      
12 months
6.8 ± 3.7
0.90
      
Anterior T2 mapping value
Central T2 mapping value
Posterior T2 mapping value
Medial femur
Mean value ± S.D.
Pvalue
Medial femur
Mean value ± S.D.
Pvalue
Medial femur
Mean value ± S.D.
Pvalue
Preoperative
51.5 ± 5.0
 
Preoperative
51.4 ± 4.6
 
Preoperative
52.9 ± 5.2
 
1 month
50.0 ± 2.4
0.20
1 month
50.7 ± 4.1
0.60
1 month
51.2 ± 4.8
0.25
3 months
50.7 ± 4.1
0.52
3 months
50.7 ± 4.2
0.62
3 months
51.6 ± 4.8
0.37
6 months
50.1 ± 3.0
0.22
6 months
49.8 ± 4.7
0.28
6 months
52.0 ± 4.4
0.56
12 months
50.3 ± 4.6
0.054
12 months
50.4 ± 5.4
0.18
12 months
51.8 ± 4.8
0.22
Medial tibia
  
Medial tibia
  
Medial tibia
  
Preoperative
42.6 ± 7.2
 
Preoperative
42.0 ± 6.0
 
Preoperative
42.1 ± 6.7
 
1 month
40.6 ± 6.0
0.26
1 month
40.7 ± 5.0
0.39
1 month
40.7 ± 5.4
0.39
3 months
40.8 ± 5.5
0.29
3 months
40.4 ± 5.8
0.28
3 months
41.0 ± 5.8
0.52
6 months
39.1 ± 3.3
0.053
6 months
38.4 ± 2.7
0.02a
6 months
39.3 ± 3.2
0.11
12 months
39.7 ± 3.9
0.12
12 months
37.9 ± 2.8
0.01a
12 months
38.8 ± 3.8
0.08
Lateral femur
  
Lateral femur
  
Lateral femur
  
Preoperative
43.4 ± 3.3
 
Preoperative
48.1 ± 4.7
 
Preoperative
47.0 ± 4.7
 
1 month
42.3 ± 3.7
0.24
1 month
47.9 ± 4.8
0.85
1 month
46.1 ± 4.6
0.49
3 months
42.4 ± 3.2
0.29
3 months
46.7 ± 3.8
0.27
3 months
45.1 ± 3.3
0.13
6 months
41.8 ± 3.4
0.10
6 months
47.3 ± 4.0
0.56
6 months
44.6 ± 4.4
0.07
12 months
41.3 ± 1.7
0.047a
12 months
46.4 ± 2.4
0.22
12 months
43.4 ± 3.1
0.01a
Lateral tibia
  
Lateral tibia
  
Lateral tibia
  
Preoperative
39.6 ± 2.1
 
Preoperative
37.2 ± 2.5
 
Preoperative
37.4 ± 2.5
 
1 month
38.3 ± 2.2
0.06
1 month
36.6 ± 3.5
0.43
1 month
37.3 ± 2.9
0.85
3 months
39.3 ± 2.8
0.72
3 months
36.9 ± 2.3
0.67
3 months
38.0 ± 2.9
0.45
6 months
37.7 ± 2.3
0.01a
6 months
35.7 ± 2.4
0.07
6 months
37.1 ± 2.6
0.67
12 months
37.6 ± 1.5
0.04a
12 months
36.7 ± 2.2
0.60
12 months
37.1 ± 2.6
0.74
a Statistically significant, Standard deviation (S.D)

Safety evaluation

Neither deaths nor life-threatening adverse events were observed during the 12-month follow-up after cell therapy. Furthermore, there was no mild to moderate adverse event such as swelling, local heat of the knee, or infection during follow-up.

Discussion

Clinical evaluation showed widespread improvement in multiple parameters early after intra-articular SVF cell injection into the knees of OA patients. Most imaging evaluations, especially T2 mapping values, showed similar trends; however, most of these imaging evaluations did not achieve statistical significance. This may be because of the well-known placebo effect of injectable therapies in patient-reported outcomes, or to the limited follow-up duration, as most studies only evaluate the knee via MRI over the course of 1–2 years.
There have been a few reports on good clinical results of ADSC cell therapy for knee OA [8, 9]. ADSCs and BMSCs share similar properties, but require culturing after isolation. In contrast, SVF cells are not cultured and can be prepared from and re-injected back into the patient within the same procedure. Equivalent to BMSCs, SVF cells contain cells with multilineage potential and can be easily isolated in large amounts from autologous adipose tissues and used without culturing [13, 14]. SVF cells have been used for various clinical purposes [1518], and studies on autologous SVF cells for the treatment of knee OA have been reported [1921]. Fodor et al. reported that autologous adipose derived SVF cells were safe and presented a new potential therapy for pain reduction in knee OA, and Hong et al. reported that SVF cell treatment could be more effective than treatment with hyaluronic acid, although their sample size was small [19]. Although Michialek et al. reported that a large clinical trial of intra-articular SVF cell injections were a safe and clinically effective strategy leading to improved quality of life, detailed clinical evaluations were not performed [20]. In this clinical study, we performed the detailed clinical evaluation while securing the sample size.
In the current investigation, the mean total WOMAC, JKOM, VAS, and average 5-subscale KOOS scores 3, 6, and 12 months postoperatively were significantly better than preoperative scores. This was particularly evident in WOMAC and KOOS, for which all subscales at 3, 6, and 12 months postoperatively were significantly better than those preoperatively. The WOMAC instrument is a 24-item patient-reported instrument developed to assess pain, stiffness, and physical functioning in patients with hip or knee OA [26]. The physical function section of the WOMAC provides patients with a list of daily activities and requires them to state how difficult the activities were in the last 48 h because of their arthritis. KOOS is a disease-specific, patient-reported outcome measure assessing perceived pain, other symptoms, ADL, sports and recreation functions, and knee-related quality of life. It is freely accessible and intended for use in the short and long term for research and clinical purposes [27]. WOMAC physical function and KOOS ADL items are identical. Sports and recreation functions and knee-related quality of life subscales were not referred in the WOMAC. Intra-articular SVF cell injection into knees with OA was thought to greatly improve sporting activities that required a higher level of activity than ADL, as well as knee-related quality of life.
T2 mapping is a quantitative cartilage imaging technique that facilitates detection of changes in water and collagen content. Thus, T2 mapping values reflect the degree of articular cartilage degeneration [23, 24]. Although obvious improvement in coronal alignment was not observed in this study, the mean T2 mapping values of the lateral tibia in the anterior area and lateral femur in the anterior and posterior areas at 12 months postoperatively were significantly lower than those seen preoperatively. This indicated that the extent of articular cartilage degeneration was improved even if no obvious structural change was observed via MRI. Furthermore, the T2 mapping value of the lateral femur and tibia confirmed this improvement because mechanical stress was not applied on the lateral side, and almost all patients included in this study (55 of 59 patients; 93.2%) had varus knee OA. The mean T2 mapping value of the medial tibia in the central area at 6 and 12 months postoperatively was also significantly lower than those seen preoperatively. This result was thought to be due to the fact that the region of interest was set in the remaining cartilage at the non-weighted part, because cartilage defect was found in the weighted part of the medial tibia in almost all the cases in this study.
We evaluated the clinical scores preoperatively and 12 months postoperatively and investigated the improvement rate of clinical scores from preoperatively to 12 months postoperatively among the KL classification. The improvement rate of WOMAC scores from baseline to 12 months was significantly better for grade II than for grade III and tended to be better for grade II than for grade IV. Furthermore, the improvement rate of JKOM scores tended to be better for grade II than for grade III and IV. These results indicated that it was desirable to perform the treatment of SVF cells before the degree of degeneration of knee OA had progressed excessively.
This study has some limitations. First, this study had no control group. We plan to investigate the association between SVF cells and other intra-articular interventions in the future. Second, clinical and imaging evaluations were only performed preoperatively, and at 1, 3, 6, and 12 months after intra-articular SVF cell injection into the knee. Long-term investigation of clinical and structural changes is now ongoing. Third, we did not evaluate the relationship between dosage of intra-articular SVF cell injection and clinical/structural results. Finally, this study applied a single treatment of SVF cells. Optimal treatment may require multiple injections.

Conclusions

We performed detailed clinical evaluations of intra-articular autologous SVF cell injection for knee OA while securing the sample size, and obtained good short-term clinical results. All procedures were performed safely. The short-term clinical evaluation of intra-articular SVF cell injection on knee OA was very promising. We suggest intra-articular SVF cell injection into the knee joint as an innovative approach to treat patients with knee OA.

Supplementary information

Supplementary information accompanies this paper at https://​doi.​org/​10.​1186/​s12891-020-03231-3.

Acknowledgements

We wish to thank Hitoshi Yamauchi and Yusuke Harada for collecting data.
This study was approved by the Ethics Committee of Sobajima Clinic. Written, informed consent was obtained from each participant.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Doherty M. Risk factors for progression of knee osteoarthritis. Lancet. 2001;358:775–6.CrossRef Doherty M. Risk factors for progression of knee osteoarthritis. Lancet. 2001;358:775–6.CrossRef
2.
Zurück zum Zitat Haywood L, McWilliams DF, Pearson CI, Gill SE, Ganesan A, Wilson D, et al. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum. 2003;48:2173–7.CrossRef Haywood L, McWilliams DF, Pearson CI, Gill SE, Ganesan A, Wilson D, et al. Inflammation and angiogenesis in osteoarthritis. Arthritis Rheum. 2003;48:2173–7.CrossRef
3.
Zurück zum Zitat Mundermann A, Nigg BM, Humble RN, Stefanyshyn DJ. Orthotic comfort is related to kinematics, kinetics, and EMG in recreational runners. Med Sci Sports Exerc. 2003;35:1710–9.CrossRef Mundermann A, Nigg BM, Humble RN, Stefanyshyn DJ. Orthotic comfort is related to kinematics, kinetics, and EMG in recreational runners. Med Sci Sports Exerc. 2003;35:1710–9.CrossRef
4.
Zurück zum Zitat Hallemans A, Ortibus E, Truijen S, Meire F. Development of independent locomotion in children with a severe visual impairment. Res Dev Disabil. 2011;32:2069–74.CrossRef Hallemans A, Ortibus E, Truijen S, Meire F. Development of independent locomotion in children with a severe visual impairment. Res Dev Disabil. 2011;32:2069–74.CrossRef
5.
Zurück zum Zitat Messier SP, Loeser RF, Hoover JL, Semble EL, Wise CM. Osteoarthritis of the knee: effects on gait, strength, and flexibility. Arch Phys Med Rehabil. 1992;73:29–36.PubMed Messier SP, Loeser RF, Hoover JL, Semble EL, Wise CM. Osteoarthritis of the knee: effects on gait, strength, and flexibility. Arch Phys Med Rehabil. 1992;73:29–36.PubMed
6.
Zurück zum Zitat Nguyen US, Felson DT, Niu J, White DK, Segal NA, Lewis CE, et al. The impact of knee instability with and without buckling on balance confidence, fear of falling and physical function: the multicenter osteoarthritis study. Osteoarthr Cartil. 2014;22:527–34.CrossRef Nguyen US, Felson DT, Niu J, White DK, Segal NA, Lewis CE, et al. The impact of knee instability with and without buckling on balance confidence, fear of falling and physical function: the multicenter osteoarthritis study. Osteoarthr Cartil. 2014;22:527–34.CrossRef
7.
Zurück zum Zitat Alkan BM, Fidan F, Tosun A, Ardıçoğlu O. Quality of life and self-reported disability in patients with knee osteoarthritis. Mod Rheumatol. 2014;24:166–71.CrossRef Alkan BM, Fidan F, Tosun A, Ardıçoğlu O. Quality of life and self-reported disability in patients with knee osteoarthritis. Mod Rheumatol. 2014;24:166–71.CrossRef
8.
Zurück zum Zitat Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254–66.CrossRef Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32:1254–66.CrossRef
9.
Zurück zum Zitat Pers YM, Rackwitz L, Ferreira R, Pullig O, Delfour C, Barry F, et al. Adipose Mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016;5:847–56.CrossRef Pers YM, Rackwitz L, Ferreira R, Pullig O, Delfour C, Barry F, et al. Adipose Mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: a phase I dose-escalation trial. Stem Cells Transl Med. 2016;5:847–56.CrossRef
10.
Zurück zum Zitat Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641–8.CrossRef Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ, March KL, et al. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15:641–8.CrossRef
11.
Zurück zum Zitat Han J, Koh YJ, Moon HR, Ryoo HG, Cho CH, Kim I, et al. Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood. 2010;115:957–64.CrossRef Han J, Koh YJ, Moon HR, Ryoo HG, Cho CH, Kim I, et al. Adipose tissue is an extramedullary reservoir for functional hematopoietic stem and progenitor cells. Blood. 2010;115:957–64.CrossRef
12.
Zurück zum Zitat McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24:1246–53.CrossRef McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L, et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells. 2006;24:1246–53.CrossRef
13.
Zurück zum Zitat De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.CrossRef De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M, et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs. 2003;174:101–9.CrossRef
14.
Zurück zum Zitat Feng Z, Ting J, Alfonso Z, Strem BM, Fraser JK, Rutenberg J, et al. Fresh and cryopreserved, uncultured adipose tissue-derived stem and regenerative cells ameliorate ischemia-reperfusion-induced acute kidney injury. Nephrol Dial Transplant. 2010;25:3874–84.CrossRef Feng Z, Ting J, Alfonso Z, Strem BM, Fraser JK, Rutenberg J, et al. Fresh and cryopreserved, uncultured adipose tissue-derived stem and regenerative cells ameliorate ischemia-reperfusion-induced acute kidney injury. Nephrol Dial Transplant. 2010;25:3874–84.CrossRef
15.
Zurück zum Zitat Kastrup J, Schou M, Gustafsson I, Nielsen OW, Møgelvang R, Kofoed KF, et al. Rationale and Design of the First Double-Blind, Placebo-Controlled Trial with Allogeneic Adipose Tissue-Derived Stromal Cell Therapy in Patients with Ischemic Heart Failure: A Phase II Danish Multicentre Study. Stem Cells Int. 2017;2017:8506370.CrossRef Kastrup J, Schou M, Gustafsson I, Nielsen OW, Møgelvang R, Kofoed KF, et al. Rationale and Design of the First Double-Blind, Placebo-Controlled Trial with Allogeneic Adipose Tissue-Derived Stromal Cell Therapy in Patients with Ischemic Heart Failure: A Phase II Danish Multicentre Study. Stem Cells Int. 2017;2017:8506370.CrossRef
16.
Zurück zum Zitat Alatab S, Shekarchian S, Najafi I, Moghadasali R, Ahmadbeigi N, Pourmand MR, et al. Systemic infusion of autologous adipose tissue-derived Mesenchymal stem cells in peritoneal Dialysis patients: feasibility and safety. Cell J. 2019;20:483–95.PubMed Alatab S, Shekarchian S, Najafi I, Moghadasali R, Ahmadbeigi N, Pourmand MR, et al. Systemic infusion of autologous adipose tissue-derived Mesenchymal stem cells in peritoneal Dialysis patients: feasibility and safety. Cell J. 2019;20:483–95.PubMed
17.
Zurück zum Zitat Lasso JM, Poletti D, Scola B, Gómez-Vilda P, García-Martín AI, Fernández-Santos ME. Injection Laryngoplasty using autologous fat enriched with adipose-derived regenerative stem cells: a safe therapeutic option for the functional reconstruction of the glottal gap after unilateral vocal fold paralysis. Stem Cells Int. 2018;2018:8917913.CrossRef Lasso JM, Poletti D, Scola B, Gómez-Vilda P, García-Martín AI, Fernández-Santos ME. Injection Laryngoplasty using autologous fat enriched with adipose-derived regenerative stem cells: a safe therapeutic option for the functional reconstruction of the glottal gap after unilateral vocal fold paralysis. Stem Cells Int. 2018;2018:8917913.CrossRef
18.
Zurück zum Zitat Mazur S, Zolocinska A, Siennicka K, Janik-Kosacka K, Chrapusta A, Pojda Z. Safety of adipose-derived cell (stromal vascular fraction - SVF) augmentation for surgical breast reconstruction in cancer patients. Adv Clin Exp Med. 2018;27:1085–90.CrossRef Mazur S, Zolocinska A, Siennicka K, Janik-Kosacka K, Chrapusta A, Pojda Z. Safety of adipose-derived cell (stromal vascular fraction - SVF) augmentation for surgical breast reconstruction in cancer patients. Adv Clin Exp Med. 2018;27:1085–90.CrossRef
19.
Zurück zum Zitat Fodor PB, Paulseth SG. Adipose derived stromal cell (ADSC) injections for pain Management of Osteoarthritis in the human knee joint. Aesthet Surg J. 2016;36:229–36.CrossRef Fodor PB, Paulseth SG. Adipose derived stromal cell (ADSC) injections for pain Management of Osteoarthritis in the human knee joint. Aesthet Surg J. 2016;36:229–36.CrossRef
20.
Zurück zum Zitat Hong Z, Chen J, Zhang S, Zhao C, Bi M, Chen X, et al. Intra-articular injection of autologous adipose-derived stromal vascular fractions for knee osteoarthritis: a double-blind randomized self-controlled trial. Int Orthop. 2019;43:1123–34.CrossRef Hong Z, Chen J, Zhang S, Zhao C, Bi M, Chen X, et al. Intra-articular injection of autologous adipose-derived stromal vascular fractions for knee osteoarthritis: a double-blind randomized self-controlled trial. Int Orthop. 2019;43:1123–34.CrossRef
21.
Zurück zum Zitat Michalek J, Moster R, Lukac L, Proefrock K, Petrasovic M, Rybar J, et al. Comparative validation of the WOMAC osteoarthritis and Lequesne algofunctional indices in Greek patients with hip or knee osteoarthritis. Cell Transplant. 2015. https://doi.org/10.3727/096368915X686760. [Epub ahead of print]. Michalek J, Moster R, Lukac L, Proefrock K, Petrasovic M, Rybar J, et al. Comparative validation of the WOMAC osteoarthritis and Lequesne algofunctional indices in Greek patients with hip or knee osteoarthritis. Cell Transplant. 2015. https://​doi.​org/​10.​3727/​096368915X686760​. [Epub ahead of print].
22.
Zurück zum Zitat Jo CH, Chai JW, Jeong EC, Oh S, Shin JS, Shim H, et al. Intra-articular injection of Mesenchymal stem cells for the treatment of osteoarthritis of the knee: a 2-year follow-up study. Am J Sports Med. 2017;45:2774–83.CrossRef Jo CH, Chai JW, Jeong EC, Oh S, Shin JS, Shim H, et al. Intra-articular injection of Mesenchymal stem cells for the treatment of osteoarthritis of the knee: a 2-year follow-up study. Am J Sports Med. 2017;45:2774–83.CrossRef
23.
Zurück zum Zitat Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology. 2013;267:503–13.CrossRef Kijowski R, Blankenbaker DG, Munoz Del Rio A, Baer GS, Graf BK. Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology. 2013;267:503–13.CrossRef
24.
Zurück zum Zitat Ronga M, Angeretti G, Ferraro S, DE Falco G, Genovese EA, Cherubino P. Imaging of articular cartilage: current concepts. Joints. 2014;2:137–40.CrossRef Ronga M, Angeretti G, Ferraro S, DE Falco G, Genovese EA, Cherubino P. Imaging of articular cartilage: current concepts. Joints. 2014;2:137–40.CrossRef
25.
Zurück zum Zitat Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.CrossRef Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*power 3.1: tests for correlation and regression analyses. Behav Res Methods. 2009;41:1149–60.CrossRef
26.
Zurück zum Zitat Bellamy, N. WOMAC osteoarthritis index user’s guide (version X). Australia: Brisbane; 2012. Bellamy, N. WOMAC osteoarthritis index user’s guide (version X). Australia: Brisbane; 2012.
Metadaten
Titel
The influence of adipose-derived stromal vascular fraction cells on the treatment of knee osteoarthritis
verfasst von
Masanori Tsubosaka
Tomoyuki Matsumoto
Satoshi Sobajima
Takehiko Matsushita
Hideki Iwaguro
Ryosuke Kuroda
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Musculoskeletal Disorders / Ausgabe 1/2020
Elektronische ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03231-3

Weitere Artikel der Ausgabe 1/2020

BMC Musculoskeletal Disorders 1/2020 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.