Skip to main content
Erschienen in: Inflammation 3/2014

01.06.2014

The PPARβ/δ Agonist GW501516 Attenuates Peritonitis in Peritoneal Fibrosis via Inhibition of TAK1–NFκB Pathway in Rats

verfasst von: Xuesong Su, Guangyu Zhou, Yanqiu Wang, Xu Yang, Li Li, Rui Yu, Detian Li

Erschienen in: Inflammation | Ausgabe 3/2014

Einloggen, um Zugang zu erhalten

Abstract

Peritoneal fibrosis is a common consequence of long-term peritoneal dialysis (PD), and peritonitis is a factor in its onset. Agonist-bound peroxisome proliferator-activated receptors (PPARs) function as key regulators of energy metabolism and inflammation. Here, we examined the effects of PPARβ/δ agonist GW501516 on peritonitis in a rat peritoneal fibrosis model. Peritoneal fibrosis secondary to inflammation was induced into uremic rats by daily injection of Dianeal 4.25 % PD solutions along with six doses of lipopolysaccharide before commencement of GW501516 treatment. Normal non-uremic rats served as control, and all rats were fed with a control diet or a GW501516-containing diet. Compared to control group, exposure to PD fluids caused peritoneal fibrosis that was accompanied by increased mRNA levels of monocyte chemoattractant protein-1, tumor necrotic factor-α, and interleukin-6 in the uremic rats, and these effects were prevented by GW501516 treatment. Moreover, GW501516 was found to attenuate glucose-stimulated inflammation in cultured rat peritoneal mesothelial cells via inhibition of transforming growth factor-β-activated kinase 1 (TAK1), and nuclear factor kappa B (NFκB) signaling pathway (TAK1–NFκB pathway), a main inflammation regulatory pathway. In conclusion, inhibition of TAK1–NFκB pathway with GW501516 may represent a novel therapeutic approach to ameliorate peritonitis-induced peritoneal fibrosis for patients on PD.
Literatur
1.
Zurück zum Zitat Levey, A.S., R. Atkins, J. Coresh, E.P. Cohen, A.J. Collins, K.U. Eckardt, M.E. Nahas, B.L. Jaber, M. Jadoul, A. Levin, N.R. Powe, J. Rossert, D.C. Wheeler, N. Lameire, and G. Eknoyan. 2007. Chronic kidney disease as a global public health problem: approaches and initiatives—a position statement from Kidney Disease Improving Global Outcomes. Kidney International 72: 247–259.PubMedCrossRef Levey, A.S., R. Atkins, J. Coresh, E.P. Cohen, A.J. Collins, K.U. Eckardt, M.E. Nahas, B.L. Jaber, M. Jadoul, A. Levin, N.R. Powe, J. Rossert, D.C. Wheeler, N. Lameire, and G. Eknoyan. 2007. Chronic kidney disease as a global public health problem: approaches and initiatives—a position statement from Kidney Disease Improving Global Outcomes. Kidney International 72: 247–259.PubMedCrossRef
2.
Zurück zum Zitat Weiner, D.E. 2007. Causes and consequences of chronic kidney disease: implications for managed health care. Journal Of Managed Care Pharmacy 13: S1–S9.PubMed Weiner, D.E. 2007. Causes and consequences of chronic kidney disease: implications for managed health care. Journal Of Managed Care Pharmacy 13: S1–S9.PubMed
3.
Zurück zum Zitat Kramann, R., J. Floege, M. Ketteler, N. Marx, and V.M. Brandenburg. 2012. Medical options to fight mortality in end-stage renal disease: a review of the literature. Nephrology Dialysis Transplantation 27: 4298–4307.CrossRef Kramann, R., J. Floege, M. Ketteler, N. Marx, and V.M. Brandenburg. 2012. Medical options to fight mortality in end-stage renal disease: a review of the literature. Nephrology Dialysis Transplantation 27: 4298–4307.CrossRef
4.
Zurück zum Zitat Margetts, P.J., and P. Bonniaud. 2003. Basic mechanisms and clinical implications of peritoneal fibrosis. Peritoneal Dialysis International 23: 530–541.PubMed Margetts, P.J., and P. Bonniaud. 2003. Basic mechanisms and clinical implications of peritoneal fibrosis. Peritoneal Dialysis International 23: 530–541.PubMed
5.
Zurück zum Zitat Chow, F.Y., D.J. Nikolic-Paterson, E. Ozols, R.C. Atkins, B.J. Rollin, and G.H. Tesch. 2006. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney International 69: 73–80.PubMedCrossRef Chow, F.Y., D.J. Nikolic-Paterson, E. Ozols, R.C. Atkins, B.J. Rollin, and G.H. Tesch. 2006. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney International 69: 73–80.PubMedCrossRef
6.
Zurück zum Zitat Shim, J., H.O. Byun, Y.D. Lee, E.S. Lee, and S. Sohn. 2009. Interleukin-6 small interfering RNA improved the herpes simplex virus-induced systemic inflammation in vivo Behcet’s disease-like mouse model. Gene Therapy 16: 415–425.PubMedCrossRef Shim, J., H.O. Byun, Y.D. Lee, E.S. Lee, and S. Sohn. 2009. Interleukin-6 small interfering RNA improved the herpes simplex virus-induced systemic inflammation in vivo Behcet’s disease-like mouse model. Gene Therapy 16: 415–425.PubMedCrossRef
7.
Zurück zum Zitat Krediet, R.T., and D.G. Struijk. 2013. Peritoneal changes in patients on long-term peritoneal dialysis. Nature Reviews Nephrology 9: 419–429.PubMedCrossRef Krediet, R.T., and D.G. Struijk. 2013. Peritoneal changes in patients on long-term peritoneal dialysis. Nature Reviews Nephrology 9: 419–429.PubMedCrossRef
8.
Zurück zum Zitat Williams, J.D., K.J. Craig, N. Topley, C. Von Ruhland, M. Fallon, G.R. Newman, R.K. Mackenzie, and G.T. Williams. 2002. Morphologic changes in the peritoneal membrane of patients with renal disease. Journal of the American Society of Nephrology 13: 470–479.PubMed Williams, J.D., K.J. Craig, N. Topley, C. Von Ruhland, M. Fallon, G.R. Newman, R.K. Mackenzie, and G.T. Williams. 2002. Morphologic changes in the peritoneal membrane of patients with renal disease. Journal of the American Society of Nephrology 13: 470–479.PubMed
9.
Zurück zum Zitat Williams, J.D., K.J. Craig, N. Topley, and G.T. Williams. 2003. Peritoneal dialysis: changes to the structure of the peritoneal membrane and potential for biocompatible solutions. Kidney International 84: S158–161.PubMedCrossRef Williams, J.D., K.J. Craig, N. Topley, and G.T. Williams. 2003. Peritoneal dialysis: changes to the structure of the peritoneal membrane and potential for biocompatible solutions. Kidney International 84: S158–161.PubMedCrossRef
10.
Zurück zum Zitat Brown, J.D., and J. Plutzky. 2007. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation 115: 518–533.PubMedCrossRef Brown, J.D., and J. Plutzky. 2007. Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets. Circulation 115: 518–533.PubMedCrossRef
11.
Zurück zum Zitat Guan, Y., and M.D. Breyer. 2001. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney International 60: 14–30.PubMedCrossRef Guan, Y., and M.D. Breyer. 2001. Peroxisome proliferator-activated receptors (PPARs): novel therapeutic targets in renal disease. Kidney International 60: 14–30.PubMedCrossRef
12.
Zurück zum Zitat Gervois, P., J.C. Fruchart, and B. Staels. 2007. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nature Clinical Practice Endocrinology & Metabolism 3: 145–156.CrossRef Gervois, P., J.C. Fruchart, and B. Staels. 2007. Drug Insight: mechanisms of action and therapeutic applications for agonists of peroxisome proliferator-activated receptors. Nature Clinical Practice Endocrinology & Metabolism 3: 145–156.CrossRef
13.
Zurück zum Zitat Wang, Y.X., C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, and R.M. Evans. 2003. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113: 159–170.PubMedCrossRef Wang, Y.X., C.H. Lee, S. Tiep, R.T. Yu, J. Ham, H. Kang, and R.M. Evans. 2003. Peroxisome-proliferator-activated receptor delta activates fat metabolism to prevent obesity. Cell 113: 159–170.PubMedCrossRef
14.
Zurück zum Zitat Barish, G.D., A.R. Atkins, M. Downes, P. Olson, L.W. Chong, M. Nelson, Y. Zou, H. Hwang, H. Kang, L. Curtiss, R.M. Evans, and C.H. Lee. 2008. PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105: 4271–4276.PubMedCentralPubMedCrossRef Barish, G.D., A.R. Atkins, M. Downes, P. Olson, L.W. Chong, M. Nelson, Y. Zou, H. Hwang, H. Kang, L. Curtiss, R.M. Evans, and C.H. Lee. 2008. PPARdelta regulates multiple proinflammatory pathways to suppress atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105: 4271–4276.PubMedCentralPubMedCrossRef
15.
Zurück zum Zitat Takata, Y., J. Liu, F. Yin, A.R. Collins, C.J. Lyon, C.H. Lee, A.R. Atkins, M. Downes, G.D. Barish, R.M. Evans, W.A. Hsueh, and R.K. Tangirala. 2008. PPAR delta-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105: 4277–4282.PubMedCentralPubMedCrossRef Takata, Y., J. Liu, F. Yin, A.R. Collins, C.J. Lyon, C.H. Lee, A.R. Atkins, M. Downes, G.D. Barish, R.M. Evans, W.A. Hsueh, and R.K. Tangirala. 2008. PPAR delta-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America 105: 4277–4282.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Yang, X., S. Kume, Y. Tanaka, K. Isshiki, S. Araki, M. Chin-Kanasaki, T. Sugimoto, D. Koya, M. Haneda, T. Sugaya, D. Li, P. Han, Y. Nishio, A. Kashiwagi, H. Maegawa, and T. Uzu. 2011. GW501516, a PPARdelta agonist, ameliorates tubulointerstitial inflammation in proteinuric kidney disease via inhibition of TAK1-NFkappaB pathway in mice. PLoS One 6: e25271.PubMedCentralPubMedCrossRef Yang, X., S. Kume, Y. Tanaka, K. Isshiki, S. Araki, M. Chin-Kanasaki, T. Sugimoto, D. Koya, M. Haneda, T. Sugaya, D. Li, P. Han, Y. Nishio, A. Kashiwagi, H. Maegawa, and T. Uzu. 2011. GW501516, a PPARdelta agonist, ameliorates tubulointerstitial inflammation in proteinuric kidney disease via inhibition of TAK1-NFkappaB pathway in mice. PLoS One 6: e25271.PubMedCentralPubMedCrossRef
17.
Zurück zum Zitat Piqueras, L., M.J. Sanz, M. Perretti, E. Morcillo, L. Norling, J.A. Mitchell, Y. Li, and D. Bishop-Bailey. 2009. Activation of PPARbeta/delta inhibits leukocyte recruitment, cell adhesion molecule expression, and chemokine release. Journal of Leukocyte Biology 86: 115–122.PubMedCrossRef Piqueras, L., M.J. Sanz, M. Perretti, E. Morcillo, L. Norling, J.A. Mitchell, Y. Li, and D. Bishop-Bailey. 2009. Activation of PPARbeta/delta inhibits leukocyte recruitment, cell adhesion molecule expression, and chemokine release. Journal of Leukocyte Biology 86: 115–122.PubMedCrossRef
18.
Zurück zum Zitat Oliver Jr., W.R., J.L. Shenk, M.R. Snaith, C.S. Russell, K.D. Plunket, N.L. Bodkin, M.C. Lewis, D.A. Winegar, M.L. Sznaidman, M.H. Lambert, H.E. Xu, D.D. Sternbach, S.A. Kliewer, B.C. Hansen, and T.M. Willson. 2001. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America 98: 5306–5311.PubMedCentralPubMedCrossRef Oliver Jr., W.R., J.L. Shenk, M.R. Snaith, C.S. Russell, K.D. Plunket, N.L. Bodkin, M.C. Lewis, D.A. Winegar, M.L. Sznaidman, M.H. Lambert, H.E. Xu, D.D. Sternbach, S.A. Kliewer, B.C. Hansen, and T.M. Willson. 2001. A selective peroxisome proliferator-activated receptor delta agonist promotes reverse cholesterol transport. Proceedings of the National Academy of Sciences of the United States of America 98: 5306–5311.PubMedCentralPubMedCrossRef
19.
Zurück zum Zitat Margetts, P.J., and P. Bonniaud. 2003. Basic mechanisms and clinical implications of peritoneal fibrosis. Peritoneal Dialysis International 23: 530–541.PubMed Margetts, P.J., and P. Bonniaud. 2003. Basic mechanisms and clinical implications of peritoneal fibrosis. Peritoneal Dialysis International 23: 530–541.PubMed
20.
Zurück zum Zitat Guo, H., J.C. Leung, M.F. Lam, L.Y. Chan, A.W. Tsang, H.Y. Lan, and K.N. Lai. 2007. Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with peritoneal dialysis. Journal of the American Society of Nephrology 18: 2689–2703.PubMedCrossRef Guo, H., J.C. Leung, M.F. Lam, L.Y. Chan, A.W. Tsang, H.Y. Lan, and K.N. Lai. 2007. Smad7 transgene attenuates peritoneal fibrosis in uremic rats treated with peritoneal dialysis. Journal of the American Society of Nephrology 18: 2689–2703.PubMedCrossRef
21.
Zurück zum Zitat Song, S.H., I.S. Kwak, B.Y. Yang, D.W. Lee, S.B. Lee, and M.Y. Lee. 2009. Role of rosiglitazone in lipopolysaccharide-induced peritonitis: a rat peritoneal dialysis model. Nephrology (Carlton, Vic.) 14: 155–163.CrossRef Song, S.H., I.S. Kwak, B.Y. Yang, D.W. Lee, S.B. Lee, and M.Y. Lee. 2009. Role of rosiglitazone in lipopolysaccharide-induced peritonitis: a rat peritoneal dialysis model. Nephrology (Carlton, Vic.) 14: 155–163.CrossRef
22.
Zurück zum Zitat Schaller, E., A.J. Macfarlane, R.A. Rupec, S. Gordon, A.J. McKnight, and K. Pfeffer. 2002. Inactivation of the F4/80 glycoprotein in the mouse germ line. Molecular and Cellular Biology 22: 8035–8043.PubMedCentralPubMedCrossRef Schaller, E., A.J. Macfarlane, R.A. Rupec, S. Gordon, A.J. McKnight, and K. Pfeffer. 2002. Inactivation of the F4/80 glycoprotein in the mouse germ line. Molecular and Cellular Biology 22: 8035–8043.PubMedCentralPubMedCrossRef
23.
Zurück zum Zitat Bot, J., D. Whitaker, J. Vivian, R. Lake, V. Yao, and R. McCauley. 2003. Culturing mouse peritoneal mesothelial cells. Pathology Research and Practice 199: 341–344.CrossRef Bot, J., D. Whitaker, J. Vivian, R. Lake, V. Yao, and R. McCauley. 2003. Culturing mouse peritoneal mesothelial cells. Pathology Research and Practice 199: 341–344.CrossRef
24.
Zurück zum Zitat Muller, P.Y., H. Janovjak, A.R. Miserez, and Z. Dobbie. 2002. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32: 1372–1374. 1376, 1378–1379.PubMed Muller, P.Y., H. Janovjak, A.R. Miserez, and Z. Dobbie. 2002. Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32: 1372–1374. 1376, 1378–1379.PubMed
25.
Zurück zum Zitat Talkington, D.F. 2013. Real-time PCR in food science: current technology and applications. Emerging Infectious Diseases 19: 1352–1353.PubMedCentralCrossRef Talkington, D.F. 2013. Real-time PCR in food science: current technology and applications. Emerging Infectious Diseases 19: 1352–1353.PubMedCentralCrossRef
26.
Zurück zum Zitat Worrad, D.M., B.M. Turner, and R.M. Schultz. 1995. Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo. Development 121: 2949–2959.PubMed Worrad, D.M., B.M. Turner, and R.M. Schultz. 1995. Temporally restricted spatial localization of acetylated isoforms of histone H4 and RNA polymerase II in the 2-cell mouse embryo. Development 121: 2949–2959.PubMed
27.
Zurück zum Zitat Kaneko, K., C. Hamada, and Y. Tomino. 2007. Peritoneal fibrosis intervention. Peritoneal Dialysis International 27: S82–S86.PubMed Kaneko, K., C. Hamada, and Y. Tomino. 2007. Peritoneal fibrosis intervention. Peritoneal Dialysis International 27: S82–S86.PubMed
28.
Zurück zum Zitat Pletinck, A., R. Vanholder, N. Veys, and W. Van Biesen. 2012. Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions. Nature Reviews Nephrology 8: 542–550.PubMedCrossRef Pletinck, A., R. Vanholder, N. Veys, and W. Van Biesen. 2012. Protecting the peritoneal membrane: factors beyond peritoneal dialysis solutions. Nature Reviews Nephrology 8: 542–550.PubMedCrossRef
29.
Zurück zum Zitat Tamura, M., A. Osajima, S. Nakayamada, H. Anai, N. Kabashima, K. Kanegae, T. Ota, Y. Tanaka, and Y. Nakashima. 2003. High glucose levels inhibit focal adhesion kinase-mediated wound healing of rat peritoneal mesothelial cells. Kidney International 63: 722–731.PubMedCrossRef Tamura, M., A. Osajima, S. Nakayamada, H. Anai, N. Kabashima, K. Kanegae, T. Ota, Y. Tanaka, and Y. Nakashima. 2003. High glucose levels inhibit focal adhesion kinase-mediated wound healing of rat peritoneal mesothelial cells. Kidney International 63: 722–731.PubMedCrossRef
30.
31.
Zurück zum Zitat Fan, Y.H., Y. Yu, R.F. Mao, X.J. Tan, G.F. Xu, H. Zhang, X.B. Lu, S.B. Fu, and J. Yang. 2011. USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death and Differentiation 18: 1547–1560.PubMedCentralPubMedCrossRef Fan, Y.H., Y. Yu, R.F. Mao, X.J. Tan, G.F. Xu, H. Zhang, X.B. Lu, S.B. Fu, and J. Yang. 2011. USP4 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death and Differentiation 18: 1547–1560.PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Neri, T., C. Armani, A. Pegoli, C. Cordazzo, Y. Carmazzi, S. Brunelleschi, C. Bardelli, M.C. Breschi, P. Paggiaro, and A. Celi. 2011. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles. European Respiratory Journal 37: 1494–1502.PubMedCrossRef Neri, T., C. Armani, A. Pegoli, C. Cordazzo, Y. Carmazzi, S. Brunelleschi, C. Bardelli, M.C. Breschi, P. Paggiaro, and A. Celi. 2011. Role of NF-kappaB and PPAR-gamma in lung inflammation induced by monocyte-derived microparticles. European Respiratory Journal 37: 1494–1502.PubMedCrossRef
33.
Zurück zum Zitat Kostadinova, R., A. Montagner, E. Gouranton, S. Fleury, H. Guillou, D. Dombrowicz, P. Desreumaux, and W. Wahli. 2012. GW501516-activated PPARbeta/delta promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. Cell Bioscience 2: 34.PubMedCentralPubMedCrossRef Kostadinova, R., A. Montagner, E. Gouranton, S. Fleury, H. Guillou, D. Dombrowicz, P. Desreumaux, and W. Wahli. 2012. GW501516-activated PPARbeta/delta promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. Cell Bioscience 2: 34.PubMedCentralPubMedCrossRef
34.
Zurück zum Zitat Wenzel, U., A. Schneider, A.J. Valente, H.E. Abboud, F. Thaiss, U.M. Helmchen, and R.A. Stahl. 1997. Monocyte chemoattractant protein-1 mediates monocyte/macrophage influx in anti-thymocyte antibody-induced glomerulonephritis. Kidney International 51: 770–776.PubMedCrossRef Wenzel, U., A. Schneider, A.J. Valente, H.E. Abboud, F. Thaiss, U.M. Helmchen, and R.A. Stahl. 1997. Monocyte chemoattractant protein-1 mediates monocyte/macrophage influx in anti-thymocyte antibody-induced glomerulonephritis. Kidney International 51: 770–776.PubMedCrossRef
35.
Zurück zum Zitat Stenvinkel, P., M. Ketteler, R.J. Johnson, B. Lindholm, R. Pecoits-Filho, M. Riella, O. Heimburger, T. Cederholm, and M. Girndt. 2005. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly. Kidney International 67: 1216–1233.PubMedCrossRef Stenvinkel, P., M. Ketteler, R.J. Johnson, B. Lindholm, R. Pecoits-Filho, M. Riella, O. Heimburger, T. Cederholm, and M. Girndt. 2005. IL-10, IL-6, and TNF-alpha: central factors in the altered cytokine network of uremia—the good, the bad, and the ugly. Kidney International 67: 1216–1233.PubMedCrossRef
36.
Zurück zum Zitat Biswas, S.K., and A. Sodhi. 2002. In vitro activation of murine peritoneal macrophages by monocyte chemoattractant protein-1: upregulation of CD11b, production of proinflammatory cytokines, and the signal transduction pathway. Journal of Interferon & Cytokine Research 22: 527–538.CrossRef Biswas, S.K., and A. Sodhi. 2002. In vitro activation of murine peritoneal macrophages by monocyte chemoattractant protein-1: upregulation of CD11b, production of proinflammatory cytokines, and the signal transduction pathway. Journal of Interferon & Cytokine Research 22: 527–538.CrossRef
37.
Zurück zum Zitat Ferreira, A.M., S. Takagawa, R. Fresco, X. Zhu, J. Varga, and L.A. DiPietro. 2006. Diminished induction of skin fibrosis in mice with MCP-1 deficiency. Journal of Investigative Dermatology 126: 1900–1908.PubMedCrossRef Ferreira, A.M., S. Takagawa, R. Fresco, X. Zhu, J. Varga, and L.A. DiPietro. 2006. Diminished induction of skin fibrosis in mice with MCP-1 deficiency. Journal of Investigative Dermatology 126: 1900–1908.PubMedCrossRef
38.
Zurück zum Zitat Kassel, K.M., G.L. Guo, O. Tawfik, and J.P. Luyendyk. 2010. Monocyte chemoattractant protein-1 deficiency does not affect steatosis or inflammation in livers of mice fed a methionine-choline-deficient diet. Laboratory Investigation 90: 1794–1804.PubMedCentralPubMedCrossRef Kassel, K.M., G.L. Guo, O. Tawfik, and J.P. Luyendyk. 2010. Monocyte chemoattractant protein-1 deficiency does not affect steatosis or inflammation in livers of mice fed a methionine-choline-deficient diet. Laboratory Investigation 90: 1794–1804.PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Westergaard, M., J. Henningsen, C. Johansen, S. Rasmussen, M.L. Svendsen, U.B. Jensen, H.D. Schroder, B. Staels, L. Iversen, L. Bolund, K. Kragballe, and K. Kristiansen. 2003. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin. Journal of Investigative Dermatology 121: 1104–1117.PubMedCrossRef Westergaard, M., J. Henningsen, C. Johansen, S. Rasmussen, M.L. Svendsen, U.B. Jensen, H.D. Schroder, B. Staels, L. Iversen, L. Bolund, K. Kragballe, and K. Kristiansen. 2003. Expression and localization of peroxisome proliferator-activated receptors and nuclear factor kappaB in normal and lesional psoriatic skin. Journal of Investigative Dermatology 121: 1104–1117.PubMedCrossRef
40.
Zurück zum Zitat Coll, T., D. Alvarez-Guardia, E. Barroso, A.M. Gomez-Foix, X. Palomer, J.C. Laguna, and M. Vazquez-Carrera. 2010. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells. Endocrinology 151: 1560–1569.PubMedCrossRef Coll, T., D. Alvarez-Guardia, E. Barroso, A.M. Gomez-Foix, X. Palomer, J.C. Laguna, and M. Vazquez-Carrera. 2010. Activation of peroxisome proliferator-activated receptor-{delta} by GW501516 prevents fatty acid-induced nuclear factor-{kappa}B activation and insulin resistance in skeletal muscle cells. Endocrinology 151: 1560–1569.PubMedCrossRef
41.
Zurück zum Zitat Barroso, E., E. Eyre, X. Palomer, and M. Vazquez-Carrera. 2011. The peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) agonist GW501516 prevents TNF-alpha-induced NF-kappaB activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1. Biochemical Pharmacology 81: 534–543.PubMedCrossRef Barroso, E., E. Eyre, X. Palomer, and M. Vazquez-Carrera. 2011. The peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) agonist GW501516 prevents TNF-alpha-induced NF-kappaB activation in human HaCaT cells by reducing p65 acetylation through AMPK and SIRT1. Biochemical Pharmacology 81: 534–543.PubMedCrossRef
42.
Zurück zum Zitat Douvdevani, A., O. Abramson, A. Tamir, A. Konforty, N. Isakov, and C. Chaimovitz. 1995. Commercial dialysate inhibits TNF alpha mRNA expression and NF-kappa B DNA-binding activity in LPS-stimulated macrophages. Kidney International 47: 1537–1545.PubMedCrossRef Douvdevani, A., O. Abramson, A. Tamir, A. Konforty, N. Isakov, and C. Chaimovitz. 1995. Commercial dialysate inhibits TNF alpha mRNA expression and NF-kappa B DNA-binding activity in LPS-stimulated macrophages. Kidney International 47: 1537–1545.PubMedCrossRef
44.
Zurück zum Zitat Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews Immunology 2: 725–734.PubMedCrossRef Li, Q., and I.M. Verma. 2002. NF-kappaB regulation in the immune system. Nature Reviews Immunology 2: 725–734.PubMedCrossRef
45.
Zurück zum Zitat Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews Immunology 8: 837–848.PubMedCrossRef Ghosh, S., and M.S. Hayden. 2008. New regulators of NF-kappaB in inflammation. Nature Reviews Immunology 8: 837–848.PubMedCrossRef
Metadaten
Titel
The PPARβ/δ Agonist GW501516 Attenuates Peritonitis in Peritoneal Fibrosis via Inhibition of TAK1–NFκB Pathway in Rats
verfasst von
Xuesong Su
Guangyu Zhou
Yanqiu Wang
Xu Yang
Li Li
Rui Yu
Detian Li
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2014
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-013-9791-z

Weitere Artikel der Ausgabe 3/2014

Inflammation 3/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.