Skip to main content
Erschienen in: Cardiovascular Toxicology 4/2016

21.09.2015

Triptolide Attenuates Myocardial Ischemia/Reperfusion Injuries in Rats by Inducing the Activation of Nrf2/HO-1 Defense Pathway

verfasst von: Haijie Yu, Liye Shi, Shijie Zhao, Yujiao Sun, Yuan Gao, Yingxian Sun, Guoxian Qi

Erschienen in: Cardiovascular Toxicology | Ausgabe 4/2016

Einloggen, um Zugang zu erhalten

Abstract

Triptolide is a bioactive component of Chinese herbal plant Tripterygium wilfordii Hook F that has recently been noted to attenuate hepatic and cerebral ischemia/reperfusion (I/R) injuries in rodents. To investigate whether triptolide could protect against myocardial I/R injuries, triptolide (25, 50 or 100 μg/kg) was administrated in Wistar rats that underwent left anterior descending coronary artery ligation in this study. Our data showed that triptolide pretreatment could attenuate myocardial infarction, increase the fractional shortening and left ventricular systolic pressure and decrease the left ventricular end-diastolic pressure in ischemic rats. Also, triptolide was noted to inhibit the activities of lactate dehydrogenase and creatine kinase in I/R rats. Moreover, triptolide administration suppressed macrophage infiltration, inhibited the overproduction of tumor necrosis factor-α, interleukin (IL)-1β, IL-6 and malondialdehyde (MDA) in reperfused myocardium tissues and upregulated the activities of antioxidative superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GPx). In addition, nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and the activity of its downstream target Heme oxygenase-1 (HO-1) in ischemic myocardium tissues were enhanced by triptolide pretreatment. In addition, the HO-1 inhibitor, zinc protoporphyrin-IX, abrograted the cardiac protection mediated by triptolide. Our study reveals a novel cardioprotective effect of triptolide in rats with I/R injuries, wherein the activation of Nrf2/HO-1 signaling was involved.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Forouzanfar, M. H., Moran, A. E., Flaxman, A. D., Roth, G., Mensah, G. A., Ezzati, M., et al. (2012). Assessing the global burden of ischemic heart disease, part 2: Analytic methods and estimates of the global epidemiology of ischemic heart disease in 2010. Global Heart, 7, 331–342.CrossRefPubMedPubMedCentral Forouzanfar, M. H., Moran, A. E., Flaxman, A. D., Roth, G., Mensah, G. A., Ezzati, M., et al. (2012). Assessing the global burden of ischemic heart disease, part 2: Analytic methods and estimates of the global epidemiology of ischemic heart disease in 2010. Global Heart, 7, 331–342.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Eltzschig, H. K., & Eckle, T. (2011). Ischemia and reperfusion—from mechanism to translation. Nature Medicine, 17, 1391–1401.CrossRefPubMed Eltzschig, H. K., & Eckle, T. (2011). Ischemia and reperfusion—from mechanism to translation. Nature Medicine, 17, 1391–1401.CrossRefPubMed
3.
Zurück zum Zitat Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., & White, H. D. (2012). Third universal definition of myocardial infarction. Nature Reviews Cardiology, 9, 620–633.CrossRefPubMed Thygesen, K., Alpert, J. S., Jaffe, A. S., Simoons, M. L., Chaitman, B. R., & White, H. D. (2012). Third universal definition of myocardial infarction. Nature Reviews Cardiology, 9, 620–633.CrossRefPubMed
4.
Zurück zum Zitat Betgem, R. P., de Waard, G. A., Nijveldt, R., Beek, A. M., Escaned, J., & van Royen, N. (2015). Intramyocardial haemorrhage after acute myocardial infarction. Nature Reviews Cardiology, 12, 156–167.CrossRefPubMed Betgem, R. P., de Waard, G. A., Nijveldt, R., Beek, A. M., Escaned, J., & van Royen, N. (2015). Intramyocardial haemorrhage after acute myocardial infarction. Nature Reviews Cardiology, 12, 156–167.CrossRefPubMed
5.
Zurück zum Zitat Jennings, R. B. (2013). Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circulation Research, 113, 428–438.CrossRefPubMed Jennings, R. B. (2013). Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circulation Research, 113, 428–438.CrossRefPubMed
6.
Zurück zum Zitat Li, X. J., Jiang, Z. Z., & Zhang, L. Y. (2014). Triptolide: Progress on research in pharmacodynamics and toxicology. Journal of Ethnopharmacology, 155, 67–79.CrossRefPubMed Li, X. J., Jiang, Z. Z., & Zhang, L. Y. (2014). Triptolide: Progress on research in pharmacodynamics and toxicology. Journal of Ethnopharmacology, 155, 67–79.CrossRefPubMed
7.
Zurück zum Zitat Fidler, J. M., Li, K., Chung, C., Wei, K., Ross, J. A., Gao, M., & Rosen, G. D. (2003). PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy. Molecular Cancer Therapeutics, 2, 855–862.PubMed Fidler, J. M., Li, K., Chung, C., Wei, K., Ross, J. A., Gao, M., & Rosen, G. D. (2003). PG490-88, a derivative of triptolide, causes tumor regression and sensitizes tumors to chemotherapy. Molecular Cancer Therapeutics, 2, 855–862.PubMed
8.
Zurück zum Zitat Hoyle, G. W., Hoyle, C. I., Chen, J., Chang, W., Williams, R. W., & Rando, R. J. (2010). Identification of triptolide, a natural diterpenoid compound, as an inhibitor of lung inflammation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 298, L830–L836.CrossRefPubMedPubMedCentral Hoyle, G. W., Hoyle, C. I., Chen, J., Chang, W., Williams, R. W., & Rando, R. J. (2010). Identification of triptolide, a natural diterpenoid compound, as an inhibitor of lung inflammation. American Journal of Physiology. Lung Cellular and Molecular Physiology, 298, L830–L836.CrossRefPubMedPubMedCentral
9.
Zurück zum Zitat Hao, M., Li, X., Feng, J., & Pan, N. (2015). Triptolide protects against ischemic stroke in rats. Inflammation, 38(4), 1617–1623.CrossRefPubMed Hao, M., Li, X., Feng, J., & Pan, N. (2015). Triptolide protects against ischemic stroke in rats. Inflammation, 38(4), 1617–1623.CrossRefPubMed
10.
Zurück zum Zitat Wu, C., Wang, P., Rao, J., Wang, Z., Zhang, C., Lu, L., & Zhang, F. (2011). Triptolide alleviates hepatic ischemia/reperfusion injury by attenuating oxidative stress and inhibiting NF-kappaB activity in mice. Journal of Surgical Research, 166, e205–e213.CrossRefPubMed Wu, C., Wang, P., Rao, J., Wang, Z., Zhang, C., Lu, L., & Zhang, F. (2011). Triptolide alleviates hepatic ischemia/reperfusion injury by attenuating oxidative stress and inhibiting NF-kappaB activity in mice. Journal of Surgical Research, 166, e205–e213.CrossRefPubMed
11.
Zurück zum Zitat Zhang, Z., Qu, X., Ni, Y., Zhang, K., Dong, Z., Yan, X., et al. (2013). Triptolide protects rat heart against pressure overload-induced cardiac fibrosis. International Journal of Cardiology, 168, 2498–2505.CrossRefPubMed Zhang, Z., Qu, X., Ni, Y., Zhang, K., Dong, Z., Yan, X., et al. (2013). Triptolide protects rat heart against pressure overload-induced cardiac fibrosis. International Journal of Cardiology, 168, 2498–2505.CrossRefPubMed
12.
Zurück zum Zitat Hausenloy, D. J., & Yellon, D. M. (2011). The therapeutic potential of ischemic conditioning: An update. Nature Reviews Cardiology, 8, 619–629.CrossRefPubMed Hausenloy, D. J., & Yellon, D. M. (2011). The therapeutic potential of ischemic conditioning: An update. Nature Reviews Cardiology, 8, 619–629.CrossRefPubMed
13.
Zurück zum Zitat Nguyen, T., Nioi, P., & Pickett, C. B. (2009). The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of Biological Chemistry, 284, 13291–13295.CrossRefPubMedPubMedCentral Nguyen, T., Nioi, P., & Pickett, C. B. (2009). The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of Biological Chemistry, 284, 13291–13295.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Zhang, X., Xiao, Z., Yao, J., Zhao, G., Fa, X., & Niu, J. (2013). Participation of protein kinase C in the activation of Nrf2 signaling by ischemic preconditioning in the isolated rabbit heart. Molecular and Cellular Biochemistry, 372, 169–179.CrossRefPubMed Zhang, X., Xiao, Z., Yao, J., Zhao, G., Fa, X., & Niu, J. (2013). Participation of protein kinase C in the activation of Nrf2 signaling by ischemic preconditioning in the isolated rabbit heart. Molecular and Cellular Biochemistry, 372, 169–179.CrossRefPubMed
15.
Zurück zum Zitat Li, J., Jin, J., Li, M., Guan, C., Wang, W., Zhu, S., et al. (2012). Role of Nrf2 in protection against triptolide-induced toxicity in rat kidney cells. Toxicology Letters, 213, 194–202.CrossRefPubMed Li, J., Jin, J., Li, M., Guan, C., Wang, W., Zhu, S., et al. (2012). Role of Nrf2 in protection against triptolide-induced toxicity in rat kidney cells. Toxicology Letters, 213, 194–202.CrossRefPubMed
16.
Zurück zum Zitat Hall, G., Hasday, J. D., & Rogers, T. B. (2006). Regulating the regulator: NF-kappaB signaling in heart. Journal of Molecular and Cellular Cardiology, 41, 580–591.CrossRefPubMed Hall, G., Hasday, J. D., & Rogers, T. B. (2006). Regulating the regulator: NF-kappaB signaling in heart. Journal of Molecular and Cellular Cardiology, 41, 580–591.CrossRefPubMed
17.
Zurück zum Zitat Wang, Z. H., Liu, J. L., Wu, L., Yu, Z., & Yang, H. T. (2014). Concentration-dependent wrestling between detrimental and protective effects of H2O2 during myocardial ischemia/reperfusion. Cell Death and Disease, 5, e1297.CrossRefPubMedPubMedCentral Wang, Z. H., Liu, J. L., Wu, L., Yu, Z., & Yang, H. T. (2014). Concentration-dependent wrestling between detrimental and protective effects of H2O2 during myocardial ischemia/reperfusion. Cell Death and Disease, 5, e1297.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Yu, D., Li, M., Tian, Y., Liu, J., & Shang, J. (2015). Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury. Life Sciences, 122, 15–25.CrossRefPubMed Yu, D., Li, M., Tian, Y., Liu, J., & Shang, J. (2015). Luteolin inhibits ROS-activated MAPK pathway in myocardial ischemia/reperfusion injury. Life Sciences, 122, 15–25.CrossRefPubMed
19.
Zurück zum Zitat Jiang, B., Zhang, B., Liang, P., Chen, G., Zhou, B., Lv, C., et al. (2013). Nucleolin protects the heart from ischaemia-reperfusion injury by up-regulating heat shock protein 32. Cardiovascular Research, 99, 92–101.CrossRefPubMed Jiang, B., Zhang, B., Liang, P., Chen, G., Zhou, B., Lv, C., et al. (2013). Nucleolin protects the heart from ischaemia-reperfusion injury by up-regulating heat shock protein 32. Cardiovascular Research, 99, 92–101.CrossRefPubMed
20.
Zurück zum Zitat He, M., Pan, H., Chang, R. C., So, K. F., Brecha, N. C., & Pu, M. (2014). Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of Lycium barbarum polysaccharides in the rodent retina after ischemia-reperfusion-induced damage. PLoS one, 9, e84800.CrossRefPubMedPubMedCentral He, M., Pan, H., Chang, R. C., So, K. F., Brecha, N. C., & Pu, M. (2014). Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of Lycium barbarum polysaccharides in the rodent retina after ischemia-reperfusion-induced damage. PLoS one, 9, e84800.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Yan, X., Ke, X. X., Zhao, H., Huang, M., Hu, R., & Cui, H. (2015). Triptolide inhibits cell proliferation and tumorigenicity of human neuroblastoma cells. Molecular Medicine Reports, 11, 791–796.PubMed Yan, X., Ke, X. X., Zhao, H., Huang, M., Hu, R., & Cui, H. (2015). Triptolide inhibits cell proliferation and tumorigenicity of human neuroblastoma cells. Molecular Medicine Reports, 11, 791–796.PubMed
22.
Zurück zum Zitat Huang, W., He, T., Chai, C., Yang, Y., Zheng, Y., Zhou, P., et al. (2012). Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. PLoS one, 7, e37693.CrossRefPubMedPubMedCentral Huang, W., He, T., Chai, C., Yang, Y., Zheng, Y., Zhou, P., et al. (2012). Triptolide inhibits the proliferation of prostate cancer cells and down-regulates SUMO-specific protease 1 expression. PLoS one, 7, e37693.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Li, J., Liu, R., Yang, Y., Huang, Y., Li, X., & Shen, X. (2014). Triptolide-induced in vitro and in vivo cytotoxicity in human breast cancer stem cells and primary breast cancer cells. Oncology Reports, 31, 2181–2186.PubMed Li, J., Liu, R., Yang, Y., Huang, Y., Li, X., & Shen, X. (2014). Triptolide-induced in vitro and in vivo cytotoxicity in human breast cancer stem cells and primary breast cancer cells. Oncology Reports, 31, 2181–2186.PubMed
24.
Zurück zum Zitat Zhou, J., Xi, C., Wang, W., Fu, X., Jinqiang, L., Qiu, Y., et al. (2014). Triptolide-induced oxidative stress involved with Nrf2 contribute to cardiomyocyte apoptosis through mitochondrial dependent pathways. Toxicology Letters, 230, 454–466.CrossRefPubMed Zhou, J., Xi, C., Wang, W., Fu, X., Jinqiang, L., Qiu, Y., et al. (2014). Triptolide-induced oxidative stress involved with Nrf2 contribute to cardiomyocyte apoptosis through mitochondrial dependent pathways. Toxicology Letters, 230, 454–466.CrossRefPubMed
25.
Zurück zum Zitat Wen, H. L., Liang, Z. S., Zhang, R., & Yang, K. (2013). Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovascular Diabetology, 12, 50.CrossRefPubMedPubMedCentral Wen, H. L., Liang, Z. S., Zhang, R., & Yang, K. (2013). Anti-inflammatory effects of triptolide improve left ventricular function in a rat model of diabetic cardiomyopathy. Cardiovascular Diabetology, 12, 50.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Gao, J., Zhan, Y., Chen, J., Wang, L., & Yang, J. (2013). Triptolide ameliorates lipopolysaccharide-induced acute lung injury in rats. European Journal of Medical Research, 18, 58.CrossRefPubMedPubMedCentral Gao, J., Zhan, Y., Chen, J., Wang, L., & Yang, J. (2013). Triptolide ameliorates lipopolysaccharide-induced acute lung injury in rats. European Journal of Medical Research, 18, 58.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Dong, J. W., Zhu, H. F., Zhu, W. Z., Ding, H. L., Ma, T. M., & Zhou, Z. N. (2003). Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Research, 13, 385–391.CrossRefPubMed Dong, J. W., Zhu, H. F., Zhu, W. Z., Ding, H. L., Ma, T. M., & Zhou, Z. N. (2003). Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression. Cell Research, 13, 385–391.CrossRefPubMed
28.
Zurück zum Zitat Haidarali, S., Patil, C. R., Ojha, S., Mohanraj, R., Arya, D. S., & Goyal, S. N. (2014). Targeting apoptotic pathways in myocardial infarction: Attenuated by phytochemicals. Cardiovascular and Hematological Agents in Medicinal Chemistry, 12, 72–85.CrossRefPubMed Haidarali, S., Patil, C. R., Ojha, S., Mohanraj, R., Arya, D. S., & Goyal, S. N. (2014). Targeting apoptotic pathways in myocardial infarction: Attenuated by phytochemicals. Cardiovascular and Hematological Agents in Medicinal Chemistry, 12, 72–85.CrossRefPubMed
29.
Zurück zum Zitat Oh, Y. B., Ahn, M., Lee, S. M., Koh, H. W., Lee, S. H., Kim, S. H., & Park, B. H. (2013). Inhibition of janus activated kinase-3 protects against myocardial ischemia and reperfusion injury in mice. Experimental and Molecular Medicine, 45, e23.CrossRefPubMedPubMedCentral Oh, Y. B., Ahn, M., Lee, S. M., Koh, H. W., Lee, S. H., Kim, S. H., & Park, B. H. (2013). Inhibition of janus activated kinase-3 protects against myocardial ischemia and reperfusion injury in mice. Experimental and Molecular Medicine, 45, e23.CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Emsley, H. C., & Tyrrell, P. J. (2002). Inflammation and infection in clinical stroke. Journal of Cerebral Blood Flow and Metabolism, 22, 1399–1419.CrossRefPubMed Emsley, H. C., & Tyrrell, P. J. (2002). Inflammation and infection in clinical stroke. Journal of Cerebral Blood Flow and Metabolism, 22, 1399–1419.CrossRefPubMed
31.
Zurück zum Zitat Hristov, M., & Weber, C. (2015). Myocardial infarction and inflammation: Lost in the biomarker labyrinth. Circulation Research, 116, 781–783.CrossRefPubMed Hristov, M., & Weber, C. (2015). Myocardial infarction and inflammation: Lost in the biomarker labyrinth. Circulation Research, 116, 781–783.CrossRefPubMed
32.
Zurück zum Zitat Hayashi, T., Saito, A., Okuno, S., Ferrand-Drake, M., Dodd, R. L., Nishi, T., et al. (2003). Oxidative damage to the endoplasmic reticulum is implicated in ischemic neuronal cell death. Journal of Cerebral Blood Flow and Metabolism, 23, 1117–1128.CrossRefPubMed Hayashi, T., Saito, A., Okuno, S., Ferrand-Drake, M., Dodd, R. L., Nishi, T., et al. (2003). Oxidative damage to the endoplasmic reticulum is implicated in ischemic neuronal cell death. Journal of Cerebral Blood Flow and Metabolism, 23, 1117–1128.CrossRefPubMed
33.
Zurück zum Zitat Venardos, K. M., Perkins, A., Headrick, J., & Kaye, D. M. (2007). Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: A review. Current Medicinal Chemistry, 14, 1539–1549.CrossRefPubMed Venardos, K. M., Perkins, A., Headrick, J., & Kaye, D. M. (2007). Myocardial ischemia-reperfusion injury, antioxidant enzyme systems, and selenium: A review. Current Medicinal Chemistry, 14, 1539–1549.CrossRefPubMed
34.
Zurück zum Zitat Vincent, H. K., & Taylor, A. G. (2006). Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. International Journal of Obesity (London), 30, 400–418.CrossRef Vincent, H. K., & Taylor, A. G. (2006). Biomarkers and potential mechanisms of obesity-induced oxidant stress in humans. International Journal of Obesity (London), 30, 400–418.CrossRef
35.
Zurück zum Zitat Lu, Y., Bao, X., Sun, T., Xu, J., Zheng, W., & Shen, P. (2012). Triptolide attenuate the oxidative stress induced by LPS/D-GalN in mice. Journal of Cellular Biochemistry, 113, 1022–1033.CrossRefPubMed Lu, Y., Bao, X., Sun, T., Xu, J., Zheng, W., & Shen, P. (2012). Triptolide attenuate the oxidative stress induced by LPS/D-GalN in mice. Journal of Cellular Biochemistry, 113, 1022–1033.CrossRefPubMed
36.
Zurück zum Zitat Wang, Q., Xiao, B., Cui, S., Song, H., Qian, Y., Dong, L., et al. (2014). Triptolide treatment reduces Alzheimer’s disease (AD)-like pathology through inhibition of BACE1 in a transgenic mouse model of AD. Disease Models and Mechanisms, 7, 1385–1395.CrossRefPubMedPubMedCentral Wang, Q., Xiao, B., Cui, S., Song, H., Qian, Y., Dong, L., et al. (2014). Triptolide treatment reduces Alzheimer’s disease (AD)-like pathology through inhibition of BACE1 in a transgenic mouse model of AD. Disease Models and Mechanisms, 7, 1385–1395.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Shelton, L. M., Park, B. K., & Copple, I. M. (2013). Role of Nrf2 in protection against acute kidney injury. Kidney International, 84, 1090–1095.CrossRefPubMed Shelton, L. M., Park, B. K., & Copple, I. M. (2013). Role of Nrf2 in protection against acute kidney injury. Kidney International, 84, 1090–1095.CrossRefPubMed
38.
Zurück zum Zitat Ding, Y., Chen, M., Wang, M., Zhang, T., Park, J., Zhu, Y., et al. (2014). Neuroprotection by acetyl-11-keto-beta-Boswellic acid, in ischemic brain injury involves the Nrf2/HO-1 defense pathway. Scientific Reports, 4, 7002.CrossRefPubMedPubMedCentral Ding, Y., Chen, M., Wang, M., Zhang, T., Park, J., Zhu, Y., et al. (2014). Neuroprotection by acetyl-11-keto-beta-Boswellic acid, in ischemic brain injury involves the Nrf2/HO-1 defense pathway. Scientific Reports, 4, 7002.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Shokeir, A. A., Hussein, A. M., Barakat, N., Abdelaziz, A., Elgarba, M., & Awadalla, A. (2014). Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf-2-dependent genes by ischaemic pre-conditioning and post-conditioning: New adaptive endogenous protective responses against renal ischaemia/reperfusion injury. Acta Physiologica (Oxford), 210(2), 342–353.CrossRef Shokeir, A. A., Hussein, A. M., Barakat, N., Abdelaziz, A., Elgarba, M., & Awadalla, A. (2014). Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf-2-dependent genes by ischaemic pre-conditioning and post-conditioning: New adaptive endogenous protective responses against renal ischaemia/reperfusion injury. Acta Physiologica (Oxford), 210(2), 342–353.CrossRef
40.
Zurück zum Zitat Ashrafian, H., Czibik, G., Bellahcene, M., Aksentijevic, D., Smith, A. C., Mitchell, S. J., et al. (2012). Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metabolism, 15, 361–371.CrossRefPubMedPubMedCentral Ashrafian, H., Czibik, G., Bellahcene, M., Aksentijevic, D., Smith, A. C., Mitchell, S. J., et al. (2012). Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metabolism, 15, 361–371.CrossRefPubMedPubMedCentral
Metadaten
Titel
Triptolide Attenuates Myocardial Ischemia/Reperfusion Injuries in Rats by Inducing the Activation of Nrf2/HO-1 Defense Pathway
verfasst von
Haijie Yu
Liye Shi
Shijie Zhao
Yujiao Sun
Yuan Gao
Yingxian Sun
Guoxian Qi
Publikationsdatum
21.09.2015
Verlag
Springer US
Erschienen in
Cardiovascular Toxicology / Ausgabe 4/2016
Print ISSN: 1530-7905
Elektronische ISSN: 1559-0259
DOI
https://doi.org/10.1007/s12012-015-9342-y

Weitere Artikel der Ausgabe 4/2016

Cardiovascular Toxicology 4/2016 Zur Ausgabe