Skip to main content
Erschienen in: Current Diabetes Reports 6/2017

01.06.2017 | Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)

The Role and Potential Therapeutic Implications of the Fibroblast Growth Factors in Energy Balance and Type 2 Diabetes

verfasst von: Maitane Izaguirre, María J. Gil, Ignacio Monreal, Fabrizio Montecucco, Gema Frühbeck, Victoria Catalán

Erschienen in: Current Diabetes Reports | Ausgabe 6/2017

Einloggen, um Zugang zu erhalten

Abstract

Purpose of Review

Obesity and its associated metabolic diseases have reached epidemic proportions worldwide, reducing life expectancy and quality of life. Several drugs have been tested to treat these diseases but many of them have damaging side effects. Consequently, there is an urgent need to develop more effective therapies. Recently, endocrine fibroblast growth factors (FGFs) have become attractive targets in the treatment of metabolic diseases. This review summarizes their most important functions as well as FGF-based therapies for the treatment of obesity and type 2 diabetes (T2D).

Recent Findings

Recent studies demonstrate that circulating levels of FGF19 are reduced in obesity. In fact, exogenous FGF19 administration is associated with a reduction in food intake as well as with improvements in glycaemia. In contrast, FGF21 levels are elevated in subjects with abdominal obesity, insulin resistance and T2D, probably representing a compensatory response. Additionally, elevated levels of circulating FGF23 in individuals with obesity and T2D are reported in most clinical studies. Finally, increased FGF1 levels in obese patients associated with adipogenesis have been described.

Summary

FGFs constitute important molecules in the treatment of metabolic diseases due to their beneficial effects on glucose and lipid metabolism. Among all members, FGF19 and FGF21 have demonstrated the ability to improve glucose, lipid and energy homeostasis, along with FGF1, which was recently discovered to have beneficial effects on metabolic homeostasis. Additionally, FGF23 may also play a role in insulin resistance or energy homeostasis beyond mineral metabolism control. These results highlight the relevant use of FGFs as potential biomarkers for the early diagnosis of metabolic diseases. In this regard, notable progress has been made in the development of FGF-based therapies and different approaches are being tested in different clinical trials. However, further studies are needed to determine their potential therapeutic use in the treatment of obesity and obesity-related comorbidities.
Literatur
1.
Zurück zum Zitat Frühbeck G, Toplak H, Woodward E, Yumuk V, Maislos M, Oppert JM. Obesity: the gateway to ill health - an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts. 2013;6:117–20.PubMedCrossRef Frühbeck G, Toplak H, Woodward E, Yumuk V, Maislos M, Oppert JM. Obesity: the gateway to ill health - an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts. 2013;6:117–20.PubMedCrossRef
2.
Zurück zum Zitat Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2013;384:766–81.CrossRef Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2013;384:766–81.CrossRef
3.
Zurück zum Zitat Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.PubMedPubMedCentralCrossRef Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309:71–82.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Frühbeck G, Gómez-Ambrosi J. Control of body weight: a physiologic and transgenic perspective. Diabetologia. 2003;46:143–72.PubMedCrossRef Frühbeck G, Gómez-Ambrosi J. Control of body weight: a physiologic and transgenic perspective. Diabetologia. 2003;46:143–72.PubMedCrossRef
5.
Zurück zum Zitat •• Bray GA, Frühbeck G, Ryan DH, Wilding JP. Management of obesity. Lancet. 2016;387:1947–56. Thorough review describing different strategies to treat obesity PubMedCrossRef •• Bray GA, Frühbeck G, Ryan DH, Wilding JP. Management of obesity. Lancet. 2016;387:1947–56. Thorough review describing different strategies to treat obesity PubMedCrossRef
6.
Zurück zum Zitat Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological management of obesity: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:342–62.PubMedCrossRef Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological management of obesity: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2015;100:342–62.PubMedCrossRef
7.
Zurück zum Zitat Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145:2594–603.PubMedCrossRef Fu L, John LM, Adams SH, et al. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology. 2004;145:2594–603.PubMedCrossRef
8.
Zurück zum Zitat Itoh N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res. 2010;342:1–11.PubMedPubMedCentralCrossRef Itoh N. Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res. 2010;342:1–11.PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–9.PubMedCrossRef Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet. 2004;20:563–9.PubMedCrossRef
11.
Zurück zum Zitat Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays. 2000;22:108–12.PubMedCrossRef Ornitz DM. FGFs, heparan sulfate and FGFRs: complex interactions essential for development. BioEssays. 2000;22:108–12.PubMedCrossRef
12.
Zurück zum Zitat Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007;27:3417–28.PubMedPubMedCentralCrossRef Goetz R, Beenken A, Ibrahimi OA, et al. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol. 2007;27:3417–28.PubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Fukumoto S. Actions and mode of actions of FGF19 subfamily members. Endocr J. 2008;55:23–31.PubMedCrossRef Fukumoto S. Actions and mode of actions of FGF19 subfamily members. Endocr J. 2008;55:23–31.PubMedCrossRef
14.
Zurück zum Zitat Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.PubMedCrossRef Urakawa I, Yamazaki Y, Shimada T, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4.PubMedCrossRef
15.
Zurück zum Zitat Fon Tacer K, Bookout AL, Ding X, et al. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24:2050–64.PubMedPubMedCentralCrossRef Fon Tacer K, Bookout AL, Ding X, et al. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24:2050–64.PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Kurosu H, Choi M, Ogawa Y, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282:26687–95.PubMedPubMedCentralCrossRef Kurosu H, Choi M, Ogawa Y, et al. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282:26687–95.PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat •• Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115:1627–35. Seminal paper describing the participation of FGFs in energy balance and glucose metabolism PubMedPubMedCentralCrossRef •• Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115:1627–35. Seminal paper describing the participation of FGFs in energy balance and glucose metabolism PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Tomlinson E, Fu L, John L, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143:1741–7.PubMedCrossRef Tomlinson E, Fu L, John L, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143:1741–7.PubMedCrossRef
19.
Zurück zum Zitat Newell FS, Su H, Tornqvist H, Whitehead JP, Prins JB, Hutley LJ. Characterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation. FASEB J. 2006;20:2615–7.PubMedCrossRef Newell FS, Su H, Tornqvist H, Whitehead JP, Prins JB, Hutley LJ. Characterization of the transcriptional and functional effects of fibroblast growth factor-1 on human preadipocyte differentiation. FASEB J. 2006;20:2615–7.PubMedCrossRef
20.
Zurück zum Zitat Kreuger J, Prydz K, Pettersson RF, Lindahl U, Salmivirta M. Characterization of fibroblast growth factor 1 binding heparan sulfate domain. Glycobiology. 1999;9:723–9.PubMedCrossRef Kreuger J, Prydz K, Pettersson RF, Lindahl U, Salmivirta M. Characterization of fibroblast growth factor 1 binding heparan sulfate domain. Glycobiology. 1999;9:723–9.PubMedCrossRef
21.
Zurück zum Zitat Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2:217–25.PubMedCrossRef Inagaki T, Choi M, Moschetta A, et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2005;2:217–25.PubMedCrossRef
22.
Zurück zum Zitat Schmidt DR, Holmstrom SR, Fon Tacer K, Bookout AL, Kliewer SA, Mangelsdorf DJ. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J Biol Chem. 2010;285:14486–94.PubMedPubMedCentralCrossRef Schmidt DR, Holmstrom SR, Fon Tacer K, Bookout AL, Kliewer SA, Mangelsdorf DJ. Regulation of bile acid synthesis by fat-soluble vitamins A and D. J Biol Chem. 2010;285:14486–94.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Henkel AS, Anderson KA, Dewey AM, Kavesh MH, Green RM. A chronic high-cholesterol diet paradoxically suppresses hepatic CYP7A1 expression in FVB/NJ mice. J Lipid Res. 2011;52:289–98.PubMedPubMedCentralCrossRef Henkel AS, Anderson KA, Dewey AM, Kavesh MH, Green RM. A chronic high-cholesterol diet paradoxically suppresses hepatic CYP7A1 expression in FVB/NJ mice. J Lipid Res. 2011;52:289–98.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Vergnes L, Lee JM, Chin RG, Auwerx J, Reue K. Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels. Cell Metab. 2013;17:916–28.PubMedPubMedCentralCrossRef Vergnes L, Lee JM, Chin RG, Auwerx J, Reue K. Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels. Cell Metab. 2013;17:916–28.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Holt JA, Luo G, Billin AN, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 2003;17:1581–91.PubMedPubMedCentralCrossRef Holt JA, Luo G, Billin AN, et al. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 2003;17:1581–91.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Potthoff MJ, Boney-Montoya J, Choi M, et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab. 2011;13:729–38.PubMedPubMedCentralCrossRef Potthoff MJ, Boney-Montoya J, Choi M, et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab. 2011;13:729–38.PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Bhatnagar S, Damron HA, Hillgartner FB. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J Biol Chem. 2009;284:10023–33.PubMedPubMedCentralCrossRef Bhatnagar S, Damron HA, Hillgartner FB. Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J Biol Chem. 2009;284:10023–33.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Kir S, Beddow SA, Samuel VT, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science. 2011;331:1621–4.PubMedPubMedCentralCrossRef Kir S, Beddow SA, Samuel VT, et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science. 2011;331:1621–4.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat • Marcelin G, Jo YH, Li X, et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab. 2014;3:19–28. This study provides evidence that FGF19 can signal in the hypothalamic arcuate nucleus improving peripheral insulin signaling through the induction of ERK1/2 signaling and the suppression of AGRP/NPY neurons activity in obese and insulin-resistant states PubMedCrossRef • Marcelin G, Jo YH, Li X, et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol Metab. 2014;3:19–28. This study provides evidence that FGF19 can signal in the hypothalamic arcuate nucleus improving peripheral insulin signaling through the induction of ERK1/2 signaling and the suppression of AGRP/NPY neurons activity in obese and insulin-resistant states PubMedCrossRef
30.
Zurück zum Zitat Ryan KK, Kohli R, Gutierrez-Aguilar R, Gaitonde SG, Woods SC, Seeley RJ. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology. 2013;154:9–15.PubMedCrossRef Ryan KK, Kohli R, Gutierrez-Aguilar R, Gaitonde SG, Woods SC, Seeley RJ. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology. 2013;154:9–15.PubMedCrossRef
31.
Zurück zum Zitat Yang C, Jin C, Li X, Wang F, McKeehan WL, Luo Y. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One. 2012;7:e33870.PubMedPubMedCentralCrossRef Yang C, Jin C, Li X, Wang F, McKeehan WL, Luo Y. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One. 2012;7:e33870.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Hondares E, Iglesias R, Giralt A, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286:12983–90.PubMedPubMedCentralCrossRef Hondares E, Iglesias R, Giralt A, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286:12983–90.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Muise ES, Azzolina B, Kuo DW, et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol. 2008;74:403–12.PubMedCrossRef Muise ES, Azzolina B, Kuo DW, et al. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol. 2008;74:403–12.PubMedCrossRef
35.
Zurück zum Zitat Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta. 2000;1492:203–6.PubMedCrossRef Nishimura T, Nakatake Y, Konishi M, Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim Biophys Acta. 2000;1492:203–6.PubMedCrossRef
36.
Zurück zum Zitat Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5:426–37.PubMedCrossRef Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5:426–37.PubMedCrossRef
37.
Zurück zum Zitat Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5:415–25.PubMedCrossRef Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5:415–25.PubMedCrossRef
38.
Zurück zum Zitat Lundasen T, Hunt MC, Nilsson LM, et al. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun. 2007;360:437–40.PubMedCrossRef Lundasen T, Hunt MC, Nilsson LM, et al. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun. 2007;360:437–40.PubMedCrossRef
39.
Zurück zum Zitat Boutant M, Canto C. SIRT1 metabolic actions: integrating recent advances from mouse models. Mol Metab. 2014;3:5–18.PubMedCrossRef Boutant M, Canto C. SIRT1 metabolic actions: integrating recent advances from mouse models. Mol Metab. 2014;3:5–18.PubMedCrossRef
40.
Zurück zum Zitat Lee JH, Giannikopoulos P, Duncan SA, et al. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med. 2011;17:812–5.PubMedPubMedCentralCrossRef Lee JH, Giannikopoulos P, Duncan SA, et al. The transcription factor cyclic AMP-responsive element-binding protein H regulates triglyceride metabolism. Nat Med. 2011;17:812–5.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Patel R, Bookout AL, Magomedova L, et al. Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Mol Endocrinol. 2015;29:213–23.PubMedCrossRef Patel R, Bookout AL, Magomedova L, et al. Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Mol Endocrinol. 2015;29:213–23.PubMedCrossRef
42.
Zurück zum Zitat De Sousa-Coelho AL, Marrero PF, Haro D. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J. 2012;443:165–71.PubMedCrossRef De Sousa-Coelho AL, Marrero PF, Haro D. Activating transcription factor 4-dependent induction of FGF21 during amino acid deprivation. Biochem J. 2012;443:165–71.PubMedCrossRef
44.
Zurück zum Zitat De Sousa-Coelho AL, Relat J, Hondares E, et al. FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res. 2013;54:1786–97.PubMedPubMedCentralCrossRef De Sousa-Coelho AL, Relat J, Hondares E, et al. FGF21 mediates the lipid metabolism response to amino acid starvation. J Lipid Res. 2013;54:1786–97.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology. 2009;150:4931–40.PubMedPubMedCentralCrossRef Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology. 2009;150:4931–40.PubMedPubMedCentralCrossRef
46.
Zurück zum Zitat Yu Y, Bai F, Liu Y, et al. Fibroblast growth factor (FGF21) protects mouse liver against D-galactose-induced oxidative stress and apoptosis via activating Nrf2 and PI3K/Akt pathways. Mol Cell Biochem. 2015;403:287–99.PubMedCrossRef Yu Y, Bai F, Liu Y, et al. Fibroblast growth factor (FGF21) protects mouse liver against D-galactose-induced oxidative stress and apoptosis via activating Nrf2 and PI3K/Akt pathways. Mol Cell Biochem. 2015;403:287–99.PubMedCrossRef
47.
Zurück zum Zitat Ribas F, Villarroya J, Hondares E, Giralt M, Villarroya F. FGF21 expression and release in muscle cells: Involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J. 2014;463:191–9.PubMedCrossRef Ribas F, Villarroya J, Hondares E, Giralt M, Villarroya F. FGF21 expression and release in muscle cells: Involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J. 2014;463:191–9.PubMedCrossRef
48.
Zurück zum Zitat Ding X, Boney-Montoya J, Owen BM, et al. betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 2012;16:387–93.PubMedPubMedCentralCrossRef Ding X, Boney-Montoya J, Owen BM, et al. betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 2012;16:387–93.PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Markan KR, Naber MC, Ameka MK, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63:4057–63.PubMedPubMedCentralCrossRef Markan KR, Naber MC, Ameka MK, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63:4057–63.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Fisher FM, Kleiner S, Douris N, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26:271–81.PubMedPubMedCentralCrossRef Fisher FM, Kleiner S, Douris N, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26:271–81.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Samms RJ, Smith DP, Cheng CC, et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep. 2015;11:991–9.PubMedCrossRef Samms RJ, Smith DP, Cheng CC, et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep. 2015;11:991–9.PubMedCrossRef
52.
Zurück zum Zitat Veniant MM, Sivits G, Helmering J, et al. Pharmacologic effects of FGF21 are independent of the “Browning” of white adipose tissue. Cell Metab. 2015;21:731–8.PubMedCrossRef Veniant MM, Sivits G, Helmering J, et al. Pharmacologic effects of FGF21 are independent of the “Browning” of white adipose tissue. Cell Metab. 2015;21:731–8.PubMedCrossRef
53.
Zurück zum Zitat Lin Z, Tian H, Lam KS, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17:779–89.PubMedCrossRef Lin Z, Tian H, Lam KS, et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17:779–89.PubMedCrossRef
54.
Zurück zum Zitat Holland WL, Adams AC, Brozinick JT, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17:790–7.PubMedPubMedCentralCrossRef Holland WL, Adams AC, Brozinick JT, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17:790–7.PubMedPubMedCentralCrossRef
56.
Zurück zum Zitat Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H, Randeva HS. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: relationship with plasma FGF21 and body adiposity. Diabetes. 2011;60:2758–62.PubMedPubMedCentralCrossRef Tan BK, Hallschmid M, Adya R, Kern W, Lehnert H, Randeva HS. Fibroblast growth factor 21 (FGF21) in human cerebrospinal fluid: relationship with plasma FGF21 and body adiposity. Diabetes. 2011;60:2758–62.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Bookout AL, de Groot MH, Owen BM, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19:1147–52.PubMedPubMedCentralCrossRef Bookout AL, de Groot MH, Owen BM, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19:1147–52.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Liang Q, Zhong L, Zhang J, et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes. 2014;63:4064–75.PubMedCrossRef Liang Q, Zhong L, Zhang J, et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes. 2014;63:4064–75.PubMedCrossRef
59.
Zurück zum Zitat Owen BM, Ding X, Morgan DA, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20:670–7.PubMedPubMedCentralCrossRef Owen BM, Ding X, Morgan DA, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20:670–7.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Ersoy FF. A short story of Klotho and FGF23: a deuce of dark side or the savior? Int Urol Nephrol. 2014;46:577–81.PubMedCrossRef Ersoy FF. A short story of Klotho and FGF23: a deuce of dark side or the savior? Int Urol Nephrol. 2014;46:577–81.PubMedCrossRef
61.
Zurück zum Zitat Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.PubMedCrossRef Shimada T, Hasegawa H, Yamazaki Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19:429–35.PubMedCrossRef
64.
Zurück zum Zitat Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutierrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS One. 2015;10:e0122885.PubMedPubMedCentralCrossRef Hanks LJ, Casazza K, Judd SE, Jenny NS, Gutierrez OM. Associations of fibroblast growth factor-23 with markers of inflammation, insulin resistance and obesity in adults. PLoS One. 2015;10:e0122885.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Grethen E, Hill KM, Jones R, et al. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab. 2012;97:1655–62.PubMedPubMedCentralCrossRef Grethen E, Hill KM, Jones R, et al. Serum leptin, parathyroid hormone, 1,25-dihydroxyvitamin D, fibroblast growth factor 23, bone alkaline phosphatase, and sclerostin relationships in obesity. J Clin Endocrinol Metab. 2012;97:1655–62.PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Itoh N, Ornitz DM. Fibroblast growth factors: From molecular evolution to roles in development, metabolism and disease. J Biochem. 2011;149:121–30.PubMedCrossRef Itoh N, Ornitz DM. Fibroblast growth factors: From molecular evolution to roles in development, metabolism and disease. J Biochem. 2011;149:121–30.PubMedCrossRef
67.
Zurück zum Zitat Mouta Carreira C, Landriscina M, Bellum S, Prudovsky I, Maciag T. The comparative release of FGF1 by hypoxia and temperature stress. Growth Factors. 2001;18:277–85.PubMedCrossRef Mouta Carreira C, Landriscina M, Bellum S, Prudovsky I, Maciag T. The comparative release of FGF1 by hypoxia and temperature stress. Growth Factors. 2001;18:277–85.PubMedCrossRef
68.
Zurück zum Zitat Jackson A, Friedman S, Zhan X, Engleka KA, Forough R, Maciag T. Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proc Natl Acad Sci U S A. 1992;89:10691–5.PubMedPubMedCentralCrossRef Jackson A, Friedman S, Zhan X, Engleka KA, Forough R, Maciag T. Heat shock induces the release of fibroblast growth factor 1 from NIH 3T3 cells. Proc Natl Acad Sci U S A. 1992;89:10691–5.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Shin JT, Opalenik SR, Wehby JN, et al. Serum-starvation induces the extracellular appearance of FGF-1. Biochim Biophys Acta. 1996;1312:27–38.PubMedCrossRef Shin JT, Opalenik SR, Wehby JN, et al. Serum-starvation induces the extracellular appearance of FGF-1. Biochim Biophys Acta. 1996;1312:27–38.PubMedCrossRef
70.
Zurück zum Zitat Ananyeva NM, Tjurmin AV, Berliner JA, et al. Oxidized LDL mediates the release of fibroblast growth factor-1. Arterioscler Thromb Vasc Biol. 1997;17:445–53.PubMedCrossRef Ananyeva NM, Tjurmin AV, Berliner JA, et al. Oxidized LDL mediates the release of fibroblast growth factor-1. Arterioscler Thromb Vasc Biol. 1997;17:445–53.PubMedCrossRef
71.
Zurück zum Zitat Friesel R, Maciag T. Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling. Thromb Haemost. 1999;82:748–54.PubMed Friesel R, Maciag T. Fibroblast growth factor prototype release and fibroblast growth factor receptor signaling. Thromb Haemost. 1999;82:748–54.PubMed
72.
Zurück zum Zitat Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: from biology through engineering to potential medical applications. Crit Rev Clin Lab Sci. 2008;45:91–135.PubMedCrossRef Zakrzewska M, Marcinkowska E, Wiedlocha A. FGF-1: from biology through engineering to potential medical applications. Crit Rev Clin Lab Sci. 2008;45:91–135.PubMedCrossRef
73.
Zurück zum Zitat Hutley L, Shurety W, Newell F, et al. Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes. 2004;53:3097–106.PubMedCrossRef Hutley L, Shurety W, Newell F, et al. Fibroblast growth factor 1: a key regulator of human adipogenesis. Diabetes. 2004;53:3097–106.PubMedCrossRef
74.
Zurück zum Zitat Hutley LJ, Newell FS, Kim YH, et al. A putative role for endogenous FGF-2 in FGF-1 mediated differentiation of human preadipocytes. Mol Cell Endocrinol. 2011;339:165–71.PubMedCrossRef Hutley LJ, Newell FS, Kim YH, et al. A putative role for endogenous FGF-2 in FGF-1 mediated differentiation of human preadipocytes. Mol Cell Endocrinol. 2011;339:165–71.PubMedCrossRef
75.
Zurück zum Zitat Jonker JW, Suh JM, Atkins AR, et al. A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature. 2012;485:391–4.PubMedPubMedCentralCrossRef Jonker JW, Suh JM, Atkins AR, et al. A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature. 2012;485:391–4.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Miller DL, Ortega S, Bashayan O, Basch R, Basilico C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol. 2000;20:2260–8.PubMedPubMedCentralCrossRef Miller DL, Ortega S, Bashayan O, Basch R, Basilico C. Compensation by fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic defects observed in FGF2 null mice. Mol Cell Biol. 2000;20:2260–8.PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Angelin B, Larsson TE, Rudling M. Circulating fibroblast growth factors as metabolic regulators—a critical appraisal. Cell Metab. 2010;16:693–705.CrossRef Angelin B, Larsson TE, Rudling M. Circulating fibroblast growth factors as metabolic regulators—a critical appraisal. Cell Metab. 2010;16:693–705.CrossRef
78.
Zurück zum Zitat Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab. 2015;26:22–9.PubMedCrossRef Owen BM, Mangelsdorf DJ, Kliewer SA. Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol Metab. 2015;26:22–9.PubMedCrossRef
79.
Zurück zum Zitat Morton GJ, Matsen ME, Bracy DP, et al. FGF19 action in the brain induces insulin-independent glucose lowering. J Clin Invest. 2013;123:4799–808.PubMedPubMedCentralCrossRef Morton GJ, Matsen ME, Bracy DP, et al. FGF19 action in the brain induces insulin-independent glucose lowering. J Clin Invest. 2013;123:4799–808.PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Reiche M, Bachmann A, Lossner U, Bluher M, Stumvoll M, Fasshauer M. Fibroblast growth factor 19 serum levels: relation to renal function and metabolic parameters. Horm Metab Res. 2010;42:178–81.PubMedCrossRef Reiche M, Bachmann A, Lossner U, Bluher M, Stumvoll M, Fasshauer M. Fibroblast growth factor 19 serum levels: relation to renal function and metabolic parameters. Horm Metab Res. 2010;42:178–81.PubMedCrossRef
81.
Zurück zum Zitat • Gallego-Escuredo JM, Gómez-Ambrosi J, Catalán V, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes. 2015;39:121–9. This study reports that obesity is associated with an increase in FGF21 as well as with a decrease in FGF19 circulating levels. Moreover, opposite changes in β-klotho expression in fat and liver indicate potential tissue-specific alterations in the responsiveness to endocrine FGF-s in obesity CrossRef • Gallego-Escuredo JM, Gómez-Ambrosi J, Catalán V, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes. 2015;39:121–9. This study reports that obesity is associated with an increase in FGF21 as well as with a decrease in FGF19 circulating levels. Moreover, opposite changes in β-klotho expression in fat and liver indicate potential tissue-specific alterations in the responsiveness to endocrine FGF-s in obesity CrossRef
82.
Zurück zum Zitat Gerhard GS, Styer AM, Wood GC, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care. 2013;36:1859–64.PubMedPubMedCentralCrossRef Gerhard GS, Styer AM, Wood GC, et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care. 2013;36:1859–64.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Gómez-Ambrosi J, Gallego-Escuredo JM, Catalán V, et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin Nutr. 2016; doi:10.1016/j.clnu.2016.04.027 Gómez-Ambrosi J, Gallego-Escuredo JM, Catalán V, et al. FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin Nutr. 2016; doi:10.​1016/​j.​clnu.​2016.​04.​027
84.
Zurück zum Zitat Mraz M, Lacinova Z, Kavalkova P, et al. Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-alpha agonist treatment. Physiol Res. 2011;60:627–36.PubMed Mraz M, Lacinova Z, Kavalkova P, et al. Serum concentrations of fibroblast growth factor 19 in patients with obesity and type 2 diabetes mellitus: the influence of acute hyperinsulinemia, very-low calorie diet and PPAR-alpha agonist treatment. Physiol Res. 2011;60:627–36.PubMed
85.
Zurück zum Zitat Brufau G, Stellaard F, Prado K, et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology. 2010;52:1455–64.PubMedCrossRef Brufau G, Stellaard F, Prado K, et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology. 2010;52:1455–64.PubMedCrossRef
86.
Zurück zum Zitat Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149:6018–27.PubMedCrossRef Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149:6018–27.PubMedCrossRef
87.
Zurück zum Zitat Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58:250–9.PubMedPubMedCentralCrossRef Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58:250–9.PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Murphy M, Samms R, Warner A, et al. Increased responses to the actions of fibroblast growth factor 21 on energy balance and body weight in a seasonal model of adiposity. J Neuroendocrinol. 2013;25:180–9.PubMedCrossRef Murphy M, Samms R, Warner A, et al. Increased responses to the actions of fibroblast growth factor 21 on energy balance and body weight in a seasonal model of adiposity. J Neuroendocrinol. 2013;25:180–9.PubMedCrossRef
89.
Zurück zum Zitat Kharitonenkov A, Wroblewski VJ, Koester A, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007;148:774–81.PubMedCrossRef Kharitonenkov A, Wroblewski VJ, Koester A, et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology. 2007;148:774–81.PubMedCrossRef
90.
Zurück zum Zitat •• Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18:333–40. This study examines that daily administration of LY, a human FGF21 analog, provides clear evidence of its clinically meaningful effects on several metabolic comorbidities associated with type 2 diabetes PubMedCrossRef •• Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18:333–40. This study examines that daily administration of LY, a human FGF21 analog, provides clear evidence of its clinically meaningful effects on several metabolic comorbidities associated with type 2 diabetes PubMedCrossRef
91.
Zurück zum Zitat Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA, Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 2009;32:1542–6.PubMedPubMedCentralCrossRef Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA, Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care. 2009;32:1542–6.PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Dushay J, Chui PC, Gopalakrishnan GS, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 2010;139:456–63.PubMedPubMedCentralCrossRef Dushay J, Chui PC, Gopalakrishnan GS, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 2010;139:456–63.PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Zhang X, Yeung DC, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57:1246–53.PubMedCrossRef Zhang X, Yeung DC, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57:1246–53.PubMedCrossRef
94.
Zurück zum Zitat Li H, Fang Q, Gao F, et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol. 2010;53:934–40.PubMedCrossRef Li H, Fang Q, Gao F, et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol. 2010;53:934–40.PubMedCrossRef
95.
96.
Zurück zum Zitat Berglund ED, Li CY, Bina HA, et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009;150:4084–93.PubMedPubMedCentralCrossRef Berglund ED, Li CY, Bina HA, et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009;150:4084–93.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Diaz-Delfin J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology. 2012;153:4238–45.PubMedCrossRef Diaz-Delfin J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology. 2012;153:4238–45.PubMedCrossRef
98.
Zurück zum Zitat Hale C, Chen MM, Stanislaus S, et al. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology. 2012;153:69–80.PubMedCrossRef Hale C, Chen MM, Stanislaus S, et al. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology. 2012;153:69–80.PubMedCrossRef
99.
Zurück zum Zitat Eto K, Tumenbayar B, Nagashima S, et al. Distinct association of serum FGF21 or adiponectin levels with clinical parameters in patients with type 2 diabetes. Diabetes Res Clin Pract. 2010;89:52–7.PubMedCrossRef Eto K, Tumenbayar B, Nagashima S, et al. Distinct association of serum FGF21 or adiponectin levels with clinical parameters in patients with type 2 diabetes. Diabetes Res Clin Pract. 2010;89:52–7.PubMedCrossRef
100.
Zurück zum Zitat Li X, Fan X, Ren F, et al. Serum FGF21 levels are increased in newly diagnosed type 2 diabetes with nonalcoholic fatty liver disease and associated with hsCRP levels independently. Diabetes Res Clin Pract. 2011;93:10–6.PubMedCrossRef Li X, Fan X, Ren F, et al. Serum FGF21 levels are increased in newly diagnosed type 2 diabetes with nonalcoholic fatty liver disease and associated with hsCRP levels independently. Diabetes Res Clin Pract. 2011;93:10–6.PubMedCrossRef
101.
Zurück zum Zitat Mraz M, Bartlova M, Lacinova Z, et al. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin Endocrinol. 2009;71:369–75.CrossRef Mraz M, Bartlova M, Lacinova Z, et al. Serum concentrations and tissue expression of a novel endocrine regulator fibroblast growth factor-21 in patients with type 2 diabetes and obesity. Clin Endocrinol. 2009;71:369–75.CrossRef
102.
Zurück zum Zitat Xiao Y, Xu A, Law LS, et al. Distinct changes in serum fibroblast growth factor 21 levels in different subtypes of diabetes. J Clin Endocrinol Metab. 2012;97:E54–8.PubMedCrossRef Xiao Y, Xu A, Law LS, et al. Distinct changes in serum fibroblast growth factor 21 levels in different subtypes of diabetes. J Clin Endocrinol Metab. 2012;97:E54–8.PubMedCrossRef
103.
Zurück zum Zitat Vienberg SG, Brons C, Nilsson E, Astrup A, Vaag A, Andersen B. Impact of short-term high-fat feeding and insulin-stimulated FGF21 levels in subjects with low birth weight and controls. Eur J Endocrinol. 2012;167:49–57.PubMedCrossRef Vienberg SG, Brons C, Nilsson E, Astrup A, Vaag A, Andersen B. Impact of short-term high-fat feeding and insulin-stimulated FGF21 levels in subjects with low birth weight and controls. Eur J Endocrinol. 2012;167:49–57.PubMedCrossRef
104.
Zurück zum Zitat Mirza MA, Alsio J, Hammarstedt A, et al. Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arterioscler Thromb Vasc Biol. 2011;31:219–27.PubMedCrossRef Mirza MA, Alsio J, Hammarstedt A, et al. Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arterioscler Thromb Vasc Biol. 2011;31:219–27.PubMedCrossRef
105.
Zurück zum Zitat Holecki M, Chudek J, Wiecek A, Titz-Bober M, Dulawa J. The serum level of fibroblast growth factor-23 and calcium-phosphate homeostasis in obese perimenopausal women. Int J Endocrinol. 2011;2011:707126.PubMedPubMedCentralCrossRef Holecki M, Chudek J, Wiecek A, Titz-Bober M, Dulawa J. The serum level of fibroblast growth factor-23 and calcium-phosphate homeostasis in obese perimenopausal women. Int J Endocrinol. 2011;2011:707126.PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Marsell R, Mirza MA, Mallmin H, et al. Relation between fibroblast growth factor-23, body weight and bone mineral density in elderly men. Osteoporos Int. 2009;20:1167–73.PubMedCrossRef Marsell R, Mirza MA, Mallmin H, et al. Relation between fibroblast growth factor-23, body weight and bone mineral density in elderly men. Osteoporos Int. 2009;20:1167–73.PubMedCrossRef
107.
Zurück zum Zitat Fernandez-Real JM, Puig J, Serrano M, et al. Iron and obesity status-associated insulin resistance influence circulating fibroblast-growth factor-23 concentrations. PLoS One. 2013;8:e58961.PubMedPubMedCentralCrossRef Fernandez-Real JM, Puig J, Serrano M, et al. Iron and obesity status-associated insulin resistance influence circulating fibroblast-growth factor-23 concentrations. PLoS One. 2013;8:e58961.PubMedPubMedCentralCrossRef
108.
Zurück zum Zitat Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res. 2010;25:1711–23.PubMedCrossRef Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D3 synthesis in leptin-deficient mice. J Bone Miner Res. 2010;25:1711–23.PubMedCrossRef
109.
Zurück zum Zitat Wahl P, Xie H, Scialla J, et al. Earlier onset and greater severity of disordered mineral metabolism in diabetic patients with chronic kidney disease. Diabetes Care. 2012;35:994–1001.PubMedPubMedCentralCrossRef Wahl P, Xie H, Scialla J, et al. Earlier onset and greater severity of disordered mineral metabolism in diabetic patients with chronic kidney disease. Diabetes Care. 2012;35:994–1001.PubMedPubMedCentralCrossRef
110.
Zurück zum Zitat Vervloet MG, van Zuilen AD, Heijboer AC, et al. Fibroblast growth factor 23 is associated with proteinuria and smoking in chronic kidney disease: an analysis of the MASTERPLAN cohort. BMC Nephrol. 2012;13:20.PubMedPubMedCentralCrossRef Vervloet MG, van Zuilen AD, Heijboer AC, et al. Fibroblast growth factor 23 is associated with proteinuria and smoking in chronic kidney disease: an analysis of the MASTERPLAN cohort. BMC Nephrol. 2012;13:20.PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Fajol A, Chen H, Umbach AT, Quarles LD, Lang F, Foller M. Enhanced FGF23 production in mice expressing PI3K-insensitive GSK3 is normalized by beta-blocker treatment. FASEB J. 2016;30:994–1001.PubMedCrossRef Fajol A, Chen H, Umbach AT, Quarles LD, Lang F, Foller M. Enhanced FGF23 production in mice expressing PI3K-insensitive GSK3 is normalized by beta-blocker treatment. FASEB J. 2016;30:994–1001.PubMedCrossRef
112.
Zurück zum Zitat Winther K, Nybo M, Vind B, Pedersen SM, Hojlund K, Rasmussen LM. Acute hyperinsulinemia is followed by increased serum concentrations of fibroblast growth factor 23 in type 2 diabetes patients. Scand J Clin Lab Invest. 2012;72:108–13.PubMedCrossRef Winther K, Nybo M, Vind B, Pedersen SM, Hojlund K, Rasmussen LM. Acute hyperinsulinemia is followed by increased serum concentrations of fibroblast growth factor 23 in type 2 diabetes patients. Scand J Clin Lab Invest. 2012;72:108–13.PubMedCrossRef
113.
Zurück zum Zitat Hu X, Ma X, Luo Y, et al. Elevation in fibroblast growth factor 23 and its value for identifying subclinical atherosclerosis in first-degree relatives of patients with diabetes. Sci Rep. 2016;6:34696.PubMedPubMedCentralCrossRef Hu X, Ma X, Luo Y, et al. Elevation in fibroblast growth factor 23 and its value for identifying subclinical atherosclerosis in first-degree relatives of patients with diabetes. Sci Rep. 2016;6:34696.PubMedPubMedCentralCrossRef
114.
Zurück zum Zitat Reyes-Garcia R, Garcia-Martin A, Garcia-Fontana B, Morales-Santana S, Rozas-Moreno P, Munoz-Torres M. FGF23 in type 2 diabetic patients: relationship with bone metabolism and vascular disease. Diabetes Care. 2014;37:e89–90.PubMedCrossRef Reyes-Garcia R, Garcia-Martin A, Garcia-Fontana B, Morales-Santana S, Rozas-Moreno P, Munoz-Torres M. FGF23 in type 2 diabetic patients: relationship with bone metabolism and vascular disease. Diabetes Care. 2014;37:e89–90.PubMedCrossRef
115.
Zurück zum Zitat Wojcik M, Dolezal-Oltarzewska K, Janus D, Drozdz D, Sztefko K, Starzyk JB. FGF23 contributes to insulin sensitivity in obese adolescents—preliminary results. Clin Endocrinol. 2012;77:537–40.CrossRef Wojcik M, Dolezal-Oltarzewska K, Janus D, Drozdz D, Sztefko K, Starzyk JB. FGF23 contributes to insulin sensitivity in obese adolescents—preliminary results. Clin Endocrinol. 2012;77:537–40.CrossRef
116.
Zurück zum Zitat Holecki M, Chudek J, Owczarek A, et al. Inflammation but not obesity or insulin resistance is associated with increased plasma fibroblast growth factor 23 concentration in the elderly. Clin Endocrinol. 2015;82:900–9.CrossRef Holecki M, Chudek J, Owczarek A, et al. Inflammation but not obesity or insulin resistance is associated with increased plasma fibroblast growth factor 23 concentration in the elderly. Clin Endocrinol. 2015;82:900–9.CrossRef
117.
Zurück zum Zitat Gómez-Ambrosi J, Salvador J, Paramo JA, et al. Involvement of leptin in the association between percentage of body fat and cardiovascular risk factors. Clin Biochem. 2002;35:315–20.PubMedCrossRef Gómez-Ambrosi J, Salvador J, Paramo JA, et al. Involvement of leptin in the association between percentage of body fat and cardiovascular risk factors. Clin Biochem. 2002;35:315–20.PubMedCrossRef
118.
Zurück zum Zitat Ortega FJ, Mayas D, Moreno-Navarrete JM, et al. The gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue of obese subjects. Obesity (Silver Spring). 2010;18:13–20.CrossRef Ortega FJ, Mayas D, Moreno-Navarrete JM, et al. The gene expression of the main lipogenic enzymes is downregulated in visceral adipose tissue of obese subjects. Obesity (Silver Spring). 2010;18:13–20.CrossRef
119.
Zurück zum Zitat Rodríguez A, Catalán V, Gómez-Ambrosi J, Frühbeck G. Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle. 2011;10:1548–56.PubMedPubMedCentralCrossRef Rodríguez A, Catalán V, Gómez-Ambrosi J, Frühbeck G. Aquaglyceroporins serve as metabolic gateways in adiposity and insulin resistance control. Cell Cycle. 2011;10:1548–56.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Moreno-Navarrete JM, Catalán V, Whyte L, et al. The L-alpha-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes. 2012;61:281–91.PubMedPubMedCentralCrossRef Moreno-Navarrete JM, Catalán V, Whyte L, et al. The L-alpha-lysophosphatidylinositol/GPR55 system and its potential role in human obesity. Diabetes. 2012;61:281–91.PubMedPubMedCentralCrossRef
121.
Zurück zum Zitat Gómez-Ambrosi J, Pascual E, Catalán V, et al. Circulating betatrophin concentrations are decreased in human obesity and type 2 diabetes. J Clin Endocrinol Metab. 2014;99:E2004–9.PubMedCrossRef Gómez-Ambrosi J, Pascual E, Catalán V, et al. Circulating betatrophin concentrations are decreased in human obesity and type 2 diabetes. J Clin Endocrinol Metab. 2014;99:E2004–9.PubMedCrossRef
122.
Zurück zum Zitat Mejhert N, Galitzky J, Pettersson AT, et al. Mapping of the fibroblast growth factors in human white adipose tissue. J Clin Endocrinol Metab. 2010;95:2451–7.PubMedCrossRef Mejhert N, Galitzky J, Pettersson AT, et al. Mapping of the fibroblast growth factors in human white adipose tissue. J Clin Endocrinol Metab. 2010;95:2451–7.PubMedCrossRef
123.
Zurück zum Zitat Gerhard GS, Styer AM, Strodel WE, et al. Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity. Int J Obes. 2014;38:371–8.CrossRef Gerhard GS, Styer AM, Strodel WE, et al. Gene expression profiling in subcutaneous, visceral and epigastric adipose tissues of patients with extreme obesity. Int J Obes. 2014;38:371–8.CrossRef
124.
Zurück zum Zitat Choi Y, Jang S, Choi MS, Ryoo ZY, Park T. Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice. J Physiol Biochem. 2016;72:157–67.PubMedCrossRef Choi Y, Jang S, Choi MS, Ryoo ZY, Park T. Increased expression of FGF1-mediated signaling molecules in adipose tissue of obese mice. J Physiol Biochem. 2016;72:157–67.PubMedCrossRef
125.
Zurück zum Zitat •• Suh JM, Jonker JW, Ahmadian M, et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature. 2014;513:436–9. This study demonstrates that recombinant FGF1 (rFGF1) produces glucose lowering and insulin sensitization without mitogenic effects, indicating that rFGF1 and its derivates may hold therapeutic promises PubMedPubMedCentralCrossRef •• Suh JM, Jonker JW, Ahmadian M, et al. Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature. 2014;513:436–9. This study demonstrates that recombinant FGF1 (rFGF1) produces glucose lowering and insulin sensitization without mitogenic effects, indicating that rFGF1 and its derivates may hold therapeutic promises PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Scarlett JM, Rojas JM, Matsen ME, et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med. 2016;22:800–6.PubMedPubMedCentralCrossRef Scarlett JM, Rojas JM, Matsen ME, et al. Central injection of fibroblast growth factor 1 induces sustained remission of diabetic hyperglycemia in rodents. Nat Med. 2016;22:800–6.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Seeley RJ, Sandoval DA. Targeting the brain as a cure for type 2 diabetes. Nat Med. 2016;22:709–11.PubMedCrossRef Seeley RJ, Sandoval DA. Targeting the brain as a cure for type 2 diabetes. Nat Med. 2016;22:709–11.PubMedCrossRef
128.
Zurück zum Zitat Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Commun. 2015;6:6980.PubMedPubMedCentralCrossRef Perry RJ, Lee S, Ma L, Zhang D, Schlessinger J, Shulman GI. FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Commun. 2015;6:6980.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat •• Li M, Page-McCaw P, Chen W. FGF1 mediates overnutrition-induced compensatory β-cell differentiation. Diabetes. 2016;65:96–109. This study describes Fgf1 signaling as a key component of the overnutrition-induced β-cell differentiation signal PubMed •• Li M, Page-McCaw P, Chen W. FGF1 mediates overnutrition-induced compensatory β-cell differentiation. Diabetes. 2016;65:96–109. This study describes Fgf1 signaling as a key component of the overnutrition-induced β-cell differentiation signal PubMed
130.
Zurück zum Zitat Wang S, Yang Q, Yu S, et al. Fibroblast growth factor 1 levels are elevated in newly diagnosed type 2 diabetes compared to normal glucose tolerance controls. Endocr J. 2016;63:359–65.PubMedCrossRef Wang S, Yang Q, Yu S, et al. Fibroblast growth factor 1 levels are elevated in newly diagnosed type 2 diabetes compared to normal glucose tolerance controls. Endocr J. 2016;63:359–65.PubMedCrossRef
131.
Zurück zum Zitat Nicholes K, Guillet S, Tomlinson E, et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol. 2002;160:2295–307.PubMedPubMedCentralCrossRef Nicholes K, Guillet S, Tomlinson E, et al. A mouse model of hepatocellular carcinoma: ectopic expression of fibroblast growth factor 19 in skeletal muscle of transgenic mice. Am J Pathol. 2002;160:2295–307.PubMedPubMedCentralCrossRef
132.
Zurück zum Zitat Birrer MJ, Johnson ME, Hao K, et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J Clin Oncol. 2007;25:2281–7.PubMedCrossRef Birrer MJ, Johnson ME, Hao K, et al. Whole genome oligonucleotide-based array comparative genomic hybridization analysis identified fibroblast growth factor 1 as a prognostic marker for advanced-stage serous ovarian adenocarcinomas. J Clin Oncol. 2007;25:2281–7.PubMedCrossRef
133.
Zurück zum Zitat Wu X, Ge H, Lemon B, et al. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc Natl Acad Sci U S A. 2010;107:14158–63.PubMedPubMedCentralCrossRef Wu X, Ge H, Lemon B, et al. Separating mitogenic and metabolic activities of fibroblast growth factor 19 (FGF19). Proc Natl Acad Sci U S A. 2010;107:14158–63.PubMedPubMedCentralCrossRef
134.
Zurück zum Zitat Wu AL, Coulter S, Liddle C, et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One. 2011;6:e17868.PubMedPubMedCentralCrossRef Wu AL, Coulter S, Liddle C, et al. FGF19 regulates cell proliferation, glucose and bile acid metabolism via FGFR4-dependent and independent pathways. PLoS One. 2011;6:e17868.PubMedPubMedCentralCrossRef
135.
136.
Zurück zum Zitat Zhou M, Wang X, Phung V, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 2014;74:3306–16.PubMedCrossRef Zhou M, Wang X, Phung V, et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res. 2014;74:3306–16.PubMedCrossRef
137.
138.
Zurück zum Zitat Luo J, Ko B, Elliott M, et al. A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med. 2014;6:247ra100.PubMedCrossRef Luo J, Ko B, Elliott M, et al. A nontumorigenic variant of FGF19 treats cholestatic liver diseases. Sci Transl Med. 2014;6:247ra100.PubMedCrossRef
139.
Zurück zum Zitat Wu X, Li Y. Therapeutic utilities of fibroblast growth factor 19. Expert Opin Ther Targets. 2011;15:1307–16.PubMedCrossRef Wu X, Li Y. Therapeutic utilities of fibroblast growth factor 19. Expert Opin Ther Targets. 2011;15:1307–16.PubMedCrossRef
140.
Zurück zum Zitat Adams AC, Halstead CA, Hansen BC, et al. LY2405319, an engineered FGF21 variant. Improves the Metabolic Status of Diabetic Monkeys PLoS One. 2013;8:e65763.PubMed Adams AC, Halstead CA, Hansen BC, et al. LY2405319, an engineered FGF21 variant. Improves the Metabolic Status of Diabetic Monkeys PLoS One. 2013;8:e65763.PubMed
141.
Zurück zum Zitat Kharitonenkov A, Beals JM, Micanovic R, et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One. 2013;8:e58575.PubMedPubMedCentralCrossRef Kharitonenkov A, Beals JM, Micanovic R, et al. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One. 2013;8:e58575.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Huang Z, Wang H, Lu M, et al. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol. PLoS One. 2011;6:e20669.PubMedPubMedCentralCrossRef Huang Z, Wang H, Lu M, et al. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol. PLoS One. 2011;6:e20669.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Camacho RC, Zafian PT, Achanfuo-Yeboah J, Manibusan A, Berger JP. Pegylated Fgf21 rapidly normalizes insulin-stimulated glucose utilization in diet-induced insulin resistant mice. Eur J Pharmacol. 2013;715:41–5.PubMedCrossRef Camacho RC, Zafian PT, Achanfuo-Yeboah J, Manibusan A, Berger JP. Pegylated Fgf21 rapidly normalizes insulin-stimulated glucose utilization in diet-induced insulin resistant mice. Eur J Pharmacol. 2013;715:41–5.PubMedCrossRef
144.
Zurück zum Zitat Bendele A, Seely J, Richey C, Sennello G, Shopp G. Short communication: renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol Sci. 1998;42:152–7.PubMedCrossRef Bendele A, Seely J, Richey C, Sennello G, Shopp G. Short communication: renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol Sci. 1998;42:152–7.PubMedCrossRef
145.
Zurück zum Zitat Webster R, Didier E, Harris P, et al. PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos. 2007;35:9–16.PubMedCrossRef Webster R, Didier E, Harris P, et al. PEGylated proteins: evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos. 2007;35:9–16.PubMedCrossRef
146.
Zurück zum Zitat Xu J, Bussiere J, Yie J, et al. Polyethylene glycol modified FGF21 engineered to maximize potency and minimize vacuole formation. Bioconjug Chem. 2013;24:915–25.PubMedCrossRef Xu J, Bussiere J, Yie J, et al. Polyethylene glycol modified FGF21 engineered to maximize potency and minimize vacuole formation. Bioconjug Chem. 2013;24:915–25.PubMedCrossRef
147.
Zurück zum Zitat Hecht R, Li YS, Sun J, et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One. 2012;7:e49345.PubMedPubMedCentralCrossRef Hecht R, Li YS, Sun J, et al. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One. 2012;7:e49345.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Huang J, Ishino T, Chen G, et al. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J Pharmacol Exp Ther. 2013;346:270–80.PubMedCrossRef Huang J, Ishino T, Chen G, et al. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J Pharmacol Exp Ther. 2013;346:270–80.PubMedCrossRef
149.
Zurück zum Zitat Weng Y, Chabot JR, Bernardo B, et al. Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice. PLoS One. 2015;10:e0119104.PubMedPubMedCentralCrossRef Weng Y, Chabot JR, Bernardo B, et al. Pharmacokinetics (PK), pharmacodynamics (PD) and integrated PK/PD modeling of a novel long acting FGF21 clinical candidate PF-05231023 in diet-induced obese and leptin-deficient obese mice. PLoS One. 2015;10:e0119104.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Giragossian C, Vage C, Li J, et al. Mechanistic investigation of the preclinical pharmacokinetics and interspecies scaling of PF-05231023, a fibroblast growth factor 21-antibody protein conjugate. Drug Metab Dispos. 2015;43:803–11.PubMedCrossRef Giragossian C, Vage C, Li J, et al. Mechanistic investigation of the preclinical pharmacokinetics and interspecies scaling of PF-05231023, a fibroblast growth factor 21-antibody protein conjugate. Drug Metab Dispos. 2015;43:803–11.PubMedCrossRef
151.
Zurück zum Zitat Dong JQ, Rossulek M, Somayaji VR, et al. Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br J Clin Pharmacol. 2015;80:1051–63.PubMedPubMedCentralCrossRef Dong JQ, Rossulek M, Somayaji VR, et al. Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br J Clin Pharmacol. 2015;80:1051–63.PubMedPubMedCentralCrossRef
152.
Zurück zum Zitat Wu AL, Kolumam G, Stawicki S, et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Transl Med. 2011;3:113ra126.PubMedCrossRef Wu AL, Kolumam G, Stawicki S, et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Transl Med. 2011;3:113ra126.PubMedCrossRef
153.
Zurück zum Zitat Ussar S, Vienberg SG, Kahn CR. Receptor antibodies as novel therapeutics for diabetes. Sci Transl Med. 2011;3:113ps147.CrossRef Ussar S, Vienberg SG, Kahn CR. Receptor antibodies as novel therapeutics for diabetes. Sci Transl Med. 2011;3:113ps147.CrossRef
154.
Zurück zum Zitat Foltz IN, Hu S, King C, et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex. Sci Transl Med. 2012;4:162ra153.PubMedCrossRef Foltz IN, Hu S, King C, et al. Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex. Sci Transl Med. 2012;4:162ra153.PubMedCrossRef
155.
Zurück zum Zitat Smith R, Duguay A, Bakker A, et al. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/beta-Klotho bispecific protein. PLoS One. 2013;8:e61432.PubMedPubMedCentralCrossRef Smith R, Duguay A, Bakker A, et al. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/beta-Klotho bispecific protein. PLoS One. 2013;8:e61432.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer. 2004;11:709–24.PubMedCrossRef Kwabi-Addo B, Ozen M, Ittmann M. The role of fibroblast growth factors and their receptors in prostate cancer. Endocr Relat Cancer. 2004;11:709–24.PubMedCrossRef
157.
Zurück zum Zitat Kingwell K. Obesity and diabetes: FGF1 goes long to tackle diabetes. Nat Rev Drug Discov. 2014;13:652–3.PubMedCrossRef Kingwell K. Obesity and diabetes: FGF1 goes long to tackle diabetes. Nat Rev Drug Discov. 2014;13:652–3.PubMedCrossRef
158.
Zurück zum Zitat Wente W, Efanov AM, Brenner M, et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006;55:2470–8.PubMedCrossRef Wente W, Efanov AM, Brenner M, et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes. 2006;55:2470–8.PubMedCrossRef
Metadaten
Titel
The Role and Potential Therapeutic Implications of the Fibroblast Growth Factors in Energy Balance and Type 2 Diabetes
verfasst von
Maitane Izaguirre
María J. Gil
Ignacio Monreal
Fabrizio Montecucco
Gema Frühbeck
Victoria Catalán
Publikationsdatum
01.06.2017
Verlag
Springer US
Erschienen in
Current Diabetes Reports / Ausgabe 6/2017
Print ISSN: 1534-4827
Elektronische ISSN: 1539-0829
DOI
https://doi.org/10.1007/s11892-017-0866-3

Weitere Artikel der Ausgabe 6/2017

Current Diabetes Reports 6/2017 Zur Ausgabe

Pediatric Type 2 and Monogenic Diabetes (PS Zeitler, Section Editor)

Vascular and Endothelial Function in Youth with Type 2 Diabetes Mellitus

Lifestyle Management to Reduce Diabetes/Cardiovascular Risk (B Conway and H Keenan, Section Editors)

Interaction Between the Haptoglobin Genotype and Vitamin E on Cardiovascular Disease in Diabetes

Pathogenesis of Type 2 Diabetes and Insulin Resistance (RM Watanabe, Section Editor)

The mTOR Signaling Pathway in Myocardial Dysfunction in Type 2 Diabetes Mellitus

Immunology, Transplantation, and Regenerative Medicine (L Piemonti and V Sordi, Section Editors)

Cell Therapy for Type 1 Diabetes: Current and Future Strategies

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.