Skip to main content

01.12.2017 | Research | Ausgabe 1/2017 Open Access

Orphanet Journal of Rare Diseases 1/2017

Transcranial pulsed ultrasound facilitates brain uptake of laronidase in enzyme replacement therapy for Mucopolysaccharidosis type I disease

Orphanet Journal of Rare Diseases > Ausgabe 1/2017
Yu-Hone Hsu, Ren-Shyan Liu, Win-Li Lin, Yeong-Seng Yuh, Shuan-Pei Lin, Tai-Tong Wong



Mucopolysaccharidosis type I (MPS I) is a debilitating hereditary disease characterized by alpha-L-iduronidase (IDUA) deficiency and consequent inability to degrade glycosaminoglycans. The pathological accumulation of glycosaminoglycans systemically results in severe mental retardation and multiple organ dysfunction. Enzyme replacement therapy with recombinant human alpha-L-iduronidase (rhIDU) improves the function of some organs but not neurological deficits owing to its exclusion from the brain by the blood-brain barrier (BBB).


We divided MPS I mice into control group, enzyme replacement group with rhIDU 2.9 mg/kg injection, enzyme replacement with one-spot ultrasound treatment group, and enzyme replacement with two-spot ultrasound treatment group, and compare treatment effectiveness between groups. All ultrasound treatments were applied on left side brain. Evans blue was used to simulate the distribution of rhIDU in the brain.


Transcranial pulsed weakly focused ultrasound combined with microbubbles facilitates brain rhIDU delivery in MPS I mice receiving systemic enzyme replacement therapy. With intravenously injected rhIDU 2.9 mg/kg, the IDUA enzyme activity on the ultrasound treated side of the cerebral hemisphere raised to 7.81-fold that on the untreated side and to 75.84% of its normal value. Evans blue simulation showed the distribution of the delivered drug was extensive, involving a large volume of the treated cerebral hemisphere. Two-spot ultrasound treatment scheme is more efficient for brain rhIDU delivery than one-spot ultrasound treatment scheme.


Transcranial pulsed weakly focused ultrasound can open BBB extensively and facilitates brain rhIDU delivery. This novel technology may provide a new MPS I treatment strategy.
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2017

Orphanet Journal of Rare Diseases 1/2017 Zur Ausgabe