Skip to main content
Erschienen in: Lasers in Medical Science 5/2016

07.04.2016 | Original Article

Titanium scaffold osteogenesis in healthy and osteoporotic rats is improved by the use of low-level laser therapy (GaAlAs)

verfasst von: Luana Marotta Reis de Vasconcellos, Mary Anne Moreira Barbara, Emanuel da Silva Rovai, Mariana de Oliveira França, Zahra Fernandes Ebrahim, Luis Gustavo Oliveira de Vasconcellos, Camila Deco Porto, Carlos Alberto Alves Cairo

Erschienen in: Lasers in Medical Science | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

The present study aimed to assess the effects of low-level laser therapy (GaAlAs) on the bone repair process within titanium scaffolds in the femurs of healthy and osteoporotic rats. Fifty-six rats were divided into four groups: group Sh: SHAM animals that received scaffolds; group LSh: SHAM animals that received scaffolds and were subjected to laser therapy; group OV: ovarietomized (OVX) animals that received scaffolds; and group LOV: OVX animals that received scaffolds and were subjected to laser therapy. Thirty days following ovariectomy or sham surgery, scaffolds were implanted in the left femurs of all animals in the study. Immediately after opening the surgical site, the inner part of the surgical cavity was stimulated with low-level laser (GaAlAs). In addition to this procedure, the laser group was also subjected to sessions of low-level laser therapy (LLLT) at 48-h intervals, with the first session performed immediately after surgery. The rats were sacrificed at 2 and 6 weeks, time in which femur fragments were submitted for histological and histomorphometric examination, and skin tissue above the scaffold was submitted to histological analysis. At the end of the study, greater bone formation was observed in the animals submitted to LLLT. At 2 and 6 weeks, statistically significant differences were observed between LSh and Sh groups (p = 0.009 and 0.0001) and LOV and OV (p = 0.0001 and 0.0001), respectively. No statistical difference was observed when assessing the estrogen variable. On the basis of our methodology and results, we conclude that LLLT improves and accelerates bone repair within titanium scaffolds in both ovariectomized and healthy rats, when compared to animals not subjected to radiation.
Literatur
1.
Zurück zum Zitat Vasconcellos LM, Oliveira FN, Leite DO, Vasconcellos LG, do Prado RF, Ramos CJ, Graça ML, Cairo CA, Carvalho YR (2012) Novel production method of porous surface Ti samples for biomedical application. J Mater Sci Mater Med 23(2):357–364. doi:10.1007/s10856-011-4515-0 CrossRefPubMed Vasconcellos LM, Oliveira FN, Leite DO, Vasconcellos LG, do Prado RF, Ramos CJ, Graça ML, Cairo CA, Carvalho YR (2012) Novel production method of porous surface Ti samples for biomedical application. J Mater Sci Mater Med 23(2):357–364. doi:10.​1007/​s10856-011-4515-0 CrossRefPubMed
2.
Zurück zum Zitat Guo Z, Iku S, Mu L, Wang Y, Shima T, Seki Y, Li Q, Kuboki Y (2013) Implantation with new three-dimensional porous titanium web for treatment of parietal bone defect in rabbit. Artif Organs 37(7):623–628. doi:10.1111/aor.12058 CrossRefPubMed Guo Z, Iku S, Mu L, Wang Y, Shima T, Seki Y, Li Q, Kuboki Y (2013) Implantation with new three-dimensional porous titanium web for treatment of parietal bone defect in rabbit. Artif Organs 37(7):623–628. doi:10.​1111/​aor.​12058 CrossRefPubMed
3.
Zurück zum Zitat Van der Stok J, Van der Jagt OP, Amin Yavari S, De Haas MF, Waarsing JH, Jahr H, Van Lieshout EM, Patka P, Verhaar JA, Zadpoor AA, Weinans H (2013) Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J Orthop Res 31:792–799. doi:10.1002/jor.22293 CrossRefPubMed Van der Stok J, Van der Jagt OP, Amin Yavari S, De Haas MF, Waarsing JH, Jahr H, Van Lieshout EM, Patka P, Verhaar JA, Zadpoor AA, Weinans H (2013) Selective laser melting-produced porous titanium scaffolds regenerate bone in critical size cortical bone defects. J Orthop Res 31:792–799. doi:10.​1002/​jor.​22293 CrossRefPubMed
4.
5.
Zurück zum Zitat Wazen RM, Lefevre L-P, Baril E, Nanci A (2010) Initial evaluation of bone ingrowth into a novel porous titanium coating. J Biomed Mater Res B Appl Biomater 94(1):64–71. doi:10.1002/jbm.b.31624 PubMed Wazen RM, Lefevre L-P, Baril E, Nanci A (2010) Initial evaluation of bone ingrowth into a novel porous titanium coating. J Biomed Mater Res B Appl Biomater 94(1):64–71. doi:10.​1002/​jbm.​b.​31624 PubMed
7.
Zurück zum Zitat Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900CrossRefPubMed Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T (2006) Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials 27:5892–5900CrossRefPubMed
8.
Zurück zum Zitat Deporter DA, Watson PA, Pilliar RM, Pharoah M, Smith DC, Chipman M, Locker D, Rydall A (1996) A prospective clinical study in humans of an endosseous dental implant partially covered with a powder-sintered porous coating: 3- to 4-year results. Int J Oral Maxillofac Implants 11:87–95PubMed Deporter DA, Watson PA, Pilliar RM, Pharoah M, Smith DC, Chipman M, Locker D, Rydall A (1996) A prospective clinical study in humans of an endosseous dental implant partially covered with a powder-sintered porous coating: 3- to 4-year results. Int J Oral Maxillofac Implants 11:87–95PubMed
9.
Zurück zum Zitat Pilliar RM, Deporter DA, Watson PA, Todescan R (1998) The endopore implant-enhanced osseointegration with a sintered porous-surfaced design. Oral Health 7:61–64 Pilliar RM, Deporter DA, Watson PA, Todescan R (1998) The endopore implant-enhanced osseointegration with a sintered porous-surfaced design. Oral Health 7:61–64
10.
Zurück zum Zitat An YB, Lee WH (2006) Synthesis of porous titanium implants by environmental-electro-discharge-sintering process. Mater Chem Phys 95:242–247CrossRef An YB, Lee WH (2006) Synthesis of porous titanium implants by environmental-electro-discharge-sintering process. Mater Chem Phys 95:242–247CrossRef
11.
Zurück zum Zitat Variola F, Brunski JB, Orsini G, Tambasco de Oliveira P, Wazen R, Nanci A (2011) Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale 3(2):335–353. doi:10.1039/c0nr00485e CrossRefPubMed Variola F, Brunski JB, Orsini G, Tambasco de Oliveira P, Wazen R, Nanci A (2011) Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale 3(2):335–353. doi:10.​1039/​c0nr00485e CrossRefPubMed
12.
Zurück zum Zitat Genant HK, Cooper C, Poor R, Reid I, Ehrlich G, Kanis J (1999) Interim report and recommendations of the world Health Organization task-force for osteoporosis. Osteoporos Int 10(4):259–264CrossRefPubMed Genant HK, Cooper C, Poor R, Reid I, Ehrlich G, Kanis J (1999) Interim report and recommendations of the world Health Organization task-force for osteoporosis. Osteoporos Int 10(4):259–264CrossRefPubMed
13.
Zurück zum Zitat Marco F, Milena F, Gianluca G, Vittoria O (2005) Peri-implant osteogenesis in health and osteoporosis. Micron 36(7–8):630–644CrossRefPubMed Marco F, Milena F, Gianluca G, Vittoria O (2005) Peri-implant osteogenesis in health and osteoporosis. Micron 36(7–8):630–644CrossRefPubMed
15.
16.
Zurück zum Zitat Khadra M (2005) The effect of low level laser irradiation on implant-tissue interaction. In vivo and in vitro studies. Swed Dent J Suppl 172:1–63 Khadra M (2005) The effect of low level laser irradiation on implant-tissue interaction. In vivo and in vitro studies. Swed Dent J Suppl 172:1–63
17.
Zurück zum Zitat Freitas IGF, Baranauskas V, Cruz-Hofling MA (2000) Laser effects on osteogenesis. Appl Surf Sci 154–155:548–554CrossRef Freitas IGF, Baranauskas V, Cruz-Hofling MA (2000) Laser effects on osteogenesis. Appl Surf Sci 154–155:548–554CrossRef
18.
Zurück zum Zitat Fukuhara E, Goto T, Matayoshi T, Kobayashi S, Takahashi T (2006) Optimal low-energy laser irradiation causes temporal G2/M arrest on rat calvarial. J Calcif Tissue Int 79(6) Fukuhara E, Goto T, Matayoshi T, Kobayashi S, Takahashi T (2006) Optimal low-energy laser irradiation causes temporal G2/M arrest on rat calvarial. J Calcif Tissue Int 79(6)
19.
Zurück zum Zitat Pereira CL, Sallum EA, Nociti FH Jr, Moreira RW (2009) The effect of low-intensity laser therapy on bone healing around titanium implants: a histometric study in rabbits. Int J Oral Maxillofac Implants 24(1):47–51PubMed Pereira CL, Sallum EA, Nociti FH Jr, Moreira RW (2009) The effect of low-intensity laser therapy on bone healing around titanium implants: a histometric study in rabbits. Int J Oral Maxillofac Implants 24(1):47–51PubMed
20.
Zurück zum Zitat Boldrini C, de Almeida JM, Fernandes LA, Ribeiro FS, Garcia VG, Theodoro LH, Pontes AE (2013) Biomechanical effect of one session of low-level laser on the bone-titanium implant interface. Lasers Med Sci 28(1):349–352. doi:10.1007/s10103-012-1167-3 CrossRefPubMed Boldrini C, de Almeida JM, Fernandes LA, Ribeiro FS, Garcia VG, Theodoro LH, Pontes AE (2013) Biomechanical effect of one session of low-level laser on the bone-titanium implant interface. Lasers Med Sci 28(1):349–352. doi:10.​1007/​s10103-012-1167-3 CrossRefPubMed
22.
Zurück zum Zitat Vasconcellos LM, Barbara MA, Deco CP, Junqueira JC, do Prado RF, Anbinder AL, Vasconcellos LG, Cairo CA, Carvalho YR (2014) Healing of normal and osteopenic bone with titanium implant and low-level laser therapy (GaAlAs): a histomorphometric study in rats. Lasers Med Sci 29(2):575–580. doi:10.1007/s10103-013-1326-1 CrossRefPubMed Vasconcellos LM, Barbara MA, Deco CP, Junqueira JC, do Prado RF, Anbinder AL, Vasconcellos LG, Cairo CA, Carvalho YR (2014) Healing of normal and osteopenic bone with titanium implant and low-level laser therapy (GaAlAs): a histomorphometric study in rats. Lasers Med Sci 29(2):575–580. doi:10.​1007/​s10103-013-1326-1 CrossRefPubMed
23.
Zurück zum Zitat Vasconcellos LM, Leite DO, Oliveira FN, Carvalho YR, Cairo CA (2010) Evaluation of bone ingrowth into porous titanium implant: histomorphometric analysis in rabbits. Braz Oral Res 24(4):399–405CrossRefPubMed Vasconcellos LM, Leite DO, Oliveira FN, Carvalho YR, Cairo CA (2010) Evaluation of bone ingrowth into porous titanium implant: histomorphometric analysis in rabbits. Braz Oral Res 24(4):399–405CrossRefPubMed
24.
Zurück zum Zitat Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765CrossRefPubMed Salgado AJ, Coutinho OP, Reis RL (2004) Bone tissue engineering: state of the art and future trends. Macromol Biosci 4(8):743–765CrossRefPubMed
25.
Zurück zum Zitat Gerbi M, Pinheiro ALB, Marzola C, Limeira Júnior FA, Soares AO, Carvalho LCB et al (2005) Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomed Laser Surg 23:382–388CrossRefPubMed Gerbi M, Pinheiro ALB, Marzola C, Limeira Júnior FA, Soares AO, Carvalho LCB et al (2005) Assessment of bone repair associated with the use of organic bovine bone and membrane irradiated at 830 nm. Photomed Laser Surg 23:382–388CrossRefPubMed
26.
Zurück zum Zitat García-Gareta E, Hua J, Rayan F, Blunn GW (2014) Stem cell engineered bone with calcium-phosphate coated porous titanium scaffold or silicon hydroxyapatite granules for revision total joint arthroplasty. J Mater Sci Mater Med 25(6):1553–1562. doi:10.1007/s10856-014-5170-z CrossRefPubMed García-Gareta E, Hua J, Rayan F, Blunn GW (2014) Stem cell engineered bone with calcium-phosphate coated porous titanium scaffold or silicon hydroxyapatite granules for revision total joint arthroplasty. J Mater Sci Mater Med 25(6):1553–1562. doi:10.​1007/​s10856-014-5170-z CrossRefPubMed
28.
Zurück zum Zitat Ré Poppi R, Da Silva AL, Nacer RS, Vieira RP, de Oliveira LV, Santos de Faria N Jr, de Tarso Camilo Carvalho P (2011) Evaluation of the osteogenic effect of low-level laser therapy (808 nm and 660 nm) on bone defects induced in the femurs of female rats submitted to ovariectomy. Lasers Med Sci 26(4):515–522. doi:10.1007/s10103-010-0867-9 CrossRefPubMed Ré Poppi R, Da Silva AL, Nacer RS, Vieira RP, de Oliveira LV, Santos de Faria N Jr, de Tarso Camilo Carvalho P (2011) Evaluation of the osteogenic effect of low-level laser therapy (808 nm and 660 nm) on bone defects induced in the femurs of female rats submitted to ovariectomy. Lasers Med Sci 26(4):515–522. doi:10.​1007/​s10103-010-0867-9 CrossRefPubMed
29.
Zurück zum Zitat Aras MH, Bozdag Z, Demir T, Oksayan R, Yanık S, Sökücü O (2015) Effects of low-level laser therapy on changes in inflammation and in the activity of osteoblasts in the expanded premaxillary suture in an ovariectomized rat model. Photomed Laser Surg 33(3):136–144. doi:10.1089/pho.2014.3820 CrossRefPubMed Aras MH, Bozdag Z, Demir T, Oksayan R, Yanık S, Sökücü O (2015) Effects of low-level laser therapy on changes in inflammation and in the activity of osteoblasts in the expanded premaxillary suture in an ovariectomized rat model. Photomed Laser Surg 33(3):136–144. doi:10.​1089/​pho.​2014.​3820 CrossRefPubMed
30.
Zurück zum Zitat Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58(5):424–430PubMedPubMedCentral Lelovas PP, Xanthos TT, Thoma SE, Lyritis GP, Dontas IA (2008) The laboratory rat as an animal model for osteoporosis research. Comp Med 58(5):424–430PubMedPubMedCentral
31.
Zurück zum Zitat Pesce V, Speciale D, Sammarco G, Patella S, Spinarelli A, Patella V (2009) Surgical approach to bone healing in osteoporosis. Clin Cases Miner Bone Metab 6:131–135PubMed Pesce V, Speciale D, Sammarco G, Patella S, Spinarelli A, Patella V (2009) Surgical approach to bone healing in osteoporosis. Clin Cases Miner Bone Metab 6:131–135PubMed
32.
Zurück zum Zitat Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15(3):175–191, ReviewCrossRefPubMed Kalu DN (1991) The ovariectomized rat model of postmenopausal bone loss. Bone Miner 15(3):175–191, ReviewCrossRefPubMed
33.
Zurück zum Zitat Scalize PH, de Sousa LG, Regalo SC, Semprini M, Pitol DL, da Silva GA, de Almeida CJ, Coppi AA, Laad AA, Prado KF, Siessere S (2015) Low-level laser therapy improves bone formation: stereology findings for osteoporosis in rat model. Lasers Med Sci 30(5):1599–1607. doi:10.1007/s10103-015-1773-y CrossRefPubMed Scalize PH, de Sousa LG, Regalo SC, Semprini M, Pitol DL, da Silva GA, de Almeida CJ, Coppi AA, Laad AA, Prado KF, Siessere S (2015) Low-level laser therapy improves bone formation: stereology findings for osteoporosis in rat model. Lasers Med Sci 30(5):1599–1607. doi:10.​1007/​s10103-015-1773-y CrossRefPubMed
34.
Zurück zum Zitat Li M, Shen Y, Wronski TJ (1997) Time course of femoral neck osteopenia in ovariectomized rats. Bone 20(1):55–61CrossRefPubMed Li M, Shen Y, Wronski TJ (1997) Time course of femoral neck osteopenia in ovariectomized rats. Bone 20(1):55–61CrossRefPubMed
36.
Zurück zum Zitat Jee WS, Yao W (2001) Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact 1(3):193–207PubMed Jee WS, Yao W (2001) Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact 1(3):193–207PubMed
37.
Zurück zum Zitat Nissan J, Assif D, Gross M, Yaffe A, Binderman I (2006) Effect of low intensity laser irradiation on surgically created bony defects in rats. J Oral Rehabil 33:619–624CrossRefPubMed Nissan J, Assif D, Gross M, Yaffe A, Binderman I (2006) Effect of low intensity laser irradiation on surgically created bony defects in rats. J Oral Rehabil 33:619–624CrossRefPubMed
38.
Zurück zum Zitat Saad A, El Yamany M, Abbas O, Yehia M (2010) Possible role of low level laser therapy on bone turnover in ovariectomized rats. Endocr Regul 44(4):155–163CrossRefPubMed Saad A, El Yamany M, Abbas O, Yehia M (2010) Possible role of low level laser therapy on bone turnover in ovariectomized rats. Endocr Regul 44(4):155–163CrossRefPubMed
39.
Zurück zum Zitat Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39(10):788–796CrossRefPubMed Pretel H, Lizarelli RF, Ramalho LT (2007) Effect of low-level laser therapy on bone repair: histological study in rats. Lasers Surg Med 39(10):788–796CrossRefPubMed
40.
Zurück zum Zitat Gomes FV, Mayer L, Massotti FP, Baraldi CE, Ponzoni D, Webber JB, de Oliveira MG (2015) Low-level laser therapy improves peri-implant bone formation: resonance frequency, electron microscopy, and stereology findings in a rabbit model. Int J Oral Maxillofac Surg 44(2):245–251. doi:10.1016/j.ijom.2014.09.010 CrossRefPubMed Gomes FV, Mayer L, Massotti FP, Baraldi CE, Ponzoni D, Webber JB, de Oliveira MG (2015) Low-level laser therapy improves peri-implant bone formation: resonance frequency, electron microscopy, and stereology findings in a rabbit model. Int J Oral Maxillofac Surg 44(2):245–251. doi:10.​1016/​j.​ijom.​2014.​09.​010 CrossRefPubMed
41.
Zurück zum Zitat Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulus bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354CrossRefPubMed Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulus bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22:347–354CrossRefPubMed
Metadaten
Titel
Titanium scaffold osteogenesis in healthy and osteoporotic rats is improved by the use of low-level laser therapy (GaAlAs)
verfasst von
Luana Marotta Reis de Vasconcellos
Mary Anne Moreira Barbara
Emanuel da Silva Rovai
Mariana de Oliveira França
Zahra Fernandes Ebrahim
Luis Gustavo Oliveira de Vasconcellos
Camila Deco Porto
Carlos Alberto Alves Cairo
Publikationsdatum
07.04.2016
Verlag
Springer London
Erschienen in
Lasers in Medical Science / Ausgabe 5/2016
Print ISSN: 0268-8921
Elektronische ISSN: 1435-604X
DOI
https://doi.org/10.1007/s10103-016-1930-y

Weitere Artikel der Ausgabe 5/2016

Lasers in Medical Science 5/2016 Zur Ausgabe