Skip to main content
Erschienen in: Inflammation 6/2019

29.08.2019

The Role of Decidual PD-1+ Treg Cells in Adverse Pregnancy Outcomes due to Toxoplasma gondii Infection

verfasst von: Haixia Zhang, Lijun Cui, Liqin Ren, Xianbing Liu, Yuzhu Jiang, Chunyan Yang, Xuemei Hu, Fang Li

Erschienen in: Inflammation | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

Toxoplasma gondii infection during pregnancy can result in adverse pregnancy outcomes. Previously, we have reported that these outcomes are associated with the impaired function of decidual Treg cells; however, the detailed mechanisms involved were unclear. It has been reported that the suppressive capacity of Treg cells is dependent on PD-1 expression. The present study explored the role of decidual PD-1+ Treg cell function in adverse pregnancy outcomes due to T. gondii infection. Toxoplasma gondii–infected pregnant mice were sacrificed on gestational day 14 and their pregnancy outcomes were observed. The expression of PD-1 on decidual Treg cells and expressions of Foxp3, CTLA-4, TGF-β, and IL-10 on decidual PD-1+ and PD-1 Treg cells were determined using flow cytometry. The results showed that the expression of PD-1 on decidual Treg cells was clearly higher in the T. gondii–infected mice than in the normal mice. Meanwhile, the expressions of Foxp3, CTLA-4, TGF-β, and IL-10 on decidual PD-1+ Treg cells were higher in the infected mice than in the normal mice. The expressions were higher in decidual PD1+ Treg cells than in PD-1 Treg cells in the infected mice. However, these expressions on PD-1 Treg cells did not significantly differ between the infected and normal mice. Nonetheless, the absolute percentages of decidual PD-1+ Treg cells decreased significantly in the infected mice compared with those in the normal mice. These results suggest that T. gondii infection mainly influences the function of decidual PD-1+ Treg cells, which would result in an insufficiently immunotolerant microenvironment and consequently in adverse pregnancy outcomes.
Literatur
1.
Zurück zum Zitat Commodaro, A.G., R.N. Belfort, L.V. Rizzo, C. Muccioli, C. Silveira, M.N. Burnier Jr, and R. Belfort Jr. 2009. Ocular toxoplasmosis: an update and review of the literature. Memórias do Instituto Oswaldo Cruz 104: 345–350.CrossRef Commodaro, A.G., R.N. Belfort, L.V. Rizzo, C. Muccioli, C. Silveira, M.N. Burnier Jr, and R. Belfort Jr. 2009. Ocular toxoplasmosis: an update and review of the literature. Memórias do Instituto Oswaldo Cruz 104: 345–350.CrossRef
2.
Zurück zum Zitat Miao, X., R. Xu, B. Fan, J. Chen, X. Li, W. Mao, S. Hua, and B. Li. 2018. PD-L1 reverses depigmentation in Pmel-1 vitiligo mice by increasing the abundance of Tregs in the skin. Scientific Reports 8: 1605.CrossRef Miao, X., R. Xu, B. Fan, J. Chen, X. Li, W. Mao, S. Hua, and B. Li. 2018. PD-L1 reverses depigmentation in Pmel-1 vitiligo mice by increasing the abundance of Tregs in the skin. Scientific Reports 8: 1605.CrossRef
3.
Zurück zum Zitat Sakaguchi, S. 2005. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology 6: 345–352.CrossRef Sakaguchi, S. 2005. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology 6: 345–352.CrossRef
4.
Zurück zum Zitat Guerin, L.R., J.R. Prins, and S.A. Robertson. 2009. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Human Reproduction Update 15: 517–535.CrossRef Guerin, L.R., J.R. Prins, and S.A. Robertson. 2009. Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Human Reproduction Update 15: 517–535.CrossRef
5.
Zurück zum Zitat Clark, D.A. 2016. The importance of being a regulatory T cell in pregnancy. Journal of Reproductive Immunology 116: 60–69.CrossRef Clark, D.A. 2016. The importance of being a regulatory T cell in pregnancy. Journal of Reproductive Immunology 116: 60–69.CrossRef
6.
Zurück zum Zitat Aluvihare, V.R., M. Kallikourdis, and A.G. Betz. 2004. Regulatory T cells mediate maternal tolerance to the fetus. Nature Immunology 5 (3): 266–271.CrossRef Aluvihare, V.R., M. Kallikourdis, and A.G. Betz. 2004. Regulatory T cells mediate maternal tolerance to the fetus. Nature Immunology 5 (3): 266–271.CrossRef
7.
Zurück zum Zitat Zhang, Haixia, Xuemei Hu, Xianbing Liu, Ruijin Zhang, Fu Qiang, and Xu. Xiaoyan. 2012. The Treg/Th17 imbalance in Toxoplasma gondii infected pregnant mice. American Journal of Reproductive Immunology 67: 112–121.CrossRef Zhang, Haixia, Xuemei Hu, Xianbing Liu, Ruijin Zhang, Fu Qiang, and Xu. Xiaoyan. 2012. The Treg/Th17 imbalance in Toxoplasma gondii infected pregnant mice. American Journal of Reproductive Immunology 67: 112–121.CrossRef
8.
Zurück zum Zitat Liu, Y., M. Zhao, X. Xu, X. Liu, H. Zhang, Y. Jiang, L. Zhang, and X. Hu. 2014. Adoptive transfer of Treg cells counters adverse effects of Toxoplasma gondii infection on pregnancy. The Journal of Infectious Diseases 210: 1435–1443.CrossRef Liu, Y., M. Zhao, X. Xu, X. Liu, H. Zhang, Y. Jiang, L. Zhang, and X. Hu. 2014. Adoptive transfer of Treg cells counters adverse effects of Toxoplasma gondii infection on pregnancy. The Journal of Infectious Diseases 210: 1435–1443.CrossRef
9.
Zurück zum Zitat Zhao, Mingdong, Haixia Zhang, Xianbing Liu, Yuzhu Jiang, Liqin Ren, and Xuemei Hu. 2017. The effect of TGF-β on Treg cells in adverse pregnancy outcome upon Toxoplasma gondii infection. Frontiers in Microbiology 8: 901.CrossRef Zhao, Mingdong, Haixia Zhang, Xianbing Liu, Yuzhu Jiang, Liqin Ren, and Xuemei Hu. 2017. The effect of TGF-β on Treg cells in adverse pregnancy outcome upon Toxoplasma gondii infection. Frontiers in Microbiology 8: 901.CrossRef
10.
Zurück zum Zitat Lao, Kaixue, Mindong Zhao, Zhidan Li, Xianbing Liu, Haixia Zhang, Yuzhu Jiang, Yanlin Wang, and Xuemei Hu. 2015. IL-10 regulate decidual Tregs apoptosis contributing to the abnormal pregnancy with Toxoplasma gondii infection. Microbial Pathogenesis 89: 210–216.CrossRef Lao, Kaixue, Mindong Zhao, Zhidan Li, Xianbing Liu, Haixia Zhang, Yuzhu Jiang, Yanlin Wang, and Xuemei Hu. 2015. IL-10 regulate decidual Tregs apoptosis contributing to the abnormal pregnancy with Toxoplasma gondii infection. Microbial Pathogenesis 89: 210–216.CrossRef
11.
Zurück zum Zitat Baecher-Allan, C., J.A. Brown, G.J. Freeman, and D.A. Hafler. 2003. CD4+CD25+regulatory cells from human peripheral blood express very high levels of CD25 ex vivo. Novartis Foundation Symposium 252: 67–88.PubMed Baecher-Allan, C., J.A. Brown, G.J. Freeman, and D.A. Hafler. 2003. CD4+CD25+regulatory cells from human peripheral blood express very high levels of CD25 ex vivo. Novartis Foundation Symposium 252: 67–88.PubMed
12.
Zurück zum Zitat Baecher-Allan, C., J.A. Brown, G.J. Freeman, and D.A. Hafler. 2001. CD4+CD25high regulatory cells in human peripheral blood. Journal of Immunology 167: 1245–1253.CrossRef Baecher-Allan, C., J.A. Brown, G.J. Freeman, and D.A. Hafler. 2001. CD4+CD25high regulatory cells in human peripheral blood. Journal of Immunology 167: 1245–1253.CrossRef
13.
Zurück zum Zitat Polanczyk, M.J., C. Hopke, A.A. Vandenbark, and H. Offner. 2007. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). International Immunology 19: 337–343.CrossRef Polanczyk, M.J., C. Hopke, A.A. Vandenbark, and H. Offner. 2007. Treg suppressive activity involves estrogen-dependent expression of programmed death-1 (PD-1). International Immunology 19: 337–343.CrossRef
14.
Zurück zum Zitat Wong, M., and A. La Cava. 2013. Blockade of programmed death-1 in young (New Zealand Black x New Zealand White) F1 mice promotes the suppressive capacity of CD4+ regulatory T cells protecting from lupus-like disease. Journal of Immunology 190: 5402–5410.CrossRef Wong, M., and A. La Cava. 2013. Blockade of programmed death-1 in young (New Zealand Black x New Zealand White) F1 mice promotes the suppressive capacity of CD4+ regulatory T cells protecting from lupus-like disease. Journal of Immunology 190: 5402–5410.CrossRef
15.
Zurück zum Zitat Tian, M., Y. Zhang, Z. Liu, G. Sun, G. Mor, and A. Liao. 2016. The PD-1/PD-L1 inhibitory pathway is altered in pre-eclampsia and regulates T cell responses in pre-eclamptic rats. Scientific Reports 6: 27683.CrossRef Tian, M., Y. Zhang, Z. Liu, G. Sun, G. Mor, and A. Liao. 2016. The PD-1/PD-L1 inhibitory pathway is altered in pre-eclampsia and regulates T cell responses in pre-eclamptic rats. Scientific Reports 6: 27683.CrossRef
16.
Zurück zum Zitat Workman, C.J., A.L. Szymczak-Workman, L.W. Collison, M.R. Pillai, and D.A. Vignali. 2009. The development and function of regulatory T cells. Cellular and Molecular Life Sciences 66: 2603–2622.CrossRef Workman, C.J., A.L. Szymczak-Workman, L.W. Collison, M.R. Pillai, and D.A. Vignali. 2009. The development and function of regulatory T cells. Cellular and Molecular Life Sciences 66: 2603–2622.CrossRef
17.
Zurück zum Zitat Vignali, D.A., L.W. Collison, and C.J. Workman. 2008. How regulatory T cells work. Nature Reviews Immunology 8: 523–532.CrossRef Vignali, D.A., L.W. Collison, and C.J. Workman. 2008. How regulatory T cells work. Nature Reviews Immunology 8: 523–532.CrossRef
18.
Zurück zum Zitat Huang, S.C., P.C. Wei, W.W. Hwang-Verslues, W.H. Kuo, Y.M. Jeng, C.M. Hu, J.Y. Shew, C.S. Huang, K.J. Chang, E.Y. Lee, and W.H. Lee. 2017. TGF-β1 secreted by Tregs in lymph nodes promotes breast cancer malignancy via up-regulation of IL-17RB. EMBO Molecular Medicine 12: 1660–1680.CrossRef Huang, S.C., P.C. Wei, W.W. Hwang-Verslues, W.H. Kuo, Y.M. Jeng, C.M. Hu, J.Y. Shew, C.S. Huang, K.J. Chang, E.Y. Lee, and W.H. Lee. 2017. TGF-β1 secreted by Tregs in lymph nodes promotes breast cancer malignancy via up-regulation of IL-17RB. EMBO Molecular Medicine 12: 1660–1680.CrossRef
19.
Zurück zum Zitat Round, J.L., and S.K. Mazmanian. 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America 107: 12204–12209.CrossRef Round, J.L., and S.K. Mazmanian. 2010. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America 107: 12204–12209.CrossRef
20.
Zurück zum Zitat Gupta, S., T.B. Thornley, W. Gao, R. Larocca, L.A. Turka, V.K. Kuchroo, and T.B. Strom. 2012. Allograft rejection is restrained by short-lived TIM-3+ PD-1 + Foxp3+ Tregs. The Journal of Clinical Investigation 122: 2395–2404.CrossRef Gupta, S., T.B. Thornley, W. Gao, R. Larocca, L.A. Turka, V.K. Kuchroo, and T.B. Strom. 2012. Allograft rejection is restrained by short-lived TIM-3+ PD-1 + Foxp3+ Tregs. The Journal of Clinical Investigation 122: 2395–2404.CrossRef
21.
Zurück zum Zitat Bedke, T., L. Pretsch, S. Karakhanova, A.H. Enk, and K. Mahnke. 2010. Endothelial cells augment the suppressive function of CD4+CD25+Foxp3+regulatory T cells: involvement of programmed death-1 and IL-10. Journal of Immunology 184: 5562–5570.CrossRef Bedke, T., L. Pretsch, S. Karakhanova, A.H. Enk, and K. Mahnke. 2010. Endothelial cells augment the suppressive function of CD4+CD25+Foxp3+regulatory T cells: involvement of programmed death-1 and IL-10. Journal of Immunology 184: 5562–5570.CrossRef
22.
Zurück zum Zitat Fontenot, J.D., J.P. Rasmussen, L.M. Williams, J.L. Dooley, A.G. Farr, and A.Y. Rudensky. 2005. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341.CrossRef Fontenot, J.D., J.P. Rasmussen, L.M. Williams, J.L. Dooley, A.G. Farr, and A.Y. Rudensky. 2005. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22: 329–341.CrossRef
23.
Zurück zum Zitat Francisco, L.M., V.H. Salinas, K.E. Brown, V.K. Vanguri, G.J. Freeman, V.K. Kuchroo, and A.H. Sharpe. 2009. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. The Journal of Experimental Medicine 206: 3015–3029.CrossRef Francisco, L.M., V.H. Salinas, K.E. Brown, V.K. Vanguri, G.J. Freeman, V.K. Kuchroo, and A.H. Sharpe. 2009. PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. The Journal of Experimental Medicine 206: 3015–3029.CrossRef
24.
Zurück zum Zitat Kopřivová, H., M. Hájková, M. Koucký, K. Malíčková, V. Holáň, and M. Krulová. 2019. Kinetics of Helios(+) and Helios(−) T regulatory cell subsets in the circulation of healthy pregnant women. Scandinavian Journal of Immunology 89: e12754.CrossRef Kopřivová, H., M. Hájková, M. Koucký, K. Malíčková, V. Holáň, and M. Krulová. 2019. Kinetics of Helios(+) and Helios(−) T regulatory cell subsets in the circulation of healthy pregnant women. Scandinavian Journal of Immunology 89: e12754.CrossRef
25.
Zurück zum Zitat Zhang, Y.H., M. Tian, M.X. Tang, Z.Z. Liu, and A.H. Liao. 2015. Recent insight into the role of the PD-1/PD-L1 pathway in Feto-maternal tolerance and pregnancy. American Journal of Reproductive Immunology 74: 201–208.CrossRef Zhang, Y.H., M. Tian, M.X. Tang, Z.Z. Liu, and A.H. Liao. 2015. Recent insight into the role of the PD-1/PD-L1 pathway in Feto-maternal tolerance and pregnancy. American Journal of Reproductive Immunology 74: 201–208.CrossRef
26.
Zurück zum Zitat Wafula, P.O., A. Teles, A. Schumacher, K. Pohl, H. Yagita, H.D. Volk, and A.C. Zenclussen. 2009. PD-1 but not CTLA-4 blockage abrogates the protective effect of regulatory T cells in a pregnancy murine model. American Journal of Reproductive Immunology 62: 283–292.CrossRef Wafula, P.O., A. Teles, A. Schumacher, K. Pohl, H. Yagita, H.D. Volk, and A.C. Zenclussen. 2009. PD-1 but not CTLA-4 blockage abrogates the protective effect of regulatory T cells in a pregnancy murine model. American Journal of Reproductive Immunology 62: 283–292.CrossRef
27.
Zurück zum Zitat Zheng, Y., S.Z. Josedowicz, A. Kas, T.T. Chu, M.A. Gavin, and A.Y. Rudensky. 2007. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445: 936–940.CrossRef Zheng, Y., S.Z. Josedowicz, A. Kas, T.T. Chu, M.A. Gavin, and A.Y. Rudensky. 2007. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445: 936–940.CrossRef
28.
Zurück zum Zitat Marson, A., K. Kretschmer, G.M. Frampton, and E.S. Jacobsen. 2007. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445: 931–935.CrossRef Marson, A., K. Kretschmer, G.M. Frampton, and E.S. Jacobsen. 2007. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 445: 931–935.CrossRef
29.
Zurück zum Zitat Sakaguchi, S., N. Sakaguchi, M. Asano, et al. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology 155 (3): 1151–1164. Sakaguchi, S., N. Sakaguchi, M. Asano, et al. 1995. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. Journal of Immunology 155 (3): 1151–1164.
30.
Zurück zum Zitat Jasper, M.J., K.P. Tremellen, and S.A. Robertson. 2006. Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Molecular Human Reproduction 12: 301–308.CrossRef Jasper, M.J., K.P. Tremellen, and S.A. Robertson. 2006. Primary unexplained infertility is associated with reduced expression of the T-regulatory cell transcription factor Foxp3 in endometrial tissue. Molecular Human Reproduction 12: 301–308.CrossRef
31.
Zurück zum Zitat Silva, N.M., R.M. Manzan, W.P. Carneiro, C.M. Milanezi, J.S. Silva, E.A.V. Ferro, and J.R. Mineo. 2010. Toxoplasma gondii: The severity of toxoplasmic encephalitis in C57BL/6 mice is associated with increased ALCAM and VCAM-1 expression in the central nervous system and higher blood-brain barrier permeability. Experimental Parasitology 126: 167–177.CrossRef Silva, N.M., R.M. Manzan, W.P. Carneiro, C.M. Milanezi, J.S. Silva, E.A.V. Ferro, and J.R. Mineo. 2010. Toxoplasma gondii: The severity of toxoplasmic encephalitis in C57BL/6 mice is associated with increased ALCAM and VCAM-1 expression in the central nervous system and higher blood-brain barrier permeability. Experimental Parasitology 126: 167–177.CrossRef
32.
Zurück zum Zitat Sansom, D.M., and L.S. Walker. 2006. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunological Reviews 212: 131–148.CrossRef Sansom, D.M., and L.S. Walker. 2006. The role of CD28 and cytotoxic T-lymphocyte antigen-4 (CTLA-4) in regulatory T-cell biology. Immunological Reviews 212: 131–148.CrossRef
33.
Zurück zum Zitat Fife, B.T., and J.A. Bluestone. 2008. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol 224: 166–182.CrossRef Fife, B.T., and J.A. Bluestone. 2008. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol 224: 166–182.CrossRef
34.
Zurück zum Zitat Zenclussen, A.C., K. Gerlof, M.L. Zenclussen, S. Ritschel, A. Zambon Bertoja, S. Fest, S. Hontsu, S. Ueha, K. Matsushima, J. Leber, and H.D. Volk. 2006. Regulatory T cells induce a privileged tolerant microenvironment at the fetal–maternal interface. European Journal of Immunology 36: 82–94.CrossRef Zenclussen, A.C., K. Gerlof, M.L. Zenclussen, S. Ritschel, A. Zambon Bertoja, S. Fest, S. Hontsu, S. Ueha, K. Matsushima, J. Leber, and H.D. Volk. 2006. Regulatory T cells induce a privileged tolerant microenvironment at the fetal–maternal interface. European Journal of Immunology 36: 82–94.CrossRef
Metadaten
Titel
The Role of Decidual PD-1+ Treg Cells in Adverse Pregnancy Outcomes due to Toxoplasma gondii Infection
verfasst von
Haixia Zhang
Lijun Cui
Liqin Ren
Xianbing Liu
Yuzhu Jiang
Chunyan Yang
Xuemei Hu
Fang Li
Publikationsdatum
29.08.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 6/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-01075-1

Weitere Artikel der Ausgabe 6/2019

Inflammation 6/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.