Skip to main content
Erschienen in: Journal of Inflammation 1/2015

Open Access 01.12.2015 | Research

TNF-alpha and IL-6 inhibit apolipoprotein A-IV production induced by linoleic acid in human intestinal Caco2 cells

verfasst von: Xiaoming Li, Min Xu, Min Liu, Yong Ji, Zongfang Li

Erschienen in: Journal of Inflammation | Ausgabe 1/2015

Abstract

Background

Apolipoprotein A-IV (apoA-IV) is a protein mainly synthesized by enterocytes in the intestine. Its gene expression is suppressed during fasting and stimulated during active fat absorption. Chronic feeding of a high-fat (HF) diet abolishes the differential expression between fasting and fat-feeding and therefore may contribute to diet-induced obesity since apoA-IV is a potent satiety factor. It is well established that the circulating pro-inflammatory cytokines TNF-α and IL-6 are increased by HF feeding.

Methods

To determine whether pro-inflammatory cytokines are involved in the diminished response of apoA-IV gene expression to fat-feeding, different concentrations of linoleic acid (LA), an important dietary fatty acid, was used to stimulate apoA-IV expression in human intestinal Caco2 cells. Cells were pre-treated with or without human recombinant TNF-α, IL-6 or their combination before the addition of LA. Real-time PCR and ELISA were used to detect and quantify RNA transcripts and proteins of apoA-IV and the cytokines.

Results

LA stimulated gene and protein expression of apoA-IV in a dose and time dependent manner. Pre-treatment with the cytokines for 72 h significantly inhibited the increased expression of apoA-IV gene and protein induced by LA. Furthermore, the cytokines, especially TNF-α, also positively up-regulate the cytokine themselves in Caco2 cells.

Conclusions

Our data indicate that the pro-inflammatory cytokines may be responsible for the reduced apoA-IV production in response to fat feeding. Because of apoA-IV’s role in satiety, we propose the inhibitory effect of circulating pro-inflammatory cytokines on apoA-IV production contributes to diet-induced obesity.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

XL carried out the main body of this work and prepared the manuscript. MX performed the experiments. ML and YJ participated in the preparation and revision of the manuscript. ZF participated in designing and cooperating. All authors have read and approved the final manuscript.
Abkürzungen
LA
Linoleic acid
ApoA-IV
Apolipoprotein A-IV
TNF-α
Tumor necrosis factor alpha
IL-6
Interleukin-6
HFD
High fat diet
TG
Triacylglycerol
ApoC-III
Apolipoprotein C-III

Background

Obesity has reached epidemic proportions globally, and more than one-third of adults (35.7%) in USA are obese. Being overweight or obese increases the risk of diseases including cancer, coronary heart disease, type II diabetes, hypertension and stroke. Compelling evidence has demonstrated that dietary fat intake is a major cause of obesity, diabetes, and the associated metabolic syndromes [1,2].
Human apoA-IV is a 46-kDa protein produced by enterocytes of the small intestine and its production is stimulated by fat absorption [3]. ApoA-IV is secreted in association with triacylglycerol (TG) rich chylomicron particles. After entering the circulation, apoA-IV rapidly dissociates from chylomicrons and then transfers into high-density lipoproteins or becomes a lipoprotein-free fraction of the plasma in the postprandial state [4]. ApoA-IV has a number of well-established functions, including the inhibition of food intake, anti-inflammatory role, reverse cholesterol transport, and the regulation of glucose metabolism through the stimulation of insulin secretion and inhibition of hepatic gluconeogenesis [5-9]. Although the production of apoA-IV is stimulated by fat absorption, chronic ingestion of high fat (HF) feeding caused the adaptation of the intestinal apoA-IV response to lipid feeding. Weinberg et al. [10] first reported the adaptation of plasma apoA-IV in response to chronic feeding of a HF diet in humans. They observed that consumption of an HF diet for 1 week significantly elevated plasma apoA-IV, but after two weeks on the HF diet, the apoA-IV level returned back to baseline. Kalogeris and Painter [11] found that plasma apoA-IV increased initially by 40% in response to intra-gastric administration of fat emulsion within the first one to two days, but this was followed by the diminished responses with no increase in plasma apoA-IV levels by four days of fat feeding. Similarly, the jejunal mRNA levels and mucosal apoA-IV protein synthesis also showed time-dependent refractoriness to fat administration, suggesting both posttranslational (protein clearance) and/or pre-translation (transcriptional) adaptation of the intestinal apoA-IV production.
It is well established that circulating pro-inflammatory cytokines [e.g. tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6)] are induced in obesity and these pro-inflammatory cytokines play a crucial role in the development of metabolic syndrome [12-14]. Ding et al. reported that HF diet feeding and bacteria interaction promoted TNF-α mRNA production and intestinal inflammation in mice; and the increase TNF-α preceded obesity was strongly and significantly associated with progression of obesity and development of insulin resistance [15]. Recently, Ji et al. showed that intra-duodenal infusion of fat emulsion caused mucosal mast cells activation and increased lymphatic secretion of pro-inflammatory cytokines IL-6 [16]. These observations suggest that pro-inflammatory cytokines derived from gut may contribute to the development of obesity and associated metabolic syndrome.
It was reported that treatment with cytokines TNF-α or IL-6 in cultured pig hepatocytes decreased apoA-IV mRNA levels [17], suggesting that the cytokines may contribute to dietary-induced obesity through down-regulation of the important satiety signal apoA-IV expression [18]. To determine whether pro-inflammatory cytokines are involved in the attenuated response of apoA-IV to chronic HF feeding, we performed in vitro study to investigate the effect of human recombinant cytokines TNF-α, IL-6 or their combination on apoA-IV expression in response to the treatment of Linoleic acid (LA, an important dietary fatty acid) in cultured human intestinal Caco2 cells. Our results suggest that pro-inflammatory cytokines inhibit apoA-IV production induced by LA in Caco2 cells.

Methods

Materials

Linoleic acid, sodium taurocholate (TC) and other chemicals were obtained from Sigma-Aldrich (St. Louis, MO, USA). Recombinant human IL-6 (r-h-IL-6) and recombinant human TNF-α (r-h-TNF-α) were purchased from R&D Systems, Inc. (Minneapolis, MN, USA). Dulbecco’s modified essential medium (DMEM), fetal bovine serum (FBS) and antibiotic: antimycotic mixture were obtained from Thermo Fisher Scientific (Carlsbad, CA, USA).

Cell cultures

Caco-2 cells, obtained from the American Type Culture Collection (ATCC, Rockville, MD, USA), were grown in DMEM containing high glucose, 20% FBS, and a 1% antibiotic: antimycotic mixture. 70-80% confluent Caco-2 cells were plated onto 24-well plastic dishes (Becton-Dickinson Labware, Lincoln Park, NJ, USA) at initial densities of 1 × 105 cells/well in complete growth medium. The medium was changed every other day for 14–21 days. This procedure is known to induce differentiation of Caco-2 cells into more enterocyte-like cells [19].

LA and cytokine treatment to Caco2 cells

To prepare LA stocks (20 ×), 20 mM LA and 10 mM TC were mixed and stored at −20°C. To prepare TNF-α and IL-6 (1000 ×, 10 mg/ml) stocks, r-h-IL-6 and r-h-TNF-α were dissolved in phosphate buffered saline (PBS). The differentiated Caco2 cells were incubated in growth medium with or without 20 ng/ml TNF-α, or 20 ng/ml IL-6, respectively, or a mixture of the both (20 ng/ml/each) for the indicated time, and then changed into DMEM/ high glucose/1% FBS with or without indicated amount of LA: TC for the time indicated, with 0.5 mM TC as vehicle control. The cells were harvested and lysed, and the total RNA was isolated.

Real-time RT-PCR

Total RNA was isolated from cells with RNeasy Mini Kit (Qiagen, Germantown, MD, USA). First-strand cDNA was synthesized from 1 μg total RNA with Scripts™ cDNA Synthesis Kit (Bio-Rad Laboratories Inc., Hercules, CA, USA) according to the manufacturer’s instruction. Real-time PCR was performed using iQ SYBR Green Supermix (Bio-Rad Laboratories Inc. Hercules, CA, USA) with an iCycler iQ Detection System (icycler iQ. Multicolor Real-time PCR Detection System, Bio-Rad) and normalized to β-actin. All primers were purchased from Integrated DNA Technologies (Coralville, IA,USA). PCR primer pairs used were: human apoA-IV forward, 5′-ACCCAGCTAAGCAACAATGC-3′, and reverse, 5′-TGTCCTGGAAGAGGGTACTGA-3′; human Il6 forward, 5′-TGATGGATGCTACCAAACTGG-3′, and reverse, 5′-TTCATGTACTCCAGGTAGCTATGG-3′; human Tnfα forward, 5′-TCTTCTCATT CCTGCTTGTGG-3′, and reverse, 5′- GGTCTGGGCCATAGAACTGA-3′; human apoC-III forward, 5′-AGACCGCCAAGGATGCACTGA-3′, and reverse, 5′-TCTGACCTCAGGGTCCAAATCC-3′; βActin forward, 5′-TTGCTGACAGGAT-GCAGAAGGAGA-3′, and reverse, 5′-TCAGTAACAGTCCGCCTAGAAGCA-3′.

Enzyme linked immunosorbent assay (ELISA)

ELISA was performed using Human ApoA-IV ELISA Kit from Millipore Corporation (Billerica, MA, USA), Human IL-6 and Human TNF-α ELISA Kits from RayBiotech (Norcross, GA, USA) according to the protocol provided by the manufacturer. The culture mediums collected from the cells treated with LA with or without cytokines were used to measure the proteins released from the cells by ELISA.

Statistics

Data represent Mean ± SE from three or four wells in each experiment of at least two independent cell culture experiments. Significance of differences was determined by one-way ANOVA or two-way ANOVA followed by Tukey test method. P value less than 0.05 was considered significant.

Results

LA stimulates apoA-IV gene expression in Caco2 cells

To induce gene expression of apoA-IV in Caco2 cells, the medium of differentiated Caco2 cells was supplemented with LA mixed with TC in the indicated dose and time, as described previously [19]. First, we studied the effect of different concentrations (0.25, 0.5, 1.0 mM) of LA on apoA-IV gene expression after 24 h incubation. As shown in Figure 1A, 0.25 mM of LA was able to enhance apoA-IV gene expression by 1.31 fold, compared with TC vehicle control, although there was no statistically significant difference. 0.5 mM of LA significantly increased apoA-IV mRNA level by 3.3 fold, and 1 mM of LA by 4.42 fold. Second, we determined the time course of apoA-IV gene expression of Caco2 cells after incubation with 1 mM LA for various times (3, 6, 12, and 24 h). As shown in Figure 1B, apoA-IV mRNA level started to increase by 2.34 fold when incubated with LA for 12 h, and increased by 4.42 fold at 24 h, compared with that treated with vehicle controls. Finally, to test whether the apoA-IV protein is also changed with its mRNA levels, we measured the apoA-IV protein levels in the culture medium after the treatment with different amount of LA for 24 h incubation. As presented in Figure 1C, 0.25 mM LA surprisedly showed a maximum effect on apoA-IV protein production, which was stronger than 0.5 mM LA. However, when LA dose increased to 1 mM, its effect on apoA-IV was almost gone. These data indicate that LA up-regulates both apoA-IV mRNA and protein levels in dose-dependent manner, but in different pattern, in the Caco2 cells.

Cytokines inhibit apoA-IV production induced by LA

It has been reported that cytokine IL-6 and TNF-α reduced apoA-IV mRNA levels in pig hepatocytes [17]. To determine whether long time exposure to TNF-α and IL-6 also affects apoA-IV gene expression induced by LA in Caco2 cells, the differentiated Caco2 cells were pre-treated with r-h-TNFα and r-h-IL6 for 72 h, followed by incubation with or without 1 mM LA for 24 h. As shown in Figure 2A, the cytokines did not affect apoA-IV mRNA in the cells without LA treatment. However, pre-treatment with the combination of these two cytokines significantly attenuated LA-induced increase of mRNA levels (Figure 2A) and apoA-IV protein secretion (Figure 2B). To further determine which cytokine, TNF-α or IL-6, exerts the inhibitory effect, we pre-incubated the cells with either TNF-α or IL-6, respectively, followed by the LA treatment. We found that TNF-α significantly attenuated the increased levels of both apoA-IV mRNA (Figure 2A) and protein (Figure 2B) induced by LA, whereas IL-6 had no such effect on apoA-IV mRNA level (Figure 2A), but significantly attenuated apoA-IV protein level induced by 0.25 mM LA (Figure 2B). Furthermore, TNF-α and IL-6 themselves decreased apoA-IV protein levels (Figure 2B), but not apoA-IV mRNA levels (Figure 2A). These data indicate that both TNF-α and IL-6 inhibit the stimulatory effect of LA on apoA-IV production.

Effects of LA and cytokines on apoC-III gene expression in Caco2 cells

ApoA-IV is a member of the apoA-I/C-III/A-IV gene cluster. It was reported previously that intestinal expression of apoA-IV and apoC-III is coordinately regulated by dietary lipid in newborn swine [20]. To test whether LA specifically stimulates apoA-IV expression in Caco-2 cells, we measured the mRNA level of apoC-III in the presence of LA or/and the cytokines, and determined whether the pre-treatment of cytokines affects the responses of apoC-III to LA. As shown in Figure 2C, treatment with 1 mM LA alone or pre-treatments with cytokines (IL-6, TNF-α, or their combination) did not significantly affect apoC-III gene expression in the Caco-2 cells. Interestingly, TNF-α, but not IL-6, significantly decreased apoC-III expression in the Caco-2 cells (Figure 2C). These observations indicate that LA specifically stimulates apoA-IV expression in Caco-2 cells. In addition, different from the changes in apoA-IV mRNA levels, apoC-III mRNA was significantly decreased by TNF-α at the condition without LA stimulation.

LA stimulates productions of Il6 and Tnfα

It has been reported that long-chain fatty acid, e.g. the LA, can enhance Il6 production in rat intestinal epithelial cells [21]. To determine whether LA is able to affect gene expressions of endogenous cytokines IL-6 and TNF-α in the Caco2 cells, we measured mRNA levels of Il6 and Tnfα at the indicated times of LA treatment from Caco2 cells and their proteins released from the cells after the treatment with different amount of LA for 24 h. We found that the LA stimulated Tnfα and Il6 gene expressions sooner than apoA-IV expression. The mRNA level of Il6 started to increase by 1.03 fold after 3 h treatment, although the difference is not statistically significant, and then reached to 3.4 fold increase at 6 h (Figure 3A). The mRNA level of Tnfα was significantly increased sooner than Il6 mRNA and it reached to 3.57 fold at 2 h, 3.52 fold increases at 3 h and then reduced to 1.4 fold increases by 6 h (Figure 3B). It is noteworthy that the pattern of Tnfα gene expression was similar to Il6, and all dropped back to basal level at 12 h, but Il6 start to express again at 24 h post-treatment of LA (Figure 4A), which could be positive feedback regulation from the other factors, such as TNF-α, as a result from LA stimulation. We also measured their protein levels and found that 0.5 mM LA had the maximum effects on both IL-6 and TNF-α protein levels although 0.25 mM and 1 mM LA increased the cytokine protein productions, too (Figure 3C and D).

Cytokines positively regulate their own gene expression

To determine whether the cytokines also affect their own expression, the mRNAs of Il6 and Tnfα were measured in the Caco-2 cells treated with or without the cytokines and/or with LA. As shown in Figure 4, no change in Il6 mRNA levels was found in the cells when these two cytokines were treated individually or their combination without LA treatment. However, LA significantly stimulated Il6 gene expression, which was significantly attenuated by pre-treatment of IL-6, but not by TNF-α. Additionally, pre-treatment with the combination of IL-6 and TNF-α led to further increase of Il6 gene expression in those cells. Similarly, treatment with TNF-α, especially the combination of IL-6 and TNF-α, stimulated Tnfα gene expression in the Caco-2 cells either with or without LA treatment. These data indicate that the cytokines, especially TNF-α, could positively up-regulate their own gene expression in Caco-2 cells.

Discussion

ApoA-IV is produced dominantly in the gut and has many physiological functions which include satiety, regulation of glucose metabolism, reverse cholesterol transport and also anti-inflammation [6,8,9,22]. Therefore, the reduced apoA-IV production in response to active lipid absorption after chronic HF diet-feeding has been implicated in the diet-induced obesity and metabolic disorders. The purpose of this study was to test the hypothesis that the inflammatory cytokines expressed and released during chronic HF feeding potentially play an important role in this reduced apoA-IV response to fat absorption. Linoleic acid (LA) is an important dietary fatty acid and a major component in many HF diets or the lipids that have been used to induce apoA-IV production [11,23].
Caco-2 cells, a human colon carcinoma cell line, have been widely used as a model to study intestinal epithelial cell metabolism, including lipids and lipoproteins [19,24-27]. However, it has not been tested previously whether LA stimulates apoA-IV expression in those cells. With different dose of LA and varying incubation times with the differentiated Caco2 cells, for the first time, we found that apoA-IV gene expression and protein secretion was significantly increased in response to LA stimulation. Notably, apoA-IV production was significantly enhanced with lower amount of LA (0.25 mM) stimulation, but high dose of LA (1 mM) failed to increase apoA-IV protein production, although apoA-IV mRNA was significantly increased with this amount of LA from 12 h to 24 h. It was well-known that fat induces both apoA-IV synthesis and secretion from the gut, but up to now, its molecular mechanism is not clear. Our observations that apoA-IV mRNA level was increased with the increase of LA amount, but protein secretion of apoA-IV could not induced by a higher amount of LA, indicating that higher amount of LA may activate or induce other related factors, e.g. IL-6 and TNF-α, which can impact apoA-IV’s translation and the stability.
ApoA-IV is a member of a closely linked apoA-I/C-III/A-IV gene cluster, a target for acute phase proteins. A coordinately regulation of apoC-III and apoA-IV expression by lipids has been previously described [20]. However, it is also reported that the regulation of the members of this cluster by fat and inflammatory processes in the gut is not shared by all members of the cluster, e.g. neither the magnitude of response to the stimuli, nor the behavior of apoA-IV and apoC-III was similar [17]. Our data showed no difference in apoC-III gene expression in the cultured Caco2 cells treated with LA, IL-6 or the both together. In contrast, significant change in apoA-IV gene expression was observed when the Caco2 cells were exposed to the same cytokines. These results indicate a loss of the coordinated response reported previously in the animals [20], and suggest a complex interplay of transcription factors modulated by species-specific signaling pathways in response to a specific stimuli.
Our data also showed that LA not only induced apoA-IV gene expression, but also stimulated TNF-α and IL-6 secretion in Caco2 cells. Circulating cytokines, such as TNF-α or IL-6, have been shown to be elevated in obese humans [28,29] and this could be reversed with weight loss [30]. While the mechanisms underlying obesity-associated inflammation are not fully understood, a number of studies suggested that the inflammation may derive from the accumulation of activated macrophages within adipose tissue, liver, and the enlarged adipocytes in obese animals and humans [14,31,32]. Recent studies [15,16] suggest that 1) the gastrointestinal tract is another and early source of inflammation associated with diet, 2) the onset of intestinal inflammation precedes diet-induced increases in body weight, fat mass, as well as insulin resistance, and 3) the degree of TNF-α induction strongly correlates with diet-induced increases in weight, adiposity, plasma glucose, and insulin. Our data that LA-induced elevation of both TNF-α and IL-6 mRNAs and of protein levels in Caco2 cells further support the concept that inflammatory cytokines released from the gut induced by fatty acid is the early source of inflammation associated with the development of obesity and/or metabolic disorders because TNF-α and IL-6 are widely used as early biomarkers of inflammation of insulin resistance and the obesity relative diseases.
It has been reported that TNF-α activates NF-κB and other inflammatory pathways [33,34]. As we described above, LA not only induced apoA-IV gene expression but also stimulated the gene expression and secretion of the cytokines. In addition, consistent with previous studies, TNF-α and IL-6, especially TNF-α, are further stimuli in the expression of the cytokines in the Caco2 cells, and enhance the effect of LA on these cytokines.
It rapidly became clear that early proinflammatory effects of HF diet, such as elevated TNF-α, could serve as a trigger for subsequent inflammation or insulin resistance through activating NF-kB and other inflammatory pathways involved in the etiology of insulin resistance and Type 2 diabetes. In addition to regulating metabolic homeostasis and intracellular signaling pathways that are well-established metabolic functions, inflammatory cytokines can impact on release of gut hormones such as glucagon-like peptide 2 (GLP-2) [15]. Our observations that these two cytokines reduced apoA-IV production, but not apoA-IV gene expression, imply that these cytokines’ inhibitory effects on apoA-IV not only occur at transcriptional levels but also at translational or posttranslational levels.
Pro-inflammatory molecules released by intestines, adipose and liver enter the circulation to influence the expression of apoA-IV at the gut. Our data that exogenous cytokines decreased apoA-IV production induced by LA support our hypothesis that pro-inflammatory cytokines are involved in reducing apoA-IV responses to fat feeding. These results support the notion that cytokines induction by chronic fat feeding is responsible for the blunted apoA-IV production normally stimulated by active fat absorption.

Conclusions

Our study demonstrates that fatty acid LA induces apoA-IV gene expression and, at the same time, promotes inflammatory cytokines expression in the Caco2 cells. After chronic HF diet-feeding, constant and increased cytokine release resulted from positive feedback regulation of the cytokines suppresses apoA-IV production in response to fat absorption. Because of apoA-IV’s roles in the regulation of food intake, lipid absorption and glucose metabolism, the correlation between the local/circulating pro-inflammatory cytokines and apoA-IV production contributes to diet-induced obesity and the associated disorders.

Acknowledgements

We thank Dr. Patrick Tso (Department of Pathology and Laboratory Medicine, University of Cincinnati, Ohio, USA), who was involved in designing and revising the manuscript critically. This work was supported in part by grants for Dr. Patrick Tso from the NIH DK 59630, DK 92138, and DK 76928 and for Min Liu from the NIH DK95440 and DK92779.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

XL carried out the main body of this work and prepared the manuscript. MX performed the experiments. ML and YJ participated in the preparation and revision of the manuscript. ZF participated in designing and cooperating. All authors have read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106:S1−+.CrossRef Calder PC, Ahluwalia N, Brouns F, Buetler T, Clement K, Cunningham K, et al. Dietary factors and low-grade inflammation in relation to overweight and obesity. Br J Nutr. 2011;106:S1−+.CrossRef
2.
Zurück zum Zitat Kuller LH. Dietary fat and chronic diseases: epidemiologic overview. J Am Diet Assoc. 1997;97:S9–15.CrossRefPubMed Kuller LH. Dietary fat and chronic diseases: epidemiologic overview. J Am Diet Assoc. 1997;97:S9–15.CrossRefPubMed
3.
Zurück zum Zitat Bisgaier CL, Sachdev OP, Megna L, Glickman RM. Distribution of apolipoprotein-a-Iv in human-plasma. J Lipid Res. 1985;26:11–25.PubMed Bisgaier CL, Sachdev OP, Megna L, Glickman RM. Distribution of apolipoprotein-a-Iv in human-plasma. J Lipid Res. 1985;26:11–25.PubMed
4.
Zurück zum Zitat Weinberg RB. Apolipoprotein A-IV polymorphisms and diet-gene interactions. Curr Opin Lipidol. 2002;13:125–34.CrossRefPubMed Weinberg RB. Apolipoprotein A-IV polymorphisms and diet-gene interactions. Curr Opin Lipidol. 2002;13:125–34.CrossRefPubMed
5.
Zurück zum Zitat Liu M, Doi T, Shen L, Woods SC, Seeley RJ, Zheng SQ, et al. Intestinal satiety protein apolipoprotein AIV is synthesized and regulated in rat hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1382–7.PubMed Liu M, Doi T, Shen L, Woods SC, Seeley RJ, Zheng SQ, et al. Intestinal satiety protein apolipoprotein AIV is synthesized and regulated in rat hypothalamus. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1382–7.PubMed
6.
Zurück zum Zitat Qin XF, Swertfeger DK, Zheng SQ, Hui DY, Tso P. Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation. Am J Physiol Heart Circ Physiol. 1998;43:H1836–40. Qin XF, Swertfeger DK, Zheng SQ, Hui DY, Tso P. Apolipoprotein AIV: a potent endogenous inhibitor of lipid oxidation. Am J Physiol Heart Circ Physiol. 1998;43:H1836–40.
7.
Zurück zum Zitat Recalde D, Ostos MA, Badell E, Garcia-Otin AL, Pidoux J, Castro G, et al. Human apolipoprotein A-IV reduces secretion of proinflammatory cytokines and atherosclerotic effects of a chronic infection mimicked by lipopolysaccharide. Arterioscler Thromb Vasc Biol. 2004;24:756–61.CrossRefPubMed Recalde D, Ostos MA, Badell E, Garcia-Otin AL, Pidoux J, Castro G, et al. Human apolipoprotein A-IV reduces secretion of proinflammatory cytokines and atherosclerotic effects of a chronic infection mimicked by lipopolysaccharide. Arterioscler Thromb Vasc Biol. 2004;24:756–61.CrossRefPubMed
8.
Zurück zum Zitat Wang F, Kohan AB, Kindel TL, Corbin KL, Nunemaker CS, Obici S, et al. Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc Natl Acad Sci U S A. 2012;109:9641–6.CrossRefPubMedCentralPubMed Wang F, Kohan AB, Kindel TL, Corbin KL, Nunemaker CS, Obici S, et al. Apolipoprotein A-IV improves glucose homeostasis by enhancing insulin secretion. Proc Natl Acad Sci U S A. 2012;109:9641–6.CrossRefPubMedCentralPubMed
9.
Zurück zum Zitat Li XM, Xu M, Wang F, Kohan AB, Haas MK, Yang Q, et al. Apolipoprotein A-IV reduces hepatic gluconeogenesis through nuclear receptor NR1D1. J Biol Chem. 2014;289:2396–404.CrossRefPubMedCentralPubMed Li XM, Xu M, Wang F, Kohan AB, Haas MK, Yang Q, et al. Apolipoprotein A-IV reduces hepatic gluconeogenesis through nuclear receptor NR1D1. J Biol Chem. 2014;289:2396–404.CrossRefPubMedCentralPubMed
10.
Zurück zum Zitat Weinberg RB, Dantzker C, Patton CS. Sensitivity of serum apolipoprotein A-Iv levels to changes in dietary-Fat content. Gastroenterology. 1990;98:17–24.PubMed Weinberg RB, Dantzker C, Patton CS. Sensitivity of serum apolipoprotein A-Iv levels to changes in dietary-Fat content. Gastroenterology. 1990;98:17–24.PubMed
11.
Zurück zum Zitat Kalogeris TJ, Painter RG. Adaptation of intestinal production of apolipoprotein A-IV during chronic feeding of lipid. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1155–61.PubMed Kalogeris TJ, Painter RG. Adaptation of intestinal production of apolipoprotein A-IV during chronic feeding of lipid. Am J Physiol Regul Integr Comp Physiol. 2001;280:R1155–61.PubMed
13.
Zurück zum Zitat Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.CrossRefPubMedCentralPubMed Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–84.CrossRefPubMedCentralPubMed
14.
Zurück zum Zitat Park EJ, Lee JH, Yu GY, He GB, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140:197–208.CrossRefPubMedCentralPubMed Park EJ, Lee JH, Yu GY, He GB, Ali SR, Holzer RG, et al. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 2010;140:197–208.CrossRefPubMedCentralPubMed
15.
Zurück zum Zitat Ding SL, Chi MM, Scull BP, Rigby R, Schwerbrock NMJ, Magness S, et al. High-Fat Diet: Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse. Plos One. 2010;5:e1219. Ding SL, Chi MM, Scull BP, Rigby R, Schwerbrock NMJ, Magness S, et al. High-Fat Diet: Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse. Plos One. 2010;5:e1219.
16.
Zurück zum Zitat Ji Y, Sakata Y, Yang Q, Li XM, Xu M, Yoder S, et al. Activation of rat intestinal mucosal mast cells by fat absorption. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1292–300.CrossRefPubMedCentralPubMed Ji Y, Sakata Y, Yang Q, Li XM, Xu M, Yoder S, et al. Activation of rat intestinal mucosal mast cells by fat absorption. Am J Physiol Gastrointest Liver Physiol. 2012;302:G1292–300.CrossRefPubMedCentralPubMed
17.
Zurück zum Zitat Navarro MA, Carpintero R, Acin S, Arbones-Mainar J, Calleja L, Carnicer R, et al. Immune-regulation of the apolipoprotein A-I/C-III/A-IV gene cluster in experimental inflammation. Cytokine. 2005;31:52–63.CrossRefPubMed Navarro MA, Carpintero R, Acin S, Arbones-Mainar J, Calleja L, Carnicer R, et al. Immune-regulation of the apolipoprotein A-I/C-III/A-IV gene cluster in experimental inflammation. Cytokine. 2005;31:52–63.CrossRefPubMed
18.
Zurück zum Zitat Liu M, Shen L, Liu Y, Tajima D, Sakai R, Woods SC, et al. Diurnal rhythm of apolipoprotein A-IV in rat hypothalamus and its relation to food intake and corticosterone. Endocrinology. 2004;145:3232–8.CrossRefPubMed Liu M, Shen L, Liu Y, Tajima D, Sakai R, Woods SC, et al. Diurnal rhythm of apolipoprotein A-IV in rat hypothalamus and its relation to food intake and corticosterone. Endocrinology. 2004;145:3232–8.CrossRefPubMed
19.
Zurück zum Zitat Luchoomun J, Hussain MM. Assembly and secretion of chylomicrons by differentiated Caco-2 cells - Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly. J Biol Chem. 1999;274:19565–72.CrossRefPubMed Luchoomun J, Hussain MM. Assembly and secretion of chylomicrons by differentiated Caco-2 cells - Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly. J Biol Chem. 1999;274:19565–72.CrossRefPubMed
20.
Zurück zum Zitat Black DD, Wang H, Hunter F, Zhan R. Intestinal expression of apolipoprotein A-IV and C-III is coordinately regulated by dietary lipid in newborn swine. Biochem Biophys Res Commun. 1996;221:619–24.CrossRefPubMed Black DD, Wang H, Hunter F, Zhan R. Intestinal expression of apolipoprotein A-IV and C-III is coordinately regulated by dietary lipid in newborn swine. Biochem Biophys Res Commun. 1996;221:619–24.CrossRefPubMed
21.
Zurück zum Zitat Yoshida H, Miura S, Kishikawa H, Hirokawa M, Nakamizo H, Nakatsumi RC, et al. Fatty acids enhance GRO/CINC-1 and interleukin-6 production in rat intestinal epithelial cells. J Nutr. 2001;131:2943–50.PubMed Yoshida H, Miura S, Kishikawa H, Hirokawa M, Nakamizo H, Nakatsumi RC, et al. Fatty acids enhance GRO/CINC-1 and interleukin-6 production in rat intestinal epithelial cells. J Nutr. 2001;131:2943–50.PubMed
22.
Zurück zum Zitat Qin XF, Tso P. The role of apolipoprotein AIV on the control of food intake. Curr Drug Targets. 2005;6:145–51.CrossRefPubMed Qin XF, Tso P. The role of apolipoprotein AIV on the control of food intake. Curr Drug Targets. 2005;6:145–51.CrossRefPubMed
23.
Zurück zum Zitat Liu M, Shen L, Liu Y, Woods SC, Seeley RJ, Alessio DD, et al. Obesity induced by a high-fat diet downregulates apolipoprotein A-IV gene expression in rat hypothalamus. Am J Physiol Endocrinol Metab. 2004;287:E366–70.CrossRefPubMed Liu M, Shen L, Liu Y, Woods SC, Seeley RJ, Alessio DD, et al. Obesity induced by a high-fat diet downregulates apolipoprotein A-IV gene expression in rat hypothalamus. Am J Physiol Endocrinol Metab. 2004;287:E366–70.CrossRefPubMed
24.
Zurück zum Zitat Dashti N. Synthesis and secretion of nascent lipoprotein particles. Prog Lipid Res. 1991;30:219–30.CrossRefPubMed Dashti N. Synthesis and secretion of nascent lipoprotein particles. Prog Lipid Res. 1991;30:219–30.CrossRefPubMed
25.
Zurück zum Zitat Field FJ, Born E, Mathur SN. Triacylglycerol-rich lipoprotein cholesterol is derived from the plasma membrane in CaCo-2 cells. J Lipid Res. 1995;36:2651–60.PubMed Field FJ, Born E, Mathur SN. Triacylglycerol-rich lipoprotein cholesterol is derived from the plasma membrane in CaCo-2 cells. J Lipid Res. 1995;36:2651–60.PubMed
26.
Zurück zum Zitat Hussain MM, Kancha RK, Zhou ZY, Luchoomun J, Zu HY, Bakillah A. Chylomicron assembly and catabolism: role of apolipoproteins and receptors. Biochim Biophys Acta, Lipids Lipid Metab. 1996;1300:151–70.CrossRef Hussain MM, Kancha RK, Zhou ZY, Luchoomun J, Zu HY, Bakillah A. Chylomicron assembly and catabolism: role of apolipoproteins and receptors. Biochim Biophys Acta, Lipids Lipid Metab. 1996;1300:151–70.CrossRef
27.
Zurück zum Zitat Levy E, Mehran M, Seidman E. Caco-2 cells as a model for intestinal lipoprotein synthesis and secretion. FASEB J. 1995;9:626–35.PubMed Levy E, Mehran M, Seidman E. Caco-2 cells as a model for intestinal lipoprotein synthesis and secretion. FASEB J. 1995;9:626–35.PubMed
28.
Zurück zum Zitat Kern PA, Ranganathan S, Li CL, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280:E745–51.PubMed Kern PA, Ranganathan S, Li CL, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280:E745–51.PubMed
29.
Zurück zum Zitat Syrenicz A, Garanty-Bogacka B, Syrenicz M, Gebala A, Walczak M. Low-grade systemic inflammation and the risk of type 2 diabetes in obese children and adolescents. Neuroendocrinol Lett. 2006;27:453–8.PubMed Syrenicz A, Garanty-Bogacka B, Syrenicz M, Gebala A, Walczak M. Low-grade systemic inflammation and the risk of type 2 diabetes in obese children and adolescents. Neuroendocrinol Lett. 2006;27:453–8.PubMed
30.
Zurück zum Zitat Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab. 1998;83:2907–10.PubMed Dandona P, Weinstock R, Thusu K, Abdel-Rahman E, Aljada A, Wadden T. Tumor necrosis factor-alpha in sera of obese patients: fall with weight loss. J Clin Endocrinol Metab. 1998;83:2907–10.PubMed
31.
Zurück zum Zitat Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.CrossRefPubMedCentralPubMed Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.CrossRefPubMedCentralPubMed
32.
Zurück zum Zitat Xu HY, Barnes GT, Yang Q, Tan Q, Yang DS, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.CrossRefPubMedCentralPubMed Xu HY, Barnes GT, Yang Q, Tan Q, Yang DS, Chou CJ, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 2003;112:1821–30.CrossRefPubMedCentralPubMed
33.
Zurück zum Zitat Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11:191–8.CrossRefPubMed Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11:191–8.CrossRefPubMed
34.
Zurück zum Zitat Yuan M. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikk beta (vol 293, pg 1673, 2001). Science. 2002;295:277.CrossRef Yuan M. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikk beta (vol 293, pg 1673, 2001). Science. 2002;295:277.CrossRef
Metadaten
Titel
TNF-alpha and IL-6 inhibit apolipoprotein A-IV production induced by linoleic acid in human intestinal Caco2 cells
verfasst von
Xiaoming Li
Min Xu
Min Liu
Yong Ji
Zongfang Li
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
Journal of Inflammation / Ausgabe 1/2015
Elektronische ISSN: 1476-9255
DOI
https://doi.org/10.1186/s12950-015-0069-0

Weitere Artikel der Ausgabe 1/2015

Journal of Inflammation 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.