Skip to main content
Erschienen in: Archives of Virology 2/2024

01.02.2024 | Review

The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs

verfasst von: Jie Zhuang, Zhiwei Yan, Tiezhong Zhou, Yonggang Li, Huinuan Wang

Erschienen in: Archives of Virology | Ausgabe 2/2024

Einloggen, um Zugang zu erhalten

Abstract

The pandemic caused by SARS-CoV-2, which has proven capable of infecting over 30 animal species, highlights the critical need for understanding the mechanisms of cross-species transmission and the emergence of novel coronavirus strains. The recent discovery of CCoV-HuPn-2018, a recombinant alphacoronavirus from canines and felines that can infect humans, along with evidence of SARS-CoV-2 infection in pig cells, underscores the potential for coronaviruses to overcome species barriers. This review investigates the origins and cross-species transmission of both human and porcine coronaviruses, with a specific emphasis on the instrumental role receptors play in this process.
Literatur
1.
Zurück zum Zitat Cui J, Li F, Shi Z (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17:181–192PubMedCrossRef Cui J, Li F, Shi Z (2019) Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 17:181–192PubMedCrossRef
2.
Zurück zum Zitat Forni D, Cagliani R, Clerici M, Sironi M (2017) Molecular evolution of human coronavirus genomes. Trends Microbiol 25:35–48PubMedCrossRef Forni D, Cagliani R, Clerici M, Sironi M (2017) Molecular evolution of human coronavirus genomes. Trends Microbiol 25:35–48PubMedCrossRef
3.
Zurück zum Zitat Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24:490–502PubMedPubMedCentralCrossRef Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF (2016) Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol 24:490–502PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, Bai R, Teng JLL, Tsang CCC, Wang M, Zheng B, Chan K, Yuen K (2012) Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 86:3995–4008PubMedPubMedCentralCrossRef Woo PCY, Lau SKP, Lam CSF, Lau CCY, Tsang AKL, Lau JHN, Bai R, Teng JLL, Tsang CCC, Wang M, Zheng B, Chan K, Yuen K (2012) Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J Virol 86:3995–4008PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Vlasova AN, Diaz A, Damtie D, Xiu L, Toh T, Lee JS, Saif LJ, Gray GC (2022) Novel canine coronavirus isolated from a hospitalized patient with pneumonia in East Malaysia. Clin Infect Dis 74:446–454PubMedCrossRef Vlasova AN, Diaz A, Damtie D, Xiu L, Toh T, Lee JS, Saif LJ, Gray GC (2022) Novel canine coronavirus isolated from a hospitalized patient with pneumonia in East Malaysia. Clin Infect Dis 74:446–454PubMedCrossRef
6.
Zurück zum Zitat Keep S, Carr BV, Lean FZX, Fones A, Newman J, Dowgier G, Freimanis G, Vatzia E, Polo N, Everest H, Webb I, Mcnee A, Paudyal B, Thakur N, Nunez A, MacLoughlin R, Maier H, Hammond J, Bailey D, Waters R, Charleston B, Tuthill T, Britton P, Bickerton E, Tchilian E (2022) Porcine respiratory coronavirus as a model for acute respiratory coronavirus disease. Front Immunol 13:867707PubMedPubMedCentralCrossRef Keep S, Carr BV, Lean FZX, Fones A, Newman J, Dowgier G, Freimanis G, Vatzia E, Polo N, Everest H, Webb I, Mcnee A, Paudyal B, Thakur N, Nunez A, MacLoughlin R, Maier H, Hammond J, Bailey D, Waters R, Charleston B, Tuthill T, Britton P, Bickerton E, Tchilian E (2022) Porcine respiratory coronavirus as a model for acute respiratory coronavirus disease. Front Immunol 13:867707PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Li F (2015) Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 89:1954–1964PubMedCrossRef Li F (2015) Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol 89:1954–1964PubMedCrossRef
10.
Zurück zum Zitat Walls AC, Tortorici MA, Bosch B, Frenz B, Rottier PJM, DiMaio F, Rey FA, Veesler D (2016) Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531:114–117ADSPubMedPubMedCentralCrossRef Walls AC, Tortorici MA, Bosch B, Frenz B, Rottier PJM, DiMaio F, Rey FA, Veesler D (2016) Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531:114–117ADSPubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Hulswit RJG, de Haan CAM, Bosch BJ (2016) Chapter two—Coronavirus spike protein and tropism changes. In: Ziebuhr J (ed) Advances in virus research. Academic Press, London, pp 29–57 Hulswit RJG, de Haan CAM, Bosch BJ (2016) Chapter two—Coronavirus spike protein and tropism changes. In: Ziebuhr J (ed) Advances in virus research. Academic Press, London, pp 29–57
12.
Zurück zum Zitat Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454ADSPubMedPubMedCentralCrossRef Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, Choe H, Farzan M (2003) Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 426:450–454ADSPubMedPubMedCentralCrossRef
13.
Zurück zum Zitat Lanying Du, Zhao G, Kou Z, Ma C, Sun S, Poon VKM, Lu L, Wang L, Debnath AK, Zheng B, Zhou Y, Jiang S (2013) Identification of a receptor-binding domain in the S protein of the novel human coronavirus middle east respiratory syndrome coronavirus as an essential target for vaccine development. J Virol 87:9939–9942CrossRef Lanying Du, Zhao G, Kou Z, Ma C, Sun S, Poon VKM, Lu L, Wang L, Debnath AK, Zheng B, Zhou Y, Jiang S (2013) Identification of a receptor-binding domain in the S protein of the novel human coronavirus middle east respiratory syndrome coronavirus as an essential target for vaccine development. J Virol 87:9939–9942CrossRef
14.
Zurück zum Zitat Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, Thiel V, Drosten C, Rottier PJM, Osterhaus ADME, Bosch BJ, Haagmans BL (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–254ADSPubMedPubMedCentralCrossRef Raj VS, Mou H, Smits SL, Dekkers DHW, Müller MA, Dijkman R, Muth D, Demmers JAA, Zaki A, Fouchier RAM, Thiel V, Drosten C, Rottier PJM, Osterhaus ADME, Bosch BJ, Haagmans BL (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495:251–254ADSPubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78:779–784PubMedPubMedCentralCrossRef Hoffmann M, Kleine-Weber H, Pöhlmann S (2020) A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells. Mol Cell 78:779–784PubMedPubMedCentralCrossRef
16.
Zurück zum Zitat Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5:562–569PubMedPubMedCentralCrossRef Letko M, Marzi A, Munster V (2020) Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol 5:562–569PubMedPubMedCentralCrossRef
17.
Zurück zum Zitat Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M, Castaldo G, Bianco A (2020) ACE2: the major cell entry receptor for SARS-CoV-2. Lung 198:867–877PubMedPubMedCentralCrossRef Scialo F, Daniele A, Amato F, Pastore L, Matera MG, Cazzola M, Castaldo G, Bianco A (2020) ACE2: the major cell entry receptor for SARS-CoV-2. Lung 198:867–877PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P (2005) Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 102:11876ADSPubMedPubMedCentralCrossRef Simmons G, Gosalia DN, Rennekamp AJ, Reeves JD, Diamond SL, Bates P (2005) Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc Natl Acad Sci USA 102:11876ADSPubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Wang K, Chen W, Zhang Z, Deng Y, Lian J, Du P, Wei D, Zhang Y, Sun X, Gong L, Yang X, He L, Zhang L, Yang Z, Geng J, Chen R, Zhang H, Wang B, Zhu Y, Nan G, Jiang J, Li L, Wu J, Lin P, Huang W, Xie L, Zheng Z, Zhang K, Miao J, Cui H, Huang M, Zhang J, Fu L, Yang X, Zhao Z, Sun S, Gu H, Wang Z, Wang C, Lu Y, Liu Y, Wang Q, Bian H, Zhu P, Chen Z (2020) CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 5:283PubMedPubMedCentralCrossRef Wang K, Chen W, Zhang Z, Deng Y, Lian J, Du P, Wei D, Zhang Y, Sun X, Gong L, Yang X, He L, Zhang L, Yang Z, Geng J, Chen R, Zhang H, Wang B, Zhu Y, Nan G, Jiang J, Li L, Wu J, Lin P, Huang W, Xie L, Zheng Z, Zhang K, Miao J, Cui H, Huang M, Zhang J, Fu L, Yang X, Zhao Z, Sun S, Gu H, Wang Z, Wang C, Lu Y, Liu Y, Wang Q, Bian H, Zhu P, Chen Z (2020) CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther 5:283PubMedPubMedCentralCrossRef
20.
Zurück zum Zitat Gu Y, Cao J, Zhang X, Gao H, Wang Y, Wang J, He J, Jiang X, Zhang J, Shen G, Yang J, Zheng X, Hu G, Zhu Y, Du S, Zhu Y, Zhang R, Xu J, Lan F, Qu D, Xu G, Zhao Y, Gao D, Xie Y, Luo M, Lu Z (2022) Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res 32:24–37PubMedCrossRef Gu Y, Cao J, Zhang X, Gao H, Wang Y, Wang J, He J, Jiang X, Zhang J, Shen G, Yang J, Zheng X, Hu G, Zhu Y, Du S, Zhu Y, Zhang R, Xu J, Lan F, Qu D, Xu G, Zhao Y, Gao D, Xie Y, Luo M, Lu Z (2022) Receptome profiling identifies KREMEN1 and ASGR1 as alternative functional receptors of SARS-CoV-2. Cell Res 32:24–37PubMedCrossRef
21.
Zurück zum Zitat Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoki J, Vapalahti O, Stadelmann C, Balistreri G, Simons M (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856ADSPubMedPubMedCentralCrossRef Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, van der Meer F, Kallio K, Kaya T, Anastasina M, Smura T, Levanov L, Szirovicza L, Tobi A, Kallio-Kokko H, Österlund P, Joensuu M, Meunier FA, Butcher SJ, Winkler MS, Mollenhauer B, Helenius A, Gokce O, Teesalu T, Hepojoki J, Vapalahti O, Stadelmann C, Balistreri G, Simons M (2020) Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370:856ADSPubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Daly JL, Simonetti B, Klein K, Chen K, Williamson MK, Antón-Plágaro C, Shoemark DK, Simón-Gracia L, Bauer M, Hollandi R, Greber UF, Horvath P, Sessions RB, Helenius A, Hiscox JA, Teesalu T, Matthews DA, Davidson AD, Collins BM, Cullen PJ, Yamauchi Y (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370:861ADSPubMedPubMedCentralCrossRef Daly JL, Simonetti B, Klein K, Chen K, Williamson MK, Antón-Plágaro C, Shoemark DK, Simón-Gracia L, Bauer M, Hollandi R, Greber UF, Horvath P, Sessions RB, Helenius A, Hiscox JA, Teesalu T, Matthews DA, Davidson AD, Collins BM, Cullen PJ, Yamauchi Y (2020) Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science 370:861ADSPubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Tortorici MA, Walls AC, Joshi A, Park YJ, Eguia RT, Miranda MC, Kepl E, Dosey A, Stevens-Ayers T, Boeckh MJ, Telenti A, Lanzavecchia A, King NP, Corti D, Bloom JD, Veesler D (2022) Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell 185:2279–2291PubMedPubMedCentralCrossRef Tortorici MA, Walls AC, Joshi A, Park YJ, Eguia RT, Miranda MC, Kepl E, Dosey A, Stevens-Ayers T, Boeckh MJ, Telenti A, Lanzavecchia A, King NP, Corti D, Bloom JD, Veesler D (2022) Structure, receptor recognition, and antigenicity of the human coronavirus CCoV-HuPn-2018 spike glycoprotein. Cell 185:2279–2291PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, Qi Q, Jiang S, Li J, Du L, Li F (2015) Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol 89:6121–6125PubMedPubMedCentralCrossRef Liu C, Tang J, Ma Y, Liang X, Yang Y, Peng G, Qi Q, Jiang S, Li J, Du L, Li F (2015) Receptor usage and cell entry of porcine epidemic diarrhea coronavirus. J Virol 89:6121–6125PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Shirato K, Maejima M, Islam MT, Miyazaki A, Kawase M, Matsuyama S, Taguchi F (2016) Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity. J Gen Virol 97:2528–2539PubMedCrossRef Shirato K, Maejima M, Islam MT, Miyazaki A, Kawase M, Matsuyama S, Taguchi F (2016) Porcine aminopeptidase N is not a cellular receptor of porcine epidemic diarrhea virus, but promotes its infectivity via aminopeptidase activity. J Gen Virol 97:2528–2539PubMedCrossRef
26.
Zurück zum Zitat Ji C, Wang B, Zhou J, Huang Y (2018) Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells. Virology 517:16–23PubMedCrossRef Ji C, Wang B, Zhou J, Huang Y (2018) Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells. Virology 517:16–23PubMedCrossRef
27.
Zurück zum Zitat Zeng S, Zhang H, Ding Z, Luo R, An K, Liu L, Bi J, Chen H, Xiao S, Fang L (2015) Proteome analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells. Proteomics 15:1819–1828PubMedPubMedCentralCrossRef Zeng S, Zhang H, Ding Z, Luo R, An K, Liu L, Bi J, Chen H, Xiao S, Fang L (2015) Proteome analysis of porcine epidemic diarrhea virus (PEDV)-infected Vero cells. Proteomics 15:1819–1828PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Li W, Hulswit RJG, Kenney SP, Widjaja I, Jung K, Alhamo MA, van Dieren B, van Kuppeveld FJM, Saif LJ, Bosch B (2018) Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc Natl Acad Sci 115:E5135PubMedPubMedCentral Li W, Hulswit RJG, Kenney SP, Widjaja I, Jung K, Alhamo MA, van Dieren B, van Kuppeveld FJM, Saif LJ, Bosch B (2018) Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc Natl Acad Sci 115:E5135PubMedPubMedCentral
29.
Zurück zum Zitat Yang YL, Liu J, Wang TY, Chen M, Wang G, Yang YB, Geng X, Sun MX, Meng F, Tang YD, Feng L (2021) Aminopeptidase N is an entry co-factor triggering porcine deltacoronavirus entry via an endocytotic pathway. J Virol 95:e0094421PubMedCrossRef Yang YL, Liu J, Wang TY, Chen M, Wang G, Yang YB, Geng X, Sun MX, Meng F, Tang YD, Feng L (2021) Aminopeptidase N is an entry co-factor triggering porcine deltacoronavirus entry via an endocytotic pathway. J Virol 95:e0094421PubMedCrossRef
30.
Zurück zum Zitat Zhu X, Liu S, Wang X, Luo Z, Shi Y, Wang D, Peng G, Chen H, Fang L, Xiao S (2018) Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection. Emerg Microbes Infect 7:65PubMedPubMedCentralCrossRef Zhu X, Liu S, Wang X, Luo Z, Shi Y, Wang D, Peng G, Chen H, Fang L, Xiao S (2018) Contribution of porcine aminopeptidase N to porcine deltacoronavirus infection. Emerg Microbes Infect 7:65PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Delmas B, Gelfi J, L’Haridon R, Vogel SH, Norén LH (1992) Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357:417–420ADSPubMedPubMedCentralCrossRef Delmas B, Gelfi J, L’Haridon R, Vogel SH, Norén LH (1992) Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 357:417–420ADSPubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Peng JY, Punyadarsaniya D, Shin DL, Pavasutthipaisit S, Beineke A, Li G, Wu NH, Herrler G (2020) The cell tropism of porcine respiratory coronavirus for airway epithelial cells is determined by the expression of porcine aminopeptidase N. Viruses 12:1211PubMedPubMedCentralCrossRef Peng JY, Punyadarsaniya D, Shin DL, Pavasutthipaisit S, Beineke A, Li G, Wu NH, Herrler G (2020) The cell tropism of porcine respiratory coronavirus for airway epithelial cells is determined by the expression of porcine aminopeptidase N. Viruses 12:1211PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Whitworth KM, Rowland RRR, Petrovan V, Sheahan M, Cino-Ozuna AG, Fang Y, Hesse R, Mileham A, Samuel MS, Wells KD, Prather RS (2019) Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res 28:21–32PubMedCrossRef Whitworth KM, Rowland RRR, Petrovan V, Sheahan M, Cino-Ozuna AG, Fang Y, Hesse R, Mileham A, Samuel MS, Wells KD, Prather RS (2019) Resistance to coronavirus infection in amino peptidase N-deficient pigs. Transgenic Res 28:21–32PubMedCrossRef
34.
Zurück zum Zitat Delmas B, Gelfi J, Sjöström H, Noren O, Laude H (1993) Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol 342:293–298PubMedCrossRef Delmas B, Gelfi J, Sjöström H, Noren O, Laude H (1993) Further characterization of aminopeptidase-N as a receptor for coronaviruses. Adv Exp Med Biol 342:293–298PubMedCrossRef
35.
Zurück zum Zitat Li W, van Kuppeveld FJM, He Q, Rottier PJM, Bosch B (2016) Cellular entry of the porcine epidemic diarrhea virus. Virus Res 226:117–127PubMedCrossRef Li W, van Kuppeveld FJM, He Q, Rottier PJM, Bosch B (2016) Cellular entry of the porcine epidemic diarrhea virus. Virus Res 226:117–127PubMedCrossRef
36.
Zurück zum Zitat Schultze B, Wahn K, Klenk H, Herrler G (1991) Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180:221–228PubMedCrossRef Schultze B, Wahn K, Klenk H, Herrler G (1991) Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180:221–228PubMedCrossRef
37.
Zurück zum Zitat Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Boons G, Bosch B, Rey FA, de Groot RJ, Veesler D (2019) Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 26:481–489PubMedPubMedCentralCrossRef Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, Boons G, Bosch B, Rey FA, de Groot RJ, Veesler D (2019) Structural basis for human coronavirus attachment to sialic acid receptors. Nat Struct Mol Biol 26:481–489PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Krempl C, Schultze B, Laude H, Herrler G (1997) Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol 71:3285–3287PubMedPubMedCentralCrossRef Krempl C, Schultze B, Laude H, Herrler G (1997) Point mutations in the S protein connect the sialic acid binding activity with the enteropathogenicity of transmissible gastroenteritis coronavirus. J Virol 71:3285–3287PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Reguera J, Santiago C, Mudgal G, Ordoño D, Enjuanes L, Casasnovas JM (2012) Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog 8:e1002859PubMedPubMedCentralCrossRef Reguera J, Santiago C, Mudgal G, Ordoño D, Enjuanes L, Casasnovas JM (2012) Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog 8:e1002859PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Schultze B, Krempl C, Ballesteros ML, Shaw L, Schauer R, Enjuanes L, Herrler G (1996) Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J Virol 70:5634–5637PubMedPubMedCentralCrossRef Schultze B, Krempl C, Ballesteros ML, Shaw L, Schauer R, Enjuanes L, Herrler G (1996) Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J Virol 70:5634–5637PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Schwegmann-Weßels C, Herrler G (2006) Sialic acids as receptor determinants for coronaviruses. Glycoconjugate J 23:51–58CrossRef Schwegmann-Weßels C, Herrler G (2006) Sialic acids as receptor determinants for coronaviruses. Glycoconjugate J 23:51–58CrossRef
42.
Zurück zum Zitat Edwards CE, Yount BL, Graham RL, Leist SR, Hou YJ, Dinnon KH, Sims AC, Swanstrom J, Gully K, Scobey TD, Cooley MR, Currie CG, Randell SH, Baric RS (2020) Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proc Natl Acad Sci 117:26915ADSPubMedPubMedCentralCrossRef Edwards CE, Yount BL, Graham RL, Leist SR, Hou YJ, Dinnon KH, Sims AC, Swanstrom J, Gully K, Scobey TD, Cooley MR, Currie CG, Randell SH, Baric RS (2020) Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection. Proc Natl Acad Sci 117:26915ADSPubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679ADSPubMedCrossRef Li W, Shi Z, Yu M, Ren W, Smith C, Epstein JH, Wang H, Crameri G, Hu Z, Zhang H, Zhang J, McEachern J, Field H, Daszak P, Eaton BT, Zhang S, Wang LF (2005) Bats are natural reservoirs of SARS-like coronaviruses. Science 310:676–679ADSPubMedCrossRef
44.
Zurück zum Zitat Hu B, Zeng L, Yang X, Ge X, Zhang W, Li B, Xie J, Shen X, Zhang Y, Wang N, Luo D, Zheng X, Wang M, Daszak P, Wang L, Cui J, Shi Z (2017) Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 13:e1006698PubMedPubMedCentralCrossRef Hu B, Zeng L, Yang X, Ge X, Zhang W, Li B, Xie J, Shen X, Zhang Y, Wang N, Luo D, Zheng X, Wang M, Daszak P, Wang L, Cui J, Shi Z (2017) Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus. PLoS Pathog 13:e1006698PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Vennema H, Poland A, Foley J, Pedersen NC (1998) Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243:150–157PubMedCrossRef Vennema H, Poland A, Foley J, Pedersen NC (1998) Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. Virology 243:150–157PubMedCrossRef
46.
Zurück zum Zitat Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme A, Van Ranst M (2005) Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 79:1595–1604PubMedPubMedCentralCrossRef Vijgen L, Keyaerts E, Moës E, Thoelen I, Wollants E, Lemey P, Vandamme A, Van Ranst M (2005) Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J Virol 79:1595–1604PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Wang H, Zhang L, Shang Y, Tan R, Ji M, Yue X, Wang N, Liu J, Wang C, Li Y, Zhou T (2020) Emergence and evolution of highly pathogenic porcine epidemic diarrhea virus by natural recombination of a low pathogenic vaccine isolate and a highly pathogenic strain in the spike gene. Virus Evol 6:veaa049PubMedPubMedCentralCrossRef Wang H, Zhang L, Shang Y, Tan R, Ji M, Yue X, Wang N, Liu J, Wang C, Li Y, Zhou T (2020) Emergence and evolution of highly pathogenic porcine epidemic diarrhea virus by natural recombination of a low pathogenic vaccine isolate and a highly pathogenic strain in the spike gene. Virus Evol 6:veaa049PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Zhang X, Hasoksuz M, Spiro D, Halpin R, Wang S, Stollar S, Janies D, Hadya N, Tang Y, Ghedin E, Saif L (2007) Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus. Virology 358:424–435PubMedCrossRef Zhang X, Hasoksuz M, Spiro D, Halpin R, Wang S, Stollar S, Janies D, Hadya N, Tang Y, Ghedin E, Saif L (2007) Complete genomic sequences, a key residue in the spike protein and deletions in nonstructural protein 3b of US strains of the virulent and attenuated coronaviruses, transmissible gastroenteritis virus and porcine respiratory coronavirus. Virology 358:424–435PubMedCrossRef
49.
Zurück zum Zitat Null N (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303:1666–1669CrossRef Null N (2004) Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303:1666–1669CrossRef
50.
Zurück zum Zitat Song H, Tu C, Zhang G, Wang S, Zheng K, Lei L, Chen Q, Gao Y, Zhou H, Xiang H, Zheng H, Chern SW, Cheng F, Pan C, Xuan H, Chen S, Luo H, Zhou D, Liu Y, He J, Qin P, Li L, Ren Y, Liang W, Yu Y, Anderson L, Wang M, Xu R, Wu X, Zheng H, Chen J, Liang G, Gao Y, Liao M, Fang L, Jiang L, Li H, Chen F, Di B, He L, Lin J, Tong S, Kong X, Du L, Hao P, Tang H, Bernini A, Yu X, Spiga O, Guo Z, Pan H, He W, Manuguerra J, Fontanet A, Danchin A, Niccolai N, Li Y, Wu C, Zhao G (2005) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 102:2430–2435ADSPubMedPubMedCentralCrossRef Song H, Tu C, Zhang G, Wang S, Zheng K, Lei L, Chen Q, Gao Y, Zhou H, Xiang H, Zheng H, Chern SW, Cheng F, Pan C, Xuan H, Chen S, Luo H, Zhou D, Liu Y, He J, Qin P, Li L, Ren Y, Liang W, Yu Y, Anderson L, Wang M, Xu R, Wu X, Zheng H, Chen J, Liang G, Gao Y, Liao M, Fang L, Jiang L, Li H, Chen F, Di B, He L, Lin J, Tong S, Kong X, Du L, Hao P, Tang H, Bernini A, Yu X, Spiga O, Guo Z, Pan H, He W, Manuguerra J, Fontanet A, Danchin A, Niccolai N, Li Y, Wu C, Zhao G (2005) Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc Natl Acad Sci USA 102:2430–2435ADSPubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, Wang P, Liu D, Yang J, Holmes EC, Hughes AC, Bi Y, Shi W (2020) A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol 30:2196–2203PubMedPubMedCentralCrossRef Zhou H, Chen X, Hu T, Li J, Song H, Liu Y, Wang P, Liu D, Yang J, Holmes EC, Hughes AC, Bi Y, Shi W (2020) A novel bat coronavirus closely related to SARS-CoV-2 contains natural insertions at the S1/S2 cleavage site of the spike protein. Curr Biol 30:2196–2203PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang W, Si H, Zhu Y, Li B, Huang C, Chen H, Chen J, Luo Y, Guo H, Jiang R, Liu M, Chen Y, Shen X, Wang X, Zheng X, Zhao K, Chen Q, Deng F, Liu L, Yan B, Zhan F, Wang Y, Xiao G, Shi Z (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273ADSPubMedPubMedCentralCrossRef Zhou P, Yang X, Wang X, Hu B, Zhang L, Zhang W, Si H, Zhu Y, Li B, Huang C, Chen H, Chen J, Luo Y, Guo H, Jiang R, Liu M, Chen Y, Shen X, Wang X, Zheng X, Zhao K, Chen Q, Deng F, Liu L, Yan B, Zhan F, Wang Y, Xiao G, Shi Z (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273ADSPubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Frutos R, Serra-Cobo J, Chen T, Devaux CA (2020) COVID-19: time to exonerate the pangolin from the transmission of SARS-CoV-2 to humans. Infect Genet Evol 84:104493PubMedPubMedCentralCrossRef Frutos R, Serra-Cobo J, Chen T, Devaux CA (2020) COVID-19: time to exonerate the pangolin from the transmission of SARS-CoV-2 to humans. Infect Genet Evol 84:104493PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Liu P, Jiang J, Wan X, Hua Y, Li L, Zhou J, Wang X, Hou F, Chen J, Zou J, Chen J (2020) Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog 16:e1008421PubMedPubMedCentralCrossRef Liu P, Jiang J, Wan X, Hua Y, Li L, Zhou J, Wang X, Hou F, Chen J, Zou J, Chen J (2020) Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog 16:e1008421PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat Fenollar F, Mediannikov O, Maurin M, Devaux C, Colson P, Levasseur A, Fournier PE, Raoult D (2021) Mink, SARS-CoV-2, and the human-animal interface. Front Microbiol 12:663815PubMedPubMedCentralCrossRef Fenollar F, Mediannikov O, Maurin M, Devaux C, Colson P, Levasseur A, Fournier PE, Raoult D (2021) Mink, SARS-CoV-2, and the human-animal interface. Front Microbiol 12:663815PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Leroy EM, Ar GM, Brugère-Picoux J (2020) The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health-Amsterdam 10:100133CrossRef Leroy EM, Ar GM, Brugère-Picoux J (2020) The risk of SARS-CoV-2 transmission to pets and other wild and domestic animals strongly mandates a one-health strategy to control the COVID-19 pandemic. One Health-Amsterdam 10:100133CrossRef
59.
Zurück zum Zitat Patterson EI, Elia G, Grassi A, Giordano A, Desario C, Medardo M, Smith SL, Anderson ER, Prince T, Patterson GT, Lorusso E, Lucente MS, Lanave G, Lauzi S, Bonfanti U, Stranieri A, Martella V, Solari Basano F, Barrs VR, Radford AD, Agrimi U, Hughes GL, Paltrinieri S, Decaro N (2020) Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat Commun 11:6231ADSPubMedPubMedCentralCrossRef Patterson EI, Elia G, Grassi A, Giordano A, Desario C, Medardo M, Smith SL, Anderson ER, Prince T, Patterson GT, Lorusso E, Lucente MS, Lanave G, Lauzi S, Bonfanti U, Stranieri A, Martella V, Solari Basano F, Barrs VR, Radford AD, Agrimi U, Hughes GL, Paltrinieri S, Decaro N (2020) Evidence of exposure to SARS-CoV-2 in cats and dogs from households in Italy. Nat Commun 11:6231ADSPubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Allender MC, Adkesson MJ, Langan JN, Delk KW, Meehan T, Aitken-Palmer C, McEntire MM, Killian ML, Torchetti M, Morales SA, Austin C, Fredrickson R, Olmstead C, Ke R, Smith R, Hostnik ET, Terio K, Wang L (2022) Multi-species outbreak of SARS-CoV-2 Delta variant in a zoological institution, with the detection in two new families of carnivores. Transbound Emerg Dis 69:e3060–e3075PubMedCrossRef Allender MC, Adkesson MJ, Langan JN, Delk KW, Meehan T, Aitken-Palmer C, McEntire MM, Killian ML, Torchetti M, Morales SA, Austin C, Fredrickson R, Olmstead C, Ke R, Smith R, Hostnik ET, Terio K, Wang L (2022) Multi-species outbreak of SARS-CoV-2 Delta variant in a zoological institution, with the detection in two new families of carnivores. Transbound Emerg Dis 69:e3060–e3075PubMedCrossRef
64.
Zurück zum Zitat Koeppel KN, Mendes A, Strydom A, Rotherham L, Mulumba M, Venter M (2022) SARS-CoV-2 reverse zoonoses to pumas and lions, South Africa. Viruses 14:120PubMedPubMedCentralCrossRef Koeppel KN, Mendes A, Strydom A, Rotherham L, Mulumba M, Venter M (2022) SARS-CoV-2 reverse zoonoses to pumas and lions, South Africa. Viruses 14:120PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Vercammen F, Cay B, Gryseels S, Balmelle N, Joffrin L, Van Hoorde K, Verhaegen B, Mathijs E, Van Vredendaal R, Dharmadhikari T, Chiers K, Van Olmen TJS, Agliani G, Van den Brand JMA, Leirs H (2023) SARS-CoV-2 infection in captive hippos (Hippopotamus amphibius), Belgium. Animals 13:316PubMedPubMedCentralCrossRef Vercammen F, Cay B, Gryseels S, Balmelle N, Joffrin L, Van Hoorde K, Verhaegen B, Mathijs E, Van Vredendaal R, Dharmadhikari T, Chiers K, Van Olmen TJS, Agliani G, Van den Brand JMA, Leirs H (2023) SARS-CoV-2 infection in captive hippos (Hippopotamus amphibius), Belgium. Animals 13:316PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat Chandler JC, Bevins SN, Ellis JW, Linder TJ, Tell RM, Jenkins-Moore M, Root JJ, Lenoch JB, Robbe-Austerman S, DeLiberto TJ, Gidlewski T, Torchetti MK, Shriner SA (2021) SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc Natl Acad Sci USA 118:e2114828118PubMedPubMedCentralCrossRef Chandler JC, Bevins SN, Ellis JW, Linder TJ, Tell RM, Jenkins-Moore M, Root JJ, Lenoch JB, Robbe-Austerman S, DeLiberto TJ, Gidlewski T, Torchetti MK, Shriner SA (2021) SARS-CoV-2 exposure in wild white-tailed deer (Odocoileus virginianus). Proc Natl Acad Sci USA 118:e2114828118PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Franco LA, Mercedes NJ, Mariela M, Ana P, Monica B, Ana J, Ana J, Silvia M, Eliana C, Diego A, Carolina T, Mariana V, Ana B (2022) An outbreak of SARS-CoV-2 in big hairy armadillos (Chaetophractus villosus) associated with Gamma variant in Argentina three months after being undetectable in humans. Biorxiv: 2022–2028 Franco LA, Mercedes NJ, Mariela M, Ana P, Monica B, Ana J, Ana J, Silvia M, Eliana C, Diego A, Carolina T, Mariana V, Ana B (2022) An outbreak of SARS-CoV-2 in big hairy armadillos (Chaetophractus villosus) associated with Gamma variant in Argentina three months after being undetectable in humans. Biorxiv: 2022–2028
68.
Zurück zum Zitat Mahajan S, Karikalan M, Chander V, Pawde AM, Saikumar G, Semmaran M, Lakshmi PS, Sharma M, Nandi S, Singh KP, Gupta VK, Singh RK, Sharma GK (2022) Detection of SARS-CoV-2 in a free ranging leopard (Panthera pardus fusca) in India. Eur J Wildl Res 68:59PubMedPubMedCentralCrossRef Mahajan S, Karikalan M, Chander V, Pawde AM, Saikumar G, Semmaran M, Lakshmi PS, Sharma M, Nandi S, Singh KP, Gupta VK, Singh RK, Sharma GK (2022) Detection of SARS-CoV-2 in a free ranging leopard (Panthera pardus fusca) in India. Eur J Wildl Res 68:59PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Pereira AH, Vasconcelos AL, Silva VL, Nogueira BS, Silva AC, Pacheco RC, Souza MA, Colodel EM, Ubiali DG, Biondo AW, Nakazato L, Dutra V (2022) Natural SARS-CoV-2 infection in a free-ranging black-tailed marmoset (Mico melanurus) from an urban area in Mid-West Brazil. J Comp Pathol 194:22–27PubMedPubMedCentralCrossRef Pereira AH, Vasconcelos AL, Silva VL, Nogueira BS, Silva AC, Pacheco RC, Souza MA, Colodel EM, Ubiali DG, Biondo AW, Nakazato L, Dutra V (2022) Natural SARS-CoV-2 infection in a free-ranging black-tailed marmoset (Mico melanurus) from an urban area in Mid-West Brazil. J Comp Pathol 194:22–27PubMedPubMedCentralCrossRef
70.
Zurück zum Zitat Pereira AHB, Pereira GO, Borges JC, de Barros Silva VL, Pereira BHM, Morgado TO, Da Silva Cavasani JP, Slhessarenko RD, Campos RP, Biondo AW, de Carvalho MR, Néspoli PEB, de Souza MA, Colodel EM, Ubiali DG, Dutra V, Nakazato L (2022) A novel host of an emerging disease: SARS-CoV-2 infection in a giant anteater (Myrmecophaga tridactyla) kept under clinical care in Brazil. EcoHealth 19:458–462PubMedCrossRef Pereira AHB, Pereira GO, Borges JC, de Barros Silva VL, Pereira BHM, Morgado TO, Da Silva Cavasani JP, Slhessarenko RD, Campos RP, Biondo AW, de Carvalho MR, Néspoli PEB, de Souza MA, Colodel EM, Ubiali DG, Dutra V, Nakazato L (2022) A novel host of an emerging disease: SARS-CoV-2 infection in a giant anteater (Myrmecophaga tridactyla) kept under clinical care in Brazil. EcoHealth 19:458–462PubMedCrossRef
71.
Zurück zum Zitat Cool K, Gaudreault NN, Morozov I, Trujillo JD, Meekins DA, McDowell C, Carossino M, Bold D, Mitzel D, Kwon T, Balaraman V, Madden DW, Artiaga BL, Pogranichniy RM, Roman-Sosa G, Henningson J, Wilson WC, Balasuriya UBR, García-Sastre A, Richt JA (2022) Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerg Microbes Infect 11:95–112PubMedCrossRef Cool K, Gaudreault NN, Morozov I, Trujillo JD, Meekins DA, McDowell C, Carossino M, Bold D, Mitzel D, Kwon T, Balaraman V, Madden DW, Artiaga BL, Pogranichniy RM, Roman-Sosa G, Henningson J, Wilson WC, Balasuriya UBR, García-Sastre A, Richt JA (2022) Infection and transmission of ancestral SARS-CoV-2 and its alpha variant in pregnant white-tailed deer. Emerg Microbes Infect 11:95–112PubMedCrossRef
72.
Zurück zum Zitat Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van Der Honing RW, Gerhards N, Tolsma P, Bouwstra R, Sikkema RS, Tacken MG, de Rooij MM, Weesendorp E, Engelsma MY, Bruschke CJ, Smit LA, Koopmans M, van der Poel WH, Stegeman A (2020) SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill 25:2001005PubMedPubMedCentralCrossRef Oreshkova N, Molenaar RJ, Vreman S, Harders F, Oude Munnink BB, Hakze-van Der Honing RW, Gerhards N, Tolsma P, Bouwstra R, Sikkema RS, Tacken MG, de Rooij MM, Weesendorp E, Engelsma MY, Bruschke CJ, Smit LA, Koopmans M, van der Poel WH, Stegeman A (2020) SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020. Euro Surveill 25:2001005PubMedPubMedCentralCrossRef
73.
Zurück zum Zitat Porter SM, Hartwig AE, Bielefeldt-Ohmann H, Bosco-Lauth AM, Root JJ (2022) Susceptibility of wild canids to SARS-CoV-2. Emerg Infect Dis 28:1852–1855PubMedPubMedCentralCrossRef Porter SM, Hartwig AE, Bielefeldt-Ohmann H, Bosco-Lauth AM, Root JJ (2022) Susceptibility of wild canids to SARS-CoV-2. Emerg Infect Dis 28:1852–1855PubMedPubMedCentralCrossRef
74.
Zurück zum Zitat Bertzbach LD, Vladimirova D, Dietert K, Abdelgawad A, Gruber AD, Osterrieder N, Trimpert J (2021) SARS-CoV-2 infection of Chinese hamsters (Cricetulus griseus) reproduces COVID-19 pneumonia in a well-established small animal model. Transbound Emerg Dis 68:1075–1079PubMedCrossRef Bertzbach LD, Vladimirova D, Dietert K, Abdelgawad A, Gruber AD, Osterrieder N, Trimpert J (2021) SARS-CoV-2 infection of Chinese hamsters (Cricetulus griseus) reproduces COVID-19 pneumonia in a well-established small animal model. Transbound Emerg Dis 68:1075–1079PubMedCrossRef
75.
Zurück zum Zitat Clancy CS, Shaia C, Munster V, de Wit E, Hawman D, Okumura A, Feldmann H, Saturday G, Scott D (2021) Histologic pulmonary lesions of SARS-CoV-2 in 4 nonhuman primate species: an institutional comparative review. Vet Pathol 59:673–680PubMedCrossRef Clancy CS, Shaia C, Munster V, de Wit E, Hawman D, Okumura A, Feldmann H, Saturday G, Scott D (2021) Histologic pulmonary lesions of SARS-CoV-2 in 4 nonhuman primate species: an institutional comparative review. Vet Pathol 59:673–680PubMedCrossRef
76.
Zurück zum Zitat Freuling CM, Breithaupt A, Müller T, Sehl J, Balkema-Buschmann A, Rissmann M, Klein A, Wylezich C, Höper D, Wernike K, Aebischer A, Hoffmann D, Friedrichs V, Dorhoi A, Groschup MH, Beer M, Mettenleiter TC (2020) Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg Infect Dis 26:2982–2985PubMedPubMedCentralCrossRef Freuling CM, Breithaupt A, Müller T, Sehl J, Balkema-Buschmann A, Rissmann M, Klein A, Wylezich C, Höper D, Wernike K, Aebischer A, Hoffmann D, Friedrichs V, Dorhoi A, Groschup MH, Beer M, Mettenleiter TC (2020) Susceptibility of raccoon dogs for experimental SARS-CoV-2 infection. Emerg Infect Dis 26:2982–2985PubMedPubMedCentralCrossRef
77.
Zurück zum Zitat Halfmann PJ, Hatta M, Chiba S, Maemura T, Fan S, Takeda M, Kinoshita N, Hattori S, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Kawaoka Y (2020) Transmission of SARS-CoV-2 in domestic cats. N Engl J Med 383:592–594PubMedPubMedCentralCrossRef Halfmann PJ, Hatta M, Chiba S, Maemura T, Fan S, Takeda M, Kinoshita N, Hattori S, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Kawaoka Y (2020) Transmission of SARS-CoV-2 in domestic cats. N Engl J Med 383:592–594PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz J, Meade-White K, Okumura A, Callison J, Brumbaugh B, Avanzato VA, Rosenke R, Hanley PW, Saturday G, Scott D, Fischer ER, de Wit E (2020) Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585:268–272PubMedPubMedCentralCrossRef Munster VJ, Feldmann F, Williamson BN, van Doremalen N, Pérez-Pérez L, Schulz J, Meade-White K, Okumura A, Callison J, Brumbaugh B, Avanzato VA, Rosenke R, Hanley PW, Saturday G, Scott D, Fischer ER, de Wit E (2020) Respiratory disease in rhesus macaques inoculated with SARS-CoV-2. Nature 585:268–272PubMedPubMedCentralCrossRef
79.
Zurück zum Zitat Mykytyn AZ, Lamers MM, Okba N, Breugem TI, Schipper D, van den Doel PB, van Run P, van Amerongen G, de Waal L, Koopmans M, Stittelaar KJ, van den Brand J, Haagmans BL (2021) Susceptibility of rabbits to SARS-CoV-2. Emerg Microbes Infect 10:1–7PubMedPubMedCentralCrossRef Mykytyn AZ, Lamers MM, Okba N, Breugem TI, Schipper D, van den Doel PB, van Run P, van Amerongen G, de Waal L, Koopmans M, Stittelaar KJ, van den Brand J, Haagmans BL (2021) Susceptibility of rabbits to SARS-CoV-2. Emerg Microbes Infect 10:1–7PubMedPubMedCentralCrossRef
80.
Zurück zum Zitat Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, de Meulder D, van Amerongen G, van den Brand J, Okba NMA, Schipper D, van Run P, Leijten L, Sikkema R, Verschoor E, Verstrepen B, Bogers W, Langermans J, Drosten C, Fentener Van Vlissingen M, Fouchier R, de Swart R, Koopmans M, Haagmans BL (2020) Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368:1012PubMedPubMedCentralCrossRef Rockx B, Kuiken T, Herfst S, Bestebroer T, Lamers MM, Oude Munnink BB, de Meulder D, van Amerongen G, van den Brand J, Okba NMA, Schipper D, van Run P, Leijten L, Sikkema R, Verschoor E, Verstrepen B, Bogers W, Langermans J, Drosten C, Fentener Van Vlissingen M, Fouchier R, de Swart R, Koopmans M, Haagmans BL (2020) Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science 368:1012PubMedPubMedCentralCrossRef
81.
Zurück zum Zitat Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J, Wylezich C, Höper D, Mettenleiter TC, Balkema-Buschmann A, Harder T, Grund C, Hoffmann D, Breithaupt A, Beer M (2020) SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 1:e218–e225PubMedPubMedCentralCrossRef Schlottau K, Rissmann M, Graaf A, Schön J, Sehl J, Wylezich C, Höper D, Mettenleiter TC, Balkema-Buschmann A, Harder T, Grund C, Hoffmann D, Breithaupt A, Beer M (2020) SARS-CoV-2 in fruit bats, ferrets, pigs, and chickens: an experimental transmission study. Lancet Microbe 1:e218–e225PubMedPubMedCentralCrossRef
82.
Zurück zum Zitat Sia SF, Yan L, Chin AWH, Fung K, Choy K, Wong AYL, Kaewpreedee P, Perera RAPM, Poon LLM, Nicholls JM, Peiris M, Yen H (2020) Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583:834–838ADSPubMedPubMedCentralCrossRef Sia SF, Yan L, Chin AWH, Fung K, Choy K, Wong AYL, Kaewpreedee P, Perera RAPM, Poon LLM, Nicholls JM, Peiris M, Yen H (2020) Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature 583:834–838ADSPubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, van der Spek A, Tolsma P, Rietveld A, Brouwer M, Bouwmeester-Vincken N, Harders F, Hakze-van Der Honing R, Wegdam-Blans MCA, Bouwstra RJ, GeurtsvanKessel C, van der Eijk AA, Velkers FC, Smit LAM, Stegeman A, van der Poel WHM, Koopmans MPG (2021) Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371:172–177ADSPubMedCrossRef Oude Munnink BB, Sikkema RS, Nieuwenhuijse DF, Molenaar RJ, Munger E, Molenkamp R, van der Spek A, Tolsma P, Rietveld A, Brouwer M, Bouwmeester-Vincken N, Harders F, Hakze-van Der Honing R, Wegdam-Blans MCA, Bouwstra RJ, GeurtsvanKessel C, van der Eijk AA, Velkers FC, Smit LAM, Stegeman A, van der Poel WHM, Koopmans MPG (2021) Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 371:172–177ADSPubMedCrossRef
84.
Zurück zum Zitat Bosco-Lauth AM, Walker A, Guilbert L, Porter S, Hartwig A, McVicker E, Bielefeldt-Ohmann H, Bowen RA (2021) Susceptibility of livestock to SARS-CoV-2 infection. Emerg Microbes Infect 10:2199–2201PubMedPubMedCentralCrossRef Bosco-Lauth AM, Walker A, Guilbert L, Porter S, Hartwig A, McVicker E, Bielefeldt-Ohmann H, Bowen RA (2021) Susceptibility of livestock to SARS-CoV-2 infection. Emerg Microbes Infect 10:2199–2201PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Falkenberg S, Buckley A, Laverack M, Martins M, Palmer MV, Lager K, Diel DG (2021) Experimental inoculation of young calves with SARS-CoV-2. Viruses 13:441PubMedPubMedCentralCrossRef Falkenberg S, Buckley A, Laverack M, Martins M, Palmer MV, Lager K, Diel DG (2021) Experimental inoculation of young calves with SARS-CoV-2. Viruses 13:441PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Ulrich L, Wernike K, Hoffmann D, Mettenleiter TC, Beer M (2020) Experimental infection of cattle with SARS-CoV-2. Emerg Infect Dis 26:2979–2981PubMedPubMedCentralCrossRef Ulrich L, Wernike K, Hoffmann D, Mettenleiter TC, Beer M (2020) Experimental infection of cattle with SARS-CoV-2. Emerg Infect Dis 26:2979–2981PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Nelli RK, Phadke K, Castillo G, Yen L, Saunders A, Rauh R, Nelson W, Bellaire BH, Giménez-Lirola LG (2021) Enhanced apoptosis as a possible mechanism to self-limit SARS-CoV-2 replication in porcine primary respiratory epithelial cells in contrast to human cells. Cell Death Discov 7:383PubMedPubMedCentralCrossRef Nelli RK, Phadke K, Castillo G, Yen L, Saunders A, Rauh R, Nelson W, Bellaire BH, Giménez-Lirola LG (2021) Enhanced apoptosis as a possible mechanism to self-limit SARS-CoV-2 replication in porcine primary respiratory epithelial cells in contrast to human cells. Cell Death Discov 7:383PubMedPubMedCentralCrossRef
88.
Zurück zum Zitat Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli K, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA (2020) Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci 117:22311ADSPubMedPubMedCentralCrossRef Damas J, Hughes GM, Keough KC, Painter CA, Persky NS, Corbo M, Hiller M, Koepfli K, Pfenning AR, Zhao H, Genereux DP, Swofford R, Pollard KS, Ryder OA, Nweeia MT, Lindblad-Toh K, Teeling EC, Karlsson EK, Lewin HA (2020) Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. Proc Natl Acad Sci 117:22311ADSPubMedPubMedCentralCrossRef
89.
Zurück zum Zitat Lorusso A, Decaro N, Schellen P, Rottier PJM, Buonavoglia C, Haijema B, de Groot RJ (2008) Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein. J Virol 82:10312–10317PubMedPubMedCentralCrossRef Lorusso A, Decaro N, Schellen P, Rottier PJM, Buonavoglia C, Haijema B, de Groot RJ (2008) Gain, preservation, and loss of a group 1a coronavirus accessory glycoprotein. J Virol 82:10312–10317PubMedPubMedCentralCrossRef
90.
Zurück zum Zitat Ballesteros ML, Sánchez CM, Enjuanes L (1997) Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388PubMedCrossRef Ballesteros ML, Sánchez CM, Enjuanes L (1997) Two amino acid changes at the N-terminus of transmissible gastroenteritis coronavirus spike protein result in the loss of enteric tropism. Virology 227:378–388PubMedCrossRef
91.
Zurück zum Zitat Mora-Díaz JC, Piñeyro PE, Houston E, Zimmerman J, Giménez-Lirola LG (2019) Porcine hemagglutinating encephalomyelitis virus: a review. Front Vet Sci 6:53PubMedPubMedCentralCrossRef Mora-Díaz JC, Piñeyro PE, Houston E, Zimmerman J, Giménez-Lirola LG (2019) Porcine hemagglutinating encephalomyelitis virus: a review. Front Vet Sci 6:53PubMedPubMedCentralCrossRef
92.
Zurück zum Zitat Huang Y, Dickerman AW, Piñeyro P, Li L, Fang L, Kiehne R, Opriessnig T, Meng X, Griffin DE (2013) Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio 4:e713–e737CrossRef Huang Y, Dickerman AW, Piñeyro P, Li L, Fang L, Kiehne R, Opriessnig T, Meng X, Griffin DE (2013) Origin, evolution, and genotyping of emergent porcine epidemic diarrhea virus strains in the United States. MBio 4:e713–e737CrossRef
93.
Zurück zum Zitat Teeravechyan S, Frantz PN, Wongthida P, Chailangkarn T, Jaru-ampornpan P, Koonpaew S, Jongkaewwattana A (2016) Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics. Virus Res 226:152–171PubMedCrossRef Teeravechyan S, Frantz PN, Wongthida P, Chailangkarn T, Jaru-ampornpan P, Koonpaew S, Jongkaewwattana A (2016) Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics. Virus Res 226:152–171PubMedCrossRef
94.
Zurück zum Zitat Lau SKP, Wong EYM, Tsang C, Ahmed SS, Au-Yeung RKH, Yuen K, Wernery U, Woo PCY, Gallagher T (2018) Discovery and sequence analysis of four deltacoronaviruses from birds in the middle east reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission. J Virol 92:e218–e265CrossRef Lau SKP, Wong EYM, Tsang C, Ahmed SS, Au-Yeung RKH, Yuen K, Wernery U, Woo PCY, Gallagher T (2018) Discovery and sequence analysis of four deltacoronaviruses from birds in the middle east reveal interspecies jumping with recombination as a potential mechanism for avian-to-avian and avian-to-mammalian transmission. J Virol 92:e218–e265CrossRef
95.
Zurück zum Zitat Boley PA, Alhamo MA, Lossie G, Yadav KK, Vasquez-Lee M, Saif LJ, Kenney SP (2020) Porcine deltacoronavirus infection and transmission in poultry, United States(1). Emerg Infect Dis 26:255–265PubMedPubMedCentralCrossRef Boley PA, Alhamo MA, Lossie G, Yadav KK, Vasquez-Lee M, Saif LJ, Kenney SP (2020) Porcine deltacoronavirus infection and transmission in poultry, United States(1). Emerg Infect Dis 26:255–265PubMedPubMedCentralCrossRef
96.
Zurück zum Zitat Jung K, Hu H, Saif LJ (2017) Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus. Arch Virol 162:2357–2362PubMedPubMedCentralCrossRef Jung K, Hu H, Saif LJ (2017) Calves are susceptible to infection with the newly emerged porcine deltacoronavirus, but not with the swine enteric alphacoronavirus, porcine epidemic diarrhea virus. Arch Virol 162:2357–2362PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Liang Q, Zhang H, Li B, Ding Q, Wang Y, Gao W, Guo D, Wei Z, Hu H (2019) Susceptibility of chickens to porcine deltacoronavirus infection. Viruses 11:573PubMedPubMedCentralCrossRef Liang Q, Zhang H, Li B, Ding Q, Wang Y, Gao W, Guo D, Wei Z, Hu H (2019) Susceptibility of chickens to porcine deltacoronavirus infection. Viruses 11:573PubMedPubMedCentralCrossRef
98.
Zurück zum Zitat Lednicky JA, Tagliamonte MS, White SK, Elbadry MA, Alam MM, Stephenson CJ, Bonny TS, Loeb JC, Telisma T, Chavannes S, Ostrov DA, Mavian C, Beau De Rochars VM, Salemi M, Morris JG (2021) Independent infections of porcine deltacoronavirus among Haitian children. Nature 600:133–137ADSPubMedPubMedCentralCrossRef Lednicky JA, Tagliamonte MS, White SK, Elbadry MA, Alam MM, Stephenson CJ, Bonny TS, Loeb JC, Telisma T, Chavannes S, Ostrov DA, Mavian C, Beau De Rochars VM, Salemi M, Morris JG (2021) Independent infections of porcine deltacoronavirus among Haitian children. Nature 600:133–137ADSPubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Gong L, Li J, Zhou Q, Xu Z, Chen L, Zhang Y, Xue C, Wen Z, Cao Y (2017) A new bat-HKU2-like coronavirus in swine, China, 2017. Emerg Infect Dis 23:1607–1609PubMedPubMedCentralCrossRef Gong L, Li J, Zhou Q, Xu Z, Chen L, Zhang Y, Xue C, Wen Z, Cao Y (2017) A new bat-HKU2-like coronavirus in swine, China, 2017. Emerg Infect Dis 23:1607–1609PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat Zhou P, Fan H, Lan T, Yang X, Shi W, Zhang W, Zhu Y, Zhang Y, Xie Q, Mani S, Zheng X, Li B, Li J, Guo H, Pei G, An X, Chen J, Zhou L, Mai K, Wu Z, Li D, Anderson DE, Zhang L, Li S, Mi Z, He T, Cong F, Guo P, Huang R, Luo Y, Liu X, Chen J, Huang Y, Sun Q, Zhang X, Wang Y, Xing S, Chen Y, Sun Y, Li J, Daszak P, Wang L, Shi Z, Tong Y, Ma J (2018) Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556:255–258ADSPubMedPubMedCentralCrossRef Zhou P, Fan H, Lan T, Yang X, Shi W, Zhang W, Zhu Y, Zhang Y, Xie Q, Mani S, Zheng X, Li B, Li J, Guo H, Pei G, An X, Chen J, Zhou L, Mai K, Wu Z, Li D, Anderson DE, Zhang L, Li S, Mi Z, He T, Cong F, Guo P, Huang R, Luo Y, Liu X, Chen J, Huang Y, Sun Q, Zhang X, Wang Y, Xing S, Chen Y, Sun Y, Li J, Daszak P, Wang L, Shi Z, Tong Y, Ma J (2018) Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin. Nature 556:255–258ADSPubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Corman VM, Baldwin HJ, Tateno AF, Zerbinati RM, Annan A, Owusu M, Nkrumah EE, Maganga GD, Oppong S, Adu-Sarkodie Y, Vallo P, Da SFLV, Leroy EM, Thiel V, van der Hoek L, Poon LLM, Tschapka M, Drosten C, Drexler JF, Schultz-Cherry S (2015) Evidence for an ancestral association of human coronavirus 229E with bats. J Virol 89:11858–11870PubMedPubMedCentralCrossRef Corman VM, Baldwin HJ, Tateno AF, Zerbinati RM, Annan A, Owusu M, Nkrumah EE, Maganga GD, Oppong S, Adu-Sarkodie Y, Vallo P, Da SFLV, Leroy EM, Thiel V, van der Hoek L, Poon LLM, Tschapka M, Drosten C, Drexler JF, Schultz-Cherry S (2015) Evidence for an ancestral association of human coronavirus 229E with bats. J Virol 89:11858–11870PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Corman VM, Eckerle I, Memish ZA, Liljander AM, Dijkman R, Jonsdottir H, Juma NK, Kamau E, Younan M, Al MM, Assiri A, Gluecks I, Musa BE, Meyer B, Müller MA, Hilali M, Bornstein S, Wernery U, Thiel V, Jores J, Drexler JF, Drosten C (2016) Link of a ubiquitous human coronavirus to dromedary camels. Proc Natl Acad Sci USA 113:9864–9869ADSPubMedPubMedCentralCrossRef Corman VM, Eckerle I, Memish ZA, Liljander AM, Dijkman R, Jonsdottir H, Juma NK, Kamau E, Younan M, Al MM, Assiri A, Gluecks I, Musa BE, Meyer B, Müller MA, Hilali M, Bornstein S, Wernery U, Thiel V, Jores J, Drexler JF, Drosten C (2016) Link of a ubiquitous human coronavirus to dromedary camels. Proc Natl Acad Sci USA 113:9864–9869ADSPubMedPubMedCentralCrossRef
103.
Zurück zum Zitat Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, Kuzmin IV, Holmes EC, Tong S, Perlman S (2017) Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol 91:e1916–e1953CrossRef Tao Y, Shi M, Chommanard C, Queen K, Zhang J, Markotter W, Kuzmin IV, Holmes EC, Tong S, Perlman S (2017) Surveillance of bat coronaviruses in Kenya identifies relatives of human coronaviruses NL63 and 229E and their recombination history. J Virol 91:e1916–e1953CrossRef
104.
Zurück zum Zitat Han MG, Cheon D, Zhang X, Saif LJ (2006) Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves. J Virol 80:12350–12356PubMedPubMedCentralCrossRef Han MG, Cheon D, Zhang X, Saif LJ (2006) Cross-protection against a human enteric coronavirus and a virulent bovine enteric coronavirus in gnotobiotic calves. J Virol 80:12350–12356PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Herrewegh AAPM, Smeenk I, Horzinek MC, Rottier PJM, de Groot RJ (1998) Feline coronavirus type II strains 79–1683 and 79–1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72:4508–4514PubMedPubMedCentralCrossRef Herrewegh AAPM, Smeenk I, Horzinek MC, Rottier PJM, de Groot RJ (1998) Feline coronavirus type II strains 79–1683 and 79–1146 originate from a double recombination between feline coronavirus type I and canine coronavirus. J Virol 72:4508–4514PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Terada Y, Matsui N, Noguchi K, Kuwata R, Shimoda H, Soma T, Mochizuki M, Maeda K (2014) Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One 9:e106534ADSPubMedPubMedCentralCrossRef Terada Y, Matsui N, Noguchi K, Kuwata R, Shimoda H, Soma T, Mochizuki M, Maeda K (2014) Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses. PLoS One 9:e106534ADSPubMedPubMedCentralCrossRef
Metadaten
Titel
The role of receptors in the cross-species spread of coronaviruses infecting humans and pigs
verfasst von
Jie Zhuang
Zhiwei Yan
Tiezhong Zhou
Yonggang Li
Huinuan Wang
Publikationsdatum
01.02.2024
Verlag
Springer Vienna
Erschienen in
Archives of Virology / Ausgabe 2/2024
Print ISSN: 0304-8608
Elektronische ISSN: 1432-8798
DOI
https://doi.org/10.1007/s00705-023-05956-7

Weitere Artikel der Ausgabe 2/2024

Archives of Virology 2/2024 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.