Skip to main content
Erschienen in: Drugs 15/2008

01.10.2008 | Review Article

Tolerance-Inducing Immunosuppressive Strategies in Clinical Transplantation

An Overview

verfasst von: Dr Dela Golshayan, Manuel Pascual

Erschienen in: Drugs | Ausgabe 15/2008

Einloggen, um Zugang zu erhalten

Abstract

The significant development of immunosuppressive drug therapies within the past 20 years has had a major impact on the outcome of clinical solid organ transplantation, mainly by decreasing the incidence of acute rejection episodes and improving short-term patient and graft survival. However, long-term results remain relatively disappointing because of chronic allograft dysfunction and patient morbidity or mortality, which is often related to the adverse effects of immunosuppressive treatment. Thus, the induction of specific immunological tolerance of the recipient towards the allograft remains an important objective in transplantation. In this article, we first briefly describe the mechanisms of allograft rejection and immune tolerance. We then review in detail current tolerogenic strategies that could promote central or peripheral tolerance, highlighting the promises as well as the remaining challenges in clinical transplantation. The induction of haematopoietic mixed chimerism could be an approach to induce robust central tolerance, and we describe recent encouraging reports of end-stage kidney disease patients, without concomitant malignancy, who have undergone combined bone marrow and kidney transplantation. We discuss current studies suggesting that, while promoting peripheral transplantation tolerance in preclinical models, induction protocols based on lymphocyte depletion (polyclonal antithymocyte globulins, alemtuzumab) or co-stimulatory blockade (belatacept) should, at the current stage, be considered more as drug-minimization rather than tolerance-inducing strategies. Thus, a better understanding of the mechanisms that promote peripheral tolerance has led to newer approaches and the investigation of individualized donor-specific cellular therapies based on manipulated recipient regulatory T cells.
Fußnoten
1
The use of trade names is for product identification purposes only and does not imply endorsement.
 
Literatur
1.
Zurück zum Zitat Sayegh MH, Carpenter CB. Transplantation 50 years later: progress, challenges, and promises. N Engl J Med 2004; 351(26): 2761–6PubMedCrossRef Sayegh MH, Carpenter CB. Transplantation 50 years later: progress, challenges, and promises. N Engl J Med 2004; 351(26): 2761–6PubMedCrossRef
2.
Zurück zum Zitat Hernandez-Fuentes MP, Lechler RI. Chronic graft loss: immunological and non-immunological factors. Contrib Nephrol 2005; 146: 54–64PubMed Hernandez-Fuentes MP, Lechler RI. Chronic graft loss: immunological and non-immunological factors. Contrib Nephrol 2005; 146: 54–64PubMed
3.
Zurück zum Zitat Pascual M, Theruvath T, Kawai T, et al. Strategies to improve long-term outcomes after renal transplantation. N Engl J Med 2002; 346(8): 580–90PubMedCrossRef Pascual M, Theruvath T, Kawai T, et al. Strategies to improve long-term outcomes after renal transplantation. N Engl J Med 2002; 346(8): 580–90PubMedCrossRef
4.
5.
Zurück zum Zitat Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature 1953; 172: 603–6PubMedCrossRef Billingham RE, Brent L, Medawar PB. Actively acquired tolerance of foreign cells. Nature 1953; 172: 603–6PubMedCrossRef
6.
Zurück zum Zitat Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001; 106(3): 263–6PubMedCrossRef Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendritic cells. Cell 2001; 106(3): 263–6PubMedCrossRef
7.
Zurück zum Zitat Barratt-Boyes SM, Thomson AW. Dendritic cells: tools and targets for transplant tolerance. Am J Transplant 2005; 5(12): 2807–13PubMedCrossRef Barratt-Boyes SM, Thomson AW. Dendritic cells: tools and targets for transplant tolerance. Am J Transplant 2005; 5(12): 2807–13PubMedCrossRef
8.
Zurück zum Zitat Gould DS, Auchincloss Jr H. Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol Today 1999; 20: 77–82PubMedCrossRef Gould DS, Auchincloss Jr H. Direct and indirect recognition: the role of MHC antigens in graft rejection. Immunol Today 1999; 20: 77–82PubMedCrossRef
9.
Zurück zum Zitat Jiang S, Herrera O, Lechler RI. New spectrum of allorecognition pathways: implications for graft rejection and transplantation tolerance. Curr Opin Immunol 2004; 16: 550–7PubMedCrossRef Jiang S, Herrera O, Lechler RI. New spectrum of allorecognition pathways: implications for graft rejection and transplantation tolerance. Curr Opin Immunol 2004; 16: 550–7PubMedCrossRef
10.
Zurück zum Zitat Smyth LA, Herrera OB, Golshayan D, et al. A novel pathway of antigen presentation by dendritic and endothelial cells: implications for allorecognition and infectious diseases. Transplantation 2006; 82: S15–8PubMedCrossRef Smyth LA, Herrera OB, Golshayan D, et al. A novel pathway of antigen presentation by dendritic and endothelial cells: implications for allorecognition and infectious diseases. Transplantation 2006; 82: S15–8PubMedCrossRef
11.
Zurück zum Zitat Hornick PI, Mason PD, Baker RJ, et al. Significant frequencies of T cells with indirect anti-donor specificity in heart graft recipients with chronic rejection. Circulation 2000; 101: 2405–10PubMedCrossRef Hornick PI, Mason PD, Baker RJ, et al. Significant frequencies of T cells with indirect anti-donor specificity in heart graft recipients with chronic rejection. Circulation 2000; 101: 2405–10PubMedCrossRef
12.
Zurück zum Zitat Baker RJ, Hernandez-Fuentes MP, Brookes PA, et al. Loss of direct and maintenance of indirect alloresponses in renal allograft recipients: implications for the pathogenesis of chronic allograft nephropathy. J Immunol 2001; 167: 7199–206PubMed Baker RJ, Hernandez-Fuentes MP, Brookes PA, et al. Loss of direct and maintenance of indirect alloresponses in renal allograft recipients: implications for the pathogenesis of chronic allograft nephropathy. J Immunol 2001; 167: 7199–206PubMed
13.
Zurück zum Zitat Lee RS, Yamada K, Houser SL, et al. Indirect recognition of allopeptides promotes the development of cardiac allograft vasculopathy. Proc Natl Acad Sci U S A 2001; 98(6): 3276–81PubMedCrossRef Lee RS, Yamada K, Houser SL, et al. Indirect recognition of allopeptides promotes the development of cardiac allograft vasculopathy. Proc Natl Acad Sci U S A 2001; 98(6): 3276–81PubMedCrossRef
14.
Zurück zum Zitat Reznik SI, Jaramillo A, SivaSai KS, et al. Indirect allorecognition of mismatched donor HLA class II peptides in lung transplant recipients with bronchiolitis obliterans syndrome. Am J Transplant 2001; 1(3): 228–35PubMedCrossRef Reznik SI, Jaramillo A, SivaSai KS, et al. Indirect allorecognition of mismatched donor HLA class II peptides in lung transplant recipients with bronchiolitis obliterans syndrome. Am J Transplant 2001; 1(3): 228–35PubMedCrossRef
15.
Zurück zum Zitat Wise MP, Bemelman F, Cobbold SP, et al. Linked suppression of skin graft rejection can operate through indirect recognition. J Immunol 1998; 161: 5813–6PubMed Wise MP, Bemelman F, Cobbold SP, et al. Linked suppression of skin graft rejection can operate through indirect recognition. J Immunol 1998; 161: 5813–6PubMed
16.
Zurück zum Zitat Yamada A, Chandraker A, Laufer TM, et al. Recipient MHC class II expression is required to achieve long-term survival of murine cardiac allografts after costimulatory blockade. J Immunol 2001; 167: 5522–6PubMed Yamada A, Chandraker A, Laufer TM, et al. Recipient MHC class II expression is required to achieve long-term survival of murine cardiac allografts after costimulatory blockade. J Immunol 2001; 167: 5522–6PubMed
18.
Zurück zum Zitat Hariharan S, Johnson CP, Bresnahan BA, et al. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 2000; 342: 605–12PubMedCrossRef Hariharan S, Johnson CP, Bresnahan BA, et al. Improved graft survival after renal transplantation in the United States, 1988 to 1996. N Engl J Med 2000; 342: 605–12PubMedCrossRef
19.
Zurück zum Zitat Meier-Kriesche HU, Schold JD, Srinivas TR, et al. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 2004; 4: 378–83PubMedCrossRef Meier-Kriesche HU, Schold JD, Srinivas TR, et al. Lack of improvement in renal allograft survival despite a marked decrease in acute rejection rates over the most recent era. Am J Transplant 2004; 4: 378–83PubMedCrossRef
20.
Zurück zum Zitat Ashton-Chess J, Giral M, Brouard S, et al. Spontaneous operational tolerance after immunosuppressive drug withdrawal in clinical renal allotransplantation. Transplantation 2007; 84(10): 1215–9PubMedCrossRef Ashton-Chess J, Giral M, Brouard S, et al. Spontaneous operational tolerance after immunosuppressive drug withdrawal in clinical renal allotransplantation. Transplantation 2007; 84(10): 1215–9PubMedCrossRef
21.
Zurück zum Zitat Starzl TE, Demetris AJ, Murase N, et al. Cell migration, chimerism, and graft acceptance. Lancet 1992; 339: 1579–82PubMedCrossRef Starzl TE, Demetris AJ, Murase N, et al. Cell migration, chimerism, and graft acceptance. Lancet 1992; 339: 1579–82PubMedCrossRef
22.
Zurück zum Zitat Starzl TE. Immunosuppressive therapy and tolerance of organ allografts. N Engl J Med 2008; 358: 407–11PubMedCrossRef Starzl TE. Immunosuppressive therapy and tolerance of organ allografts. N Engl J Med 2008; 358: 407–11PubMedCrossRef
23.
Zurück zum Zitat Alexander SI, Smith N, Hu M, et al. Chimerism and tolerance in a recipient of a deceased-donor liver transplant. N Engl J Med 2008; 358: 369–74PubMedCrossRef Alexander SI, Smith N, Hu M, et al. Chimerism and tolerance in a recipient of a deceased-donor liver transplant. N Engl J Med 2008; 358: 369–74PubMedCrossRef
24.
Zurück zum Zitat VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, et al. Human allograft acceptance is associated with immune regulation. J Clin Invest 2000; 106: 145–55PubMedCrossRef VanBuskirk AM, Burlingham WJ, Jankowska-Gan E, et al. Human allograft acceptance is associated with immune regulation. J Clin Invest 2000; 106: 145–55PubMedCrossRef
25.
Zurück zum Zitat Baeten D, Louis S, Braud C, et al. Phenotypically and functionally distinct CD8+ lymphocyte populations in long-term drug-free tolerance and chronic rejection in human kidney graft recipients. J Am Soc Nephrol 2006; 17: 294–304PubMedCrossRef Baeten D, Louis S, Braud C, et al. Phenotypically and functionally distinct CD8+ lymphocyte populations in long-term drug-free tolerance and chronic rejection in human kidney graft recipients. J Am Soc Nephrol 2006; 17: 294–304PubMedCrossRef
26.
Zurück zum Zitat Louis S, Braudeau C, Giral M, et al. Contrasting CD25hiCD4+T cells/FOXP3 patterns in chronic rejection and operational drug-free tolerance. Transplantation 2006; 81: 398–407PubMedCrossRef Louis S, Braudeau C, Giral M, et al. Contrasting CD25hiCD4+T cells/FOXP3 patterns in chronic rejection and operational drug-free tolerance. Transplantation 2006; 81: 398–407PubMedCrossRef
27.
Zurück zum Zitat Hernandez-Fuentes MP, Warrens AN, Lechler RI. Immunologic monitoring. Immunol Rev 2003; 196: 247–64PubMedCrossRef Hernandez-Fuentes MP, Warrens AN, Lechler RI. Immunologic monitoring. Immunol Rev 2003; 196: 247–64PubMedCrossRef
28.
Zurück zum Zitat Bluestone JA, Matthews JB, Krensky AM. The Immune Tolerance Network: the “Holy Grail” comes to the clinic. J Am Soc Nephrol 2000; 11: 2141–6PubMed Bluestone JA, Matthews JB, Krensky AM. The Immune Tolerance Network: the “Holy Grail” comes to the clinic. J Am Soc Nephrol 2000; 11: 2141–6PubMed
29.
Zurück zum Zitat Goldman M, Wood K. European research on cell and organ transplantation: towards novel opportunities? Transplant Int 2007; 20(12): 1016–9CrossRef Goldman M, Wood K. European research on cell and organ transplantation: towards novel opportunities? Transplant Int 2007; 20(12): 1016–9CrossRef
30.
Zurück zum Zitat Remuzzi G. Cellular basis of long-term transplant acceptance: pivotal role of intrathymic clonal deletion and thymic dependence of bone marrow microchimerism-associated tolerance. Am J Kidney Dis 1998; 31(2): 197–212PubMedCrossRef Remuzzi G. Cellular basis of long-term transplant acceptance: pivotal role of intrathymic clonal deletion and thymic dependence of bone marrow microchimerism-associated tolerance. Am J Kidney Dis 1998; 31(2): 197–212PubMedCrossRef
31.
Zurück zum Zitat Ildstad ST, Sachs DH. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 1984; 307(5947): 168–70PubMedCrossRef Ildstad ST, Sachs DH. Reconstitution with syngeneic plus allogeneic or xenogeneic bone marrow leads to specific acceptance of allografts or xenografts. Nature 1984; 307(5947): 168–70PubMedCrossRef
32.
33.
Zurück zum Zitat Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med 1989; 169(2): 493–502PubMedCrossRef Sharabi Y, Sachs DH. Mixed chimerism and permanent specific transplantation tolerance induced by a nonlethal preparative regimen. J Exp Med 1989; 169(2): 493–502PubMedCrossRef
34.
Zurück zum Zitat Sykes M, Szot GL, Swenson KA, et al. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nat Med 1997; 3(7): 783–7PubMedCrossRef Sykes M, Szot GL, Swenson KA, et al. Induction of high levels of allogeneic hematopoietic reconstitution and donor-specific tolerance without myelosuppressive conditioning. Nat Med 1997; 3(7): 783–7PubMedCrossRef
35.
Zurück zum Zitat Wekerle T, Kurtz J, Ito H, et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat Med 2000; 6(4): 464–9PubMedCrossRef Wekerle T, Kurtz J, Ito H, et al. Allogeneic bone marrow transplantation with co-stimulatory blockade induces macrochimerism and tolerance without cytoreductive host treatment. Nat Med 2000; 6(4): 464–9PubMedCrossRef
36.
Zurück zum Zitat Fuchimoto Y, Huang CA, Yamada K, et al. Mixed chimerism and tolerance without whole body irradiation in a large animal model. J Clin Invest 2000; 105(12): 1779–89PubMedCrossRef Fuchimoto Y, Huang CA, Yamada K, et al. Mixed chimerism and tolerance without whole body irradiation in a large animal model. J Clin Invest 2000; 105(12): 1779–89PubMedCrossRef
37.
Zurück zum Zitat Kawai T, Sogawa H, Boskovic S, et al. CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am J Transplant 2004; 4(9): 1391–8PubMedCrossRef Kawai T, Sogawa H, Boskovic S, et al. CD154 blockade for induction of mixed chimerism and prolonged renal allograft survival in nonhuman primates. Am J Transplant 2004; 4(9): 1391–8PubMedCrossRef
38.
Zurück zum Zitat Sayegh MH, Fine NA, Smith JL, et al. Immunologic tolerance to renal allografts after bone marrow transplants from the same donors. Ann Intern Med 1991; 114(11): 954–5PubMed Sayegh MH, Fine NA, Smith JL, et al. Immunologic tolerance to renal allografts after bone marrow transplants from the same donors. Ann Intern Med 1991; 114(11): 954–5PubMed
39.
Zurück zum Zitat Spitzer TR, Delmonico F, Tolkoff-Rubin N, et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 1999; 68: 480–4PubMedCrossRef Spitzer TR, Delmonico F, Tolkoff-Rubin N, et al. Combined histocompatibility leukocyte antigen-matched donor bone marrow and renal transplantation for multiple myeloma with end stage renal disease: the induction of allograft tolerance through mixed lymphohematopoietic chimerism. Transplantation 1999; 68: 480–4PubMedCrossRef
40.
Zurück zum Zitat Buhler LH, Spitzer TR, Sykes M, et al. Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation 2002; 74: 1405–9PubMedCrossRef Buhler LH, Spitzer TR, Sykes M, et al. Induction of kidney allograft tolerance after transient lymphohematopoietic chimerism in patients with multiple myeloma and end-stage renal disease. Transplantation 2002; 74: 1405–9PubMedCrossRef
41.
Zurück zum Zitat Strober S, Benike C, Krishnaswamy S, et al. Clinical transplantation tolerance twelve years after prospective withdrawal of immunosuppressive drugs: studies of chimerism and anti-donor reactivity. Transplantation 2000; 69: 1549–54PubMedCrossRef Strober S, Benike C, Krishnaswamy S, et al. Clinical transplantation tolerance twelve years after prospective withdrawal of immunosuppressive drugs: studies of chimerism and anti-donor reactivity. Transplantation 2000; 69: 1549–54PubMedCrossRef
42.
Zurück zum Zitat Millan MT, Shizuru JA, Hoffmann P, et al. Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. Transplantation 2002; 73(9): 1386–91PubMedCrossRef Millan MT, Shizuru JA, Hoffmann P, et al. Mixed chimerism and immunosuppressive drug withdrawal after HLA-mismatched kidney and hematopoietic progenitor transplantation. Transplantation 2002; 73(9): 1386–91PubMedCrossRef
43.
Zurück zum Zitat Fudaba Y, Spitzer TR, Shaffer J, et al. Myeloma responses and tolerance following combined kidney and nonmyeloablative marrow transplantation: in vivo and in vitro analyses. Am J Transplant 2006; 6(9): 2121–33PubMedCrossRef Fudaba Y, Spitzer TR, Shaffer J, et al. Myeloma responses and tolerance following combined kidney and nonmyeloablative marrow transplantation: in vivo and in vitro analyses. Am J Transplant 2006; 6(9): 2121–33PubMedCrossRef
44.
Zurück zum Zitat Scandling JD, Busque S, Dejbakhsh-Jones S, et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med 2008; 358(4): 362–8PubMedCrossRef Scandling JD, Busque S, Dejbakhsh-Jones S, et al. Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med 2008; 358(4): 362–8PubMedCrossRef
45.
Zurück zum Zitat Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 2008; 358(4): 353–61PubMedCrossRef Kawai T, Cosimi AB, Spitzer TR, et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 2008; 358(4): 353–61PubMedCrossRef
46.
Zurück zum Zitat Lechler RI, Garden OA, Turka LA. The complementary roles of deletion and regulation in transplantation tolerance. Nat Rev Immunol 2003; 3(2): 147–58PubMedCrossRef Lechler RI, Garden OA, Turka LA. The complementary roles of deletion and regulation in transplantation tolerance. Nat Rev Immunol 2003; 3(2): 147–58PubMedCrossRef
47.
Zurück zum Zitat Harding FA, McArthur JG, Gross JA, et al. CD28-mediated signalling co-stimulates murine T cells and prevent induction of anergy in T-cell clones. Nature 1992; 356: 607–9PubMedCrossRef Harding FA, McArthur JG, Gross JA, et al. CD28-mediated signalling co-stimulates murine T cells and prevent induction of anergy in T-cell clones. Nature 1992; 356: 607–9PubMedCrossRef
48.
Zurück zum Zitat Lechler RI, Chai JG, Marelli-Berg F, et al. The contributions of T-cell anergy to peripheral T-cell tolerance. Immunology 2001; 103: 262–9PubMedCrossRef Lechler RI, Chai JG, Marelli-Berg F, et al. The contributions of T-cell anergy to peripheral T-cell tolerance. Immunology 2001; 103: 262–9PubMedCrossRef
49.
Zurück zum Zitat Golshayan D, Buhler L, Lechler RI, et al. From current immunosuppressive strategies to clinical tolerance of allografts. Transplant Int 2007; 20: 12–24CrossRef Golshayan D, Buhler L, Lechler RI, et al. From current immunosuppressive strategies to clinical tolerance of allografts. Transplant Int 2007; 20: 12–24CrossRef
50.
Zurück zum Zitat Tan HP, Smaldone MC, Shapiro R. Immunosuppressive preconditioning or induction regimens: evidence to date. Drugs 2006; 66(12): 1535–45PubMedCrossRef Tan HP, Smaldone MC, Shapiro R. Immunosuppressive preconditioning or induction regimens: evidence to date. Drugs 2006; 66(12): 1535–45PubMedCrossRef
51.
Zurück zum Zitat Elster EA, Hale DA, Mannon RB, et al. The road to tolerance: renal transplant tolerance induction in nonhuman primate studies and clinical trials. Transplant Immunol 2004; 13: 87–99CrossRef Elster EA, Hale DA, Mannon RB, et al. The road to tolerance: renal transplant tolerance induction in nonhuman primate studies and clinical trials. Transplant Immunol 2004; 13: 87–99CrossRef
52.
Zurück zum Zitat Contreras JL, Wang PX, Eckhoff DE, et al. Peritransplant tolerance induction with anti-CD3-immunotoxin: a matter of proinflammatory cytokine control. Transplantation 1998; 65: 1159–69PubMedCrossRef Contreras JL, Wang PX, Eckhoff DE, et al. Peritransplant tolerance induction with anti-CD3-immunotoxin: a matter of proinflammatory cytokine control. Transplantation 1998; 65: 1159–69PubMedCrossRef
53.
Zurück zum Zitat Kirk AD, Mannon RB, Kleiner DE, et al. Results from a human renal allograft tolerance trial evaluating T-cell depletion with alemtuzumab combined with deoxyspergualin. Transplantation 2005; 80(8): 1051–9PubMedCrossRef Kirk AD, Mannon RB, Kleiner DE, et al. Results from a human renal allograft tolerance trial evaluating T-cell depletion with alemtuzumab combined with deoxyspergualin. Transplantation 2005; 80(8): 1051–9PubMedCrossRef
54.
Zurück zum Zitat Brennan DC, Flavin K, Lowell JA, et al. A randomized, double-blinded comparison of thymoglobulin versus atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation 1999; 67(7): 1011–8PubMedCrossRef Brennan DC, Flavin K, Lowell JA, et al. A randomized, double-blinded comparison of thymoglobulin versus atgam for induction immunosuppressive therapy in adult renal transplant recipients. Transplantation 1999; 67(7): 1011–8PubMedCrossRef
55.
56.
Zurück zum Zitat Caillard S, Dharnidharka V, Agodoa L, et al. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation. 2005; 80(9): 1233–43PubMedCrossRef Caillard S, Dharnidharka V, Agodoa L, et al. Posttransplant lymphoproliferative disorders after renal transplantation in the United States in era of modern immunosuppression. Transplantation. 2005; 80(9): 1233–43PubMedCrossRef
57.
Zurück zum Zitat Calne R, Friend P, Moffatt S, et al. Prope tolerance, perioperative campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet 1998; 351(9117): 1701–2PubMedCrossRef Calne R, Friend P, Moffatt S, et al. Prope tolerance, perioperative campath 1H, and low-dose cyclosporin monotherapy in renal allograft recipients. Lancet 1998; 351(9117): 1701–2PubMedCrossRef
58.
Zurück zum Zitat Torrealba JR, Fernandez LA, Kanmaz T, et al. Immunotoxin-treated Rhesus monkeys: a model for renal allograft chronic rejection. Transplantation 2003; 76(3): 524–30PubMedCrossRef Torrealba JR, Fernandez LA, Kanmaz T, et al. Immunotoxin-treated Rhesus monkeys: a model for renal allograft chronic rejection. Transplantation 2003; 76(3): 524–30PubMedCrossRef
59.
Zurück zum Zitat Thomas JM, Eckhoff DE, Contreras JL, et al. Durable donor-specific T and B-cell tolerance in rhesus macaques induced with peritransplantation anti-CD3 immunotoxin and deoxyspergualin: absence of chronic allograft nephropathy. Transplantation 2000; 69: 2497–503PubMedCrossRef Thomas JM, Eckhoff DE, Contreras JL, et al. Durable donor-specific T and B-cell tolerance in rhesus macaques induced with peritransplantation anti-CD3 immunotoxin and deoxyspergualin: absence of chronic allograft nephropathy. Transplantation 2000; 69: 2497–503PubMedCrossRef
60.
Zurück zum Zitat Hirshberg B, Preston EH, Xu H, et al. Rabbit antithymocyte globulin induction and sirolimus monotherapy supports prolonged islet allograft function in a nonhuman primate islet transplantation model. Transplantation 2003; 76(1): 55–60PubMedCrossRef Hirshberg B, Preston EH, Xu H, et al. Rabbit antithymocyte globulin induction and sirolimus monotherapy supports prolonged islet allograft function in a nonhuman primate islet transplantation model. Transplantation 2003; 76(1): 55–60PubMedCrossRef
61.
Zurück zum Zitat Kirk AD, Hale DA, Mannon RB, et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 2003; 76(1): 120–9PubMedCrossRef Kirk AD, Hale DA, Mannon RB, et al. Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 2003; 76(1): 120–9PubMedCrossRef
62.
Zurück zum Zitat Shapiro R, Jordan ML, Basu A, et al. Kidney transplantation under a tolerogenic regimen of recipient pretreatment and low-dose postoperative immunosuppression with subsequent weaning. Ann Surg 2003; 238(4): 520–5PubMed Shapiro R, Jordan ML, Basu A, et al. Kidney transplantation under a tolerogenic regimen of recipient pretreatment and low-dose postoperative immunosuppression with subsequent weaning. Ann Surg 2003; 238(4): 520–5PubMed
63.
Zurück zum Zitat Swanson SJ, Hale DA, Mannon RB, et al. Kidney transplantation with rabbit antithymocyte globulin induction and sirolimus monotherapy. Lancet 2002; 360(9346): 1662–4PubMedCrossRef Swanson SJ, Hale DA, Mannon RB, et al. Kidney transplantation with rabbit antithymocyte globulin induction and sirolimus monotherapy. Lancet 2002; 360(9346): 1662–4PubMedCrossRef
64.
Zurück zum Zitat Barth RN, Janus CA, Lillesand CA, et al. Outcomes at three years of a prospective pilot study of Campath-1H and sirolimus immunosuppression for renal transplantation. Transplant Int 2006; 19(11): 885–92CrossRef Barth RN, Janus CA, Lillesand CA, et al. Outcomes at three years of a prospective pilot study of Campath-1H and sirolimus immunosuppression for renal transplantation. Transplant Int 2006; 19(11): 885–92CrossRef
65.
Zurück zum Zitat Tan HP, Kaczorowski DJ, Basu A, et al. Living donor renal transplantation using alemtuzumab induction and tacrolimus monotherapy. Am J Transplant 2006; 6(10): 2409–17PubMedCrossRef Tan HP, Kaczorowski DJ, Basu A, et al. Living donor renal transplantation using alemtuzumab induction and tacrolimus monotherapy. Am J Transplant 2006; 6(10): 2409–17PubMedCrossRef
66.
Zurück zum Zitat Golshayan D, Pascual M. Drug-minimization or tolerance-promoting strategies in human kidney transplantation: is Campath-1H the way to follow? Transplant Int 2006; 19(11): 881–4CrossRef Golshayan D, Pascual M. Drug-minimization or tolerance-promoting strategies in human kidney transplantation: is Campath-1H the way to follow? Transplant Int 2006; 19(11): 881–4CrossRef
67.
Zurück zum Zitat Pearl JP, Parris J, Hale DA, et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant 2005; 5(3): 465–74PubMedCrossRef Pearl JP, Parris J, Hale DA, et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant 2005; 5(3): 465–74PubMedCrossRef
68.
Zurück zum Zitat Wu Z, Bensinger SJ, Zhang J, et al. Homeostatic proliferation is a barrier to transplantation tolerance. Nat Med 2004; 10(1): 87–92PubMedCrossRef Wu Z, Bensinger SJ, Zhang J, et al. Homeostatic proliferation is a barrier to transplantation tolerance. Nat Med 2004; 10(1): 87–92PubMedCrossRef
69.
Zurück zum Zitat Mason D. A very high level of cross-reactivity is an essential feature of the T-cell receptor. Immunol Today 1998; 19: 395–404PubMedCrossRef Mason D. A very high level of cross-reactivity is an essential feature of the T-cell receptor. Immunol Today 1998; 19: 395–404PubMedCrossRef
70.
Zurück zum Zitat Pantenburg B, Heinzel F, Das L, et al. T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection. J Immunol 2002; 169: 3686–93PubMed Pantenburg B, Heinzel F, Das L, et al. T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection. J Immunol 2002; 169: 3686–93PubMed
71.
Zurück zum Zitat Adams AB, Williams MA, Jones TR, et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 2003; 111: 1887–95PubMed Adams AB, Williams MA, Jones TR, et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 2003; 111: 1887–95PubMed
72.
Zurück zum Zitat Lakkis FG, Sayegh MH. Memory T cells: a hurdle to immunologic tolerance. J Am Soc Nephrol 2003; 14(9): 2402–10PubMedCrossRef Lakkis FG, Sayegh MH. Memory T cells: a hurdle to immunologic tolerance. J Am Soc Nephrol 2003; 14(9): 2402–10PubMedCrossRef
73.
Zurück zum Zitat Ciancio G, Burke GW, Gaynor JJ, et al. The use of Campath-1H as induction therapy in renal transplantation: preliminary results. Transplantation 2004; 78(3): 426–33PubMedCrossRef Ciancio G, Burke GW, Gaynor JJ, et al. The use of Campath-1H as induction therapy in renal transplantation: preliminary results. Transplantation 2004; 78(3): 426–33PubMedCrossRef
74.
Zurück zum Zitat Opelz G. Efficacy of rejection prophylaxis with OKT3 in renal transplantation. Collaborative Transplant Study. Transplantation 1995; 60(11): 1220–4 Opelz G. Efficacy of rejection prophylaxis with OKT3 in renal transplantation. Collaborative Transplant Study. Transplantation 1995; 60(11): 1220–4
75.
Zurück zum Zitat Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nature Rev Immunol 2007; 7: 622–32CrossRef Chatenoud L, Bluestone JA. CD3-specific antibodies: a portal to the treatment of autoimmunity. Nature Rev Immunol 2007; 7: 622–32CrossRef
76.
Zurück zum Zitat Becker YT, Samaniego-Picota M, Sollinger HW. The emerging role of rituximab in organ transplantation. Transplant Int 2006; 19(8): 621–8CrossRef Becker YT, Samaniego-Picota M, Sollinger HW. The emerging role of rituximab in organ transplantation. Transplant Int 2006; 19(8): 621–8CrossRef
77.
Zurück zum Zitat Sayegh M, Turka L. The role of T cell costimulatory activation pathways in transplant rejection. N Eng J Med 1998; 338: 1813–2CrossRef Sayegh M, Turka L. The role of T cell costimulatory activation pathways in transplant rejection. N Eng J Med 1998; 338: 1813–2CrossRef
78.
Zurück zum Zitat Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381(6581): 434–8PubMedCrossRef Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 1996; 381(6581): 434–8PubMedCrossRef
79.
Zurück zum Zitat Larsen CP, Pearson TC. The CD40 pathway in allograft rejection, acceptance, and tolerance. Curr Opin Immunol 1997; 9: 641–7PubMedCrossRef Larsen CP, Pearson TC. The CD40 pathway in allograft rejection, acceptance, and tolerance. Curr Opin Immunol 1997; 9: 641–7PubMedCrossRef
80.
Zurück zum Zitat Kirk AD, Burkly LC, Batty DS, et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 1999; 5(6): 686–93PubMedCrossRef Kirk AD, Burkly LC, Batty DS, et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in nonhuman primates. Nat Med 1999; 5(6): 686–93PubMedCrossRef
81.
Zurück zum Zitat Kawai T, Andrews D, Colvin RB, et al. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand [letter]. Nat Med 2000; 6: 114CrossRef Kawai T, Andrews D, Colvin RB, et al. Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand [letter]. Nat Med 2000; 6: 114CrossRef
82.
Zurück zum Zitat Adams AB, Shirasugi N, Jones TR, et al. Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival. J Immunol 2005; 174(1): 542–50PubMed Adams AB, Shirasugi N, Jones TR, et al. Development of a chimeric anti-CD40 monoclonal antibody that synergizes with LEA29Y to prolong islet allograft survival. J Immunol 2005; 174(1): 542–50PubMed
83.
Zurück zum Zitat Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 2001; 1: 220–8PubMedCrossRef Alegre ML, Frauwirth KA, Thompson CB. T-cell regulation by CD28 and CTLA-4. Nat Rev Immunol 2001; 1: 220–8PubMedCrossRef
84.
Zurück zum Zitat Orabona C, Grohmann U, Belladonna ML, et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol 2004; 5(11): 1134–42PubMedCrossRef Orabona C, Grohmann U, Belladonna ML, et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nat Immunol 2004; 5(11): 1134–42PubMedCrossRef
85.
Zurück zum Zitat Kirk AD, Tadaki DK, Celniker A, et al. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation 2001; 72(3): 377–84PubMedCrossRef Kirk AD, Tadaki DK, Celniker A, et al. Induction therapy with monoclonal antibodies specific for CD80 and CD86 delays the onset of acute renal allograft rejection in non-human primates. Transplantation 2001; 72(3): 377–84PubMedCrossRef
86.
Zurück zum Zitat Birsan T, Hausen B, Higgins JP, et al. Treatment with humanized monoclonal antibodies against CD80 and CD86 combined with sirolimus prolongs renal allograft survival in cynomolgus monkeys. Transplantation 2003; 75(12): 2106–13PubMedCrossRef Birsan T, Hausen B, Higgins JP, et al. Treatment with humanized monoclonal antibodies against CD80 and CD86 combined with sirolimus prolongs renal allograft survival in cynomolgus monkeys. Transplantation 2003; 75(12): 2106–13PubMedCrossRef
87.
Zurück zum Zitat Levisetti MG, Padrid PA, Szot GL, et al. Immunosuppressive effects of human CTLA-4 Ig in a non human primate model of allogeneic pancreatic islet transplantation. J Immunol 1997; 159(11): 5187–92PubMed Levisetti MG, Padrid PA, Szot GL, et al. Immunosuppressive effects of human CTLA-4 Ig in a non human primate model of allogeneic pancreatic islet transplantation. J Immunol 1997; 159(11): 5187–92PubMed
88.
Zurück zum Zitat Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci U S A 1997; 94: 8789–94PubMedCrossRef Kirk AD, Harlan DM, Armstrong NN, et al. CTLA4-Ig and anti-CD40 ligand prevent renal allograft rejection in primates. Proc Natl Acad Sci U S A 1997; 94: 8789–94PubMedCrossRef
89.
Zurück zum Zitat Adams AB, Shirasugi N, Durham MM, et al. Calcineurin inhibitor-free CD28 blockade-based protocol protects allogeneic islets in nonhuman primates. Diabetes 2002; 51(2): 265–70PubMedCrossRef Adams AB, Shirasugi N, Durham MM, et al. Calcineurin inhibitor-free CD28 blockade-based protocol protects allogeneic islets in nonhuman primates. Diabetes 2002; 51(2): 265–70PubMedCrossRef
90.
Zurück zum Zitat Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J transplant 2005; 5: 443–53PubMedCrossRef Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J transplant 2005; 5: 443–53PubMedCrossRef
91.
Zurück zum Zitat Vincenti F, Larsen C, Durrbach A, et al. Costimulation blockade with belatacept in renal transplantation. Belatacept Study Group. N Engl J Med 2005; 353(8): 770–81CrossRef Vincenti F, Larsen C, Durrbach A, et al. Costimulation blockade with belatacept in renal transplantation. Belatacept Study Group. N Engl J Med 2005; 353(8): 770–81CrossRef
92.
Zurück zum Zitat Jones ND, Van Maurik A, Hara M, et al. CD40-CD401igand-independent activation of CD8+ T cells can trigger allograft rejection. J Immunol 2000; 165(2): 1111–8PubMed Jones ND, Van Maurik A, Hara M, et al. CD40-CD401igand-independent activation of CD8+ T cells can trigger allograft rejection. J Immunol 2000; 165(2): 1111–8PubMed
93.
Zurück zum Zitat Koyama I, Nadazdin O, Boskovic S, et al. Depletion of CD8 memory T cells for induction of tolerance of a previously transplanted kidney allograft. Am J Transplant 2007; 7(5): 1055–61PubMedCrossRef Koyama I, Nadazdin O, Boskovic S, et al. Depletion of CD8 memory T cells for induction of tolerance of a previously transplanted kidney allograft. Am J Transplant 2007; 7(5): 1055–61PubMedCrossRef
94.
Zurück zum Zitat Perez VL, Van Parijs L, Biuckians A, et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997; 6(4): 411–7PubMedCrossRef Perez VL, Van Parijs L, Biuckians A, et al. Induction of peripheral T cell tolerance in vivo requires CTLA-4 engagement. Immunity 1997; 6(4): 411–7PubMedCrossRef
95.
Zurück zum Zitat Zheng XX, Markees TG, Hancock WW, et al. CTLA4 signals are required to optimally induce allograft tolerance with combined donor-specific transfusion and anti-CD154 monoclonal antibody treatment. J Immunol 1999; 162(8): 4983–90PubMed Zheng XX, Markees TG, Hancock WW, et al. CTLA4 signals are required to optimally induce allograft tolerance with combined donor-specific transfusion and anti-CD154 monoclonal antibody treatment. J Immunol 1999; 162(8): 4983–90PubMed
96.
Zurück zum Zitat Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 2003; 171(7): 3348–52PubMed Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J Immunol 2003; 171(7): 3348–52PubMed
97.
Zurück zum Zitat Vanhove B, Laflamme G, Coulon F, et al. Selective blockade of CD28 and not CTLA-4 with a single-chain Fv-alpha1-antitrypsin fusion antibody. Blood 2003; 102(2): 564–70PubMedCrossRef Vanhove B, Laflamme G, Coulon F, et al. Selective blockade of CD28 and not CTLA-4 with a single-chain Fv-alpha1-antitrypsin fusion antibody. Blood 2003; 102(2): 564–70PubMedCrossRef
98.
Zurück zum Zitat Haspot F, Villemain F, Laflamme G, et al. Differential effect of CD28 versus B7 blockade on direct pathway of allorecognition and self-restricted responses. Blood 2002; 99(6): 2228–34PubMedCrossRef Haspot F, Villemain F, Laflamme G, et al. Differential effect of CD28 versus B7 blockade on direct pathway of allorecognition and self-restricted responses. Blood 2002; 99(6): 2228–34PubMedCrossRef
99.
Zurück zum Zitat Vincenti F, de Andres A, Becker T, et al. Interleukin-2 receptor antagonist induction in modern immunosuppression regimens for renal transplant recipients. Transplant Int 2006; 19(6): 446–57CrossRef Vincenti F, de Andres A, Becker T, et al. Interleukin-2 receptor antagonist induction in modern immunosuppression regimens for renal transplant recipients. Transplant Int 2006; 19(6): 446–57CrossRef
100.
Zurück zum Zitat Webster AC, Playford EG, Higgins G, et al. Interleukin 2 receptor antagonists for renal transplant recipients: a metaanalysis of randomized trials. Transplantation 2004; 77(2): 166–76PubMedCrossRef Webster AC, Playford EG, Higgins G, et al. Interleukin 2 receptor antagonists for renal transplant recipients: a metaanalysis of randomized trials. Transplantation 2004; 77(2): 166–76PubMedCrossRef
101.
Zurück zum Zitat Game DS, Hernandez-Fuentes MP, Lechler RI. Everolimus and basiliximab permit suppression by human CD4+CD25+ cells in vitro. Am J Transplant 2005; 5(3): 454–64PubMedCrossRef Game DS, Hernandez-Fuentes MP, Lechler RI. Everolimus and basiliximab permit suppression by human CD4+CD25+ cells in vitro. Am J Transplant 2005; 5(3): 454–64PubMedCrossRef
102.
Zurück zum Zitat Baan CC, van der Mast BJ, Klepper M, et al. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation 2005; 80(1): 110–7PubMedCrossRef Baan CC, van der Mast BJ, Klepper M, et al. Differential effect of calcineurin inhibitors, anti-CD25 antibodies and rapamycin on the induction of FOXP3 in human T cells. Transplantation 2005; 80(1): 110–7PubMedCrossRef
103.
Zurück zum Zitat Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 2004; 4(7): 1019–25PubMedCrossRef Brinkmann V, Cyster JG, Hla T. FTY720: sphingosine 1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 2004; 4(7): 1019–25PubMedCrossRef
104.
Zurück zum Zitat Tedesco-Silva H, Mourad G, Kahan BD, et al. FTY720, a novel immunomodulator: efficacy and safety results from the first phase 2A study in de novo renal transplantation. Transplantation 2005; 79(11): 1553–60PubMedCrossRef Tedesco-Silva H, Mourad G, Kahan BD, et al. FTY720, a novel immunomodulator: efficacy and safety results from the first phase 2A study in de novo renal transplantation. Transplantation 2005; 79(11): 1553–60PubMedCrossRef
105.
Zurück zum Zitat Hancock WW, Wang L, Ye Q, et al. Chemokines and their receptors as markers of allograft rejection and targets for immunosuppression. Curr Opin Immunol 2003; 15(5): 479–86PubMedCrossRef Hancock WW, Wang L, Ye Q, et al. Chemokines and their receptors as markers of allograft rejection and targets for immunosuppression. Curr Opin Immunol 2003; 15(5): 479–86PubMedCrossRef
106.
Zurück zum Zitat Hourmant M, Bedrossian J, Durand D, et al. A randomized multicenter trial comparing leukocyte function-associated antigen-1 monoclonal antibody with rabbit antithymocyte globulin as induction treatment in first kidney transplantations. Transplantation 1996; 62(11): 1565–70PubMedCrossRef Hourmant M, Bedrossian J, Durand D, et al. A randomized multicenter trial comparing leukocyte function-associated antigen-1 monoclonal antibody with rabbit antithymocyte globulin as induction treatment in first kidney transplantations. Transplantation 1996; 62(11): 1565–70PubMedCrossRef
107.
Zurück zum Zitat Vincenti F, Mendez R, Pescovitz M, et al. A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation. Am J Transplant 2007; 7(7): 1770–7PubMedCrossRef Vincenti F, Mendez R, Pescovitz M, et al. A phase I/II randomized open-label multicenter trial of efalizumab, a humanized anti-CD11a, anti-LFA-1 in renal transplantation. Am J Transplant 2007; 7(7): 1770–7PubMedCrossRef
108.
Zurück zum Zitat Wong W, Venetz JP, Tolkoff-Rubin N, et al. 2005 immunosuppressive strategies in kidney transplantation: which role for calcineurin inhibitors? Transplantation 2005; 80: 289–96PubMedCrossRef Wong W, Venetz JP, Tolkoff-Rubin N, et al. 2005 immunosuppressive strategies in kidney transplantation: which role for calcineurin inhibitors? Transplantation 2005; 80: 289–96PubMedCrossRef
109.
Zurück zum Zitat Mele TS, Halloran PF. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology 2000; 47(2–3): 215–45PubMedCrossRef Mele TS, Halloran PF. The use of mycophenolate mofetil in transplant recipients. Immunopharmacology 2000; 47(2–3): 215–45PubMedCrossRef
110.
Zurück zum Zitat Remuzzi G, Lesti M, Gotti E, et al. Mycophenolate mofetil versus azathioprine for prevention of acute rejection in renal transplantation (MYSS): a randomised trial. Lancet 2004; 364: 503–12PubMedCrossRef Remuzzi G, Lesti M, Gotti E, et al. Mycophenolate mofetil versus azathioprine for prevention of acute rejection in renal transplantation (MYSS): a randomised trial. Lancet 2004; 364: 503–12PubMedCrossRef
111.
Zurück zum Zitat Remuzzi G, Cravedi P, Costantini M, et al. Mycophenolate mofetil versus azathioprine for prevention of chronic allograft dysfunction in renal transplantation: the MYSS follow-up randomized, controlled clinical trial. J Am Soc Nephrol 2007; 18(6): 1973–85PubMedCrossRef Remuzzi G, Cravedi P, Costantini M, et al. Mycophenolate mofetil versus azathioprine for prevention of chronic allograft dysfunction in renal transplantation: the MYSS follow-up randomized, controlled clinical trial. J Am Soc Nephrol 2007; 18(6): 1973–85PubMedCrossRef
112.
Zurück zum Zitat Zheng XX, Sanchez-Fueyo A, Sho M, et al. Favourably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity 2003; 19(4): 503–14PubMedCrossRef Zheng XX, Sanchez-Fueyo A, Sho M, et al. Favourably tipping the balance between cytopathic and regulatory T cells to create transplantation tolerance. Immunity 2003; 19(4): 503–14PubMedCrossRef
113.
Zurück zum Zitat Wells AD, Li XC, Li Y, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 1999; 5(11): 1303–7PubMedCrossRef Wells AD, Li XC, Li Y, et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 1999; 5(11): 1303–7PubMedCrossRef
114.
Zurück zum Zitat Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 2005; 105(12): 4743–8PubMedCrossRef Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 2005; 105(12): 4743–8PubMedCrossRef
115.
Zurück zum Zitat Zeiser R, Nguyen VH, Beilhack A, et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood 2006; 108(1): 390–9PubMedCrossRef Zeiser R, Nguyen VH, Beilhack A, et al. Inhibition of CD4+CD25+ regulatory T-cell function by calcineurin-dependent interleukin-2 production. Blood 2006; 108(1): 390–9PubMedCrossRef
116.
Zurück zum Zitat Segundo DS, Ruiz JC, Izquierdo M, et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation 2006; 82(4): 550–7PubMedCrossRef Segundo DS, Ruiz JC, Izquierdo M, et al. Calcineurin inhibitors, but not rapamycin, reduce percentages of CD4+CD25+FOXP3+ regulatory T cells in renal transplant recipients. Transplantation 2006; 82(4): 550–7PubMedCrossRef
117.
Zurück zum Zitat Bluestone JA, Thomson AW, Shevach EM, et al. What does the future hold for cell-based tolerogenic therapy? Nature Rev Immunol 2007; 7: 650–4CrossRef Bluestone JA, Thomson AW, Shevach EM, et al. What does the future hold for cell-based tolerogenic therapy? Nature Rev Immunol 2007; 7: 650–4CrossRef
118.
Zurück zum Zitat Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531–62PubMedCrossRef Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 2004; 22: 531–62PubMedCrossRef
119.
Zurück zum Zitat Long E, Wood KJ. Understanding FOXP3: progress towards achieving transplantation tolerance. Transplantation 2007; 84(4): 459–61PubMedCrossRef Long E, Wood KJ. Understanding FOXP3: progress towards achieving transplantation tolerance. Transplantation 2007; 84(4): 459–61PubMedCrossRef
120.
Zurück zum Zitat Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nature Rev Immunol 2003; 3: 199–210CrossRef Wood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nature Rev Immunol 2003; 3: 199–210CrossRef
121.
Zurück zum Zitat Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. J Exp Med 2002; 195(12): 1641–6PubMedCrossRef Graca L, Cobbold SP, Waldmann H. Identification of regulatory T cells in tolerated allografts. J Exp Med 2002; 195(12): 1641–6PubMedCrossRef
122.
Zurück zum Zitat Kang SM, Tang Q, Bluestone JA. CD4+CD25+ regulatory T cells in transplantation: progress, challenges and prospects. Am J Transplant 2007; 7(6): 1457–63PubMedCrossRef Kang SM, Tang Q, Bluestone JA. CD4+CD25+ regulatory T cells in transplantation: progress, challenges and prospects. Am J Transplant 2007; 7(6): 1457–63PubMedCrossRef
123.
Zurück zum Zitat Golshayan D, Jiang S, Tsang J, et al. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 2007; 109: 827–35PubMedCrossRef Golshayan D, Jiang S, Tsang J, et al. In vitro-expanded donor alloantigen-specific CD4+CD25+ regulatory T cells promote experimental transplantation tolerance. Blood 2007; 109: 827–35PubMedCrossRef
124.
Zurück zum Zitat Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nature Rev Immunol 2007; 7: 610–21CrossRef Morelli AE, Thomson AW. Tolerogenic dendritic cells and the quest for transplant tolerance. Nature Rev Immunol 2007; 7: 610–21CrossRef
125.
Zurück zum Zitat Jonuleit H, Schmitt E, Schuler G, et al. Induction of IL 10-producing, nonproliferating CD4+ T-cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192: 1213–22PubMedCrossRef Jonuleit H, Schmitt E, Schuler G, et al. Induction of IL 10-producing, nonproliferating CD4+ T-cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192: 1213–22PubMedCrossRef
126.
Zurück zum Zitat Lechler R, Ng WF, Steinman RM. Dendritic cells in transplantation: friend or foe? Immunity 2001; 14: 357–68PubMedCrossRef Lechler R, Ng WF, Steinman RM. Dendritic cells in transplantation: friend or foe? Immunity 2001; 14: 357–68PubMedCrossRef
Metadaten
Titel
Tolerance-Inducing Immunosuppressive Strategies in Clinical Transplantation
An Overview
verfasst von
Dr Dela Golshayan
Manuel Pascual
Publikationsdatum
01.10.2008
Verlag
Springer International Publishing
Erschienen in
Drugs / Ausgabe 15/2008
Print ISSN: 0012-6667
Elektronische ISSN: 1179-1950
DOI
https://doi.org/10.2165/00003495-200868150-00004

Weitere Artikel der Ausgabe 15/2008

Drugs 15/2008 Zur Ausgabe

Adis Drug Profile

Ambrisentan

Adis Drug Evaluation

Pregabalin

Adis Drug Evaluation

Micafungin