Skip to main content
Erschienen in: Journal of Translational Medicine 1/2022

Open Access 01.12.2022 | Review

Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer

verfasst von: Bing-Tao Zhai, Huan Tian, Jing Sun, Jun-Bo Zou, Xiao-Fei Zhang, Jiang-Xue Cheng, Ya-Jun Shi, Yu Fan, Dong-Yan Guo

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2022

Abstract

Urokinase-type plasminogen activator receptor (uPAR) is an attractive target for the treatment of cancer, because it is expressed at low levels in healthy tissues but at high levels in malignant tumours. uPAR is closely related to the invasion and metastasis of malignant tumours, plays important roles in the degradation of extracellular matrix (ECM), tumour angiogenesis, cell proliferation and apoptosis, and is associated with the multidrug resistance (MDR) of tumour cells, which has important guiding significance for the judgement of tumor malignancy and prognosis. Several uPAR-targeted antitumour therapeutic agents have been developed to suppress tumour growth, metastatic processes and drug resistance. Here, we review the recent advances in the development of uPAR-targeted antitumor therapeutic strategies, including nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy, to promote the translation of these therapeutic agents to clinical applications.
Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
uPAR
Urokinase-type plasminogen activator receptor
ECM
Extracellular matrix
MDR
Multidrug resistance
PDT
Photodynamic therapy
PTT
Photothermal therapy
uPA
Urokinase plasminogen activator
MMP
Matrix metalloproteinase
Vn
Vitronectin
EGFR
Epidermal growth factor receptor
GPCRs
G-protein coupled receptors
FAK
Focal adhesion kinase
MAPK
Mitogen-activated protein kinase
AKT
Protein kinase B
FPR
Formyl peptide receptor
HER-2
Human epidermal growth factor receptor-2
PAI
Plasminogen activator inhibitor
ERK
Extracellular regulatory protein kinase
Cis
Cisplatin
DTX
Docetaxel
Dox
Doxorubicin
PEG
Polyethylene glycol
DT
Diphtheria toxin
TNBC
Triple-negative breast cancer
NPs
Nanoparticles
IONP
Iron oxide nanoparticle
MRI
Magnetic resonance imaging
N-AI
N-Alkylisatin
HSA
Human serum albumin
CPZ
Mono-substituted β-carboxy phthalocyanine zinc
MVs
Oncolytic measles viruses
siRNA
Small interfering RNA
shRNA
Short hairpin RNA
CRISPR
Clustered regularly interspaced short palindromic
Cas9
CRISPR-associated protein-9 nuclease
CAR
Chimeric antigen receptor
ARMs
Antibody-recruiting molecules

Background

Urokinase-type plasminogen activator receptor (uPAR), also known as CD87, is encoded by the PLAUR gene and belongs to the lymphatic antigen-6 superfamily [1, 2]. uPAR was first identified as the cell surface receptor for urokinase plasminogen activator (uPA) in 1985 [3, 4]. The mature uPAR molecule is a single-chain membrane glycoprotein receptor composed of 313 amino acid residues and is anchored to the cell membrane by a glycosylphosphatidylinositol (GPI) linkage; it contains 3 homologous domains, D1, D2 and D3, with a total molecular weight of 55–60 kDa [5, 6]. uPAR mediates a variety of biological processes, such as plasminogen activation, proteolysis, cellular signal transduction and adhesion [79]. Under normal physiological conditions, uPAR is usually expressed at a low level. In the processes of tissue remodelling, wound healing, inflammation and embryogenesis, uPAR is transiently expressed at high levels and participates in the processes of extracellular matrix (ECM) degradation, thrombolysis, cell invasion and migration [1014].
Classically, the function of uPAR is to act as a receptor for the zymogen form of uPA (pro-uPA) and trigger a cascade of proteolytic events that leads to the degradation of ECM [15, 16]. Once pro-uPA is activated to uPA, it converts plasminogen to its active form, plasmin, which activates downstream proteases such as pro-matrix metalloproteinase (MMP)-3 and MMP-3, pro-MMP-9 and MMP-9, leading to ECM remodelling [1719]. Plasmin is also able to release ECM bound growth factors that contribute to tumour progression [20, 21].
In addition to its proteolytic role, uPAR interacts with vitronectin (Vn) [22] and transmembrane receptors, including integrins (α5β1, α3β1, αvβ3 and αvβ5) [2327] and receptor tyrosine kinases [the epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor (PDGFR), G-protein coupled receptors (GPCRs), very low-density lipoprotein receptor (VLDLR) family members], thereby activating intracellular focal adhesion kinase (FAK) signalling, regulating intracellular pathways [Ras/mitogen-activated protein kinase (MAPK), Ras-related C3 botulinum toxin substrate 1 (Rac1)/MAPK, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), and Janus-associated kinase 1 (JAK1)], and triggering cellular responses such as cell migration, adhesion, proliferation, angiogenesis and the epithelial–mesenchymal transition (EMT) [2836]. Moreover, the cleaved form of uPAR (D2–D3 fragment), interacts with members of the formyl peptide receptor (FPR) family of GPCRs via its exposed N-terminal 88SRSRY92 sequence, initiating both angiogenic and inflammatory processes [37, 38].
Finally, uPAR is also involved in the internalization of the uPA-plasminogen activator inhibitor (PAI)-1-uPAR complex, degradation of uPA-PAI-1, and recycling of unoccupied uPAR. When uPA-uPAR is inactivated by PAI-1, internalization via low-density lipoprotein receptor related protein (LRP) is initiated, leading to clathrin-mediated endocytosis of the uPA-PAI-1-uPAR complex. Once internalized, uPA-PAI-1 dissociates from uPAR and is trafficked to the lysosome for degradation, while the unoccupied uPAR is recycled to the cell surface [3941]. A schematic representation of the uPAR-mediated pathways is shown in Fig. 1.
In recent years, many studies have shown that uPAR is closely related to the invasion and metastasis of malignant tumours. uPAR plays important roles in the degradation of ECM, tumour angiogenesis, cell proliferation and apoptosis, is related to the multidrug resistance (MDR) of tumour cells, and has important guiding significance for the judgement of tumour malignancy and prognosis. In this review, we summarize the new application of uPAR as a target of nanoplatforms carrying therapeutic agents, photodynamic therapy (PDT)/photothermal therapy (PTT) platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy to promote the translation of these therapeutic agents to clinical applications.

uPAR in cancer progression

uPAR has multiple functional roles associated with tumour progression, including tumour proliferation and apoptosis, metastasis, angiogenesis, MDR and prognosis. An analysis of tumour samples has shown high uPAR expression in most solid tumour tissues, such as breast [42], lung [43], bladder [44], ovarian [45], prostate [46], liver [47], colon [48], pancreatic [49] and gastric cancer [50] as well as gliomas [51] and several haematologic malignancies [52, 53]. Moreover, uPAR is expressed at high levels on stromal cells in the tumour microenvironment, such as vascular endothelial cells, tumour-related fibroblasts and tumour-related macrophages, and its expression level is closely related to tumour aggressiveness and the survival of patients with tumours [5457]. Therefore, treatments targeting uPAR expressed on tumour-associated stromal cells may be as important as treatments targeting uPAR expressed on tumour cells and may lead to enhanced antitumour activity.
uPAR interacts with a variety of surface transmembrane proteins, such as integrins and EGFR, thereby activating intracellular FAK, extracellular regulatory protein kinase (ERK) and MAPK signalling to inhibit cell apoptosis and promote cell proliferation. For example, the interaction between uPAR and a5β1 integrin activates EGFR through a FAK-dependent pathway, which subsequently activates the ERK signalling pathway and promotes cell proliferation [58]. Inhibition of uPAR expression destroy the uPAR/integrin interaction and inhibits the MAPK pathway to arrest Hep3 cells in G0/G1 phase [59]. The suppression of uPAR expression in vitro by transfection inhibits the proliferation of meningioma cells by downregulating transforming growth factor-β (TGF-β) 1 expression [60], arrests glioma SNB19 cells in G2 phase and increases caspase-dependent cell apoptosis [61]. Moreover, inhibiting the expression of uPAR in vitro by transfection promotes the apoptosis of human melanoma cells by increasing the expression of the p53 protein and activating the apoptosis pathway mediated by retinoic acid inducible gene 1 (RIG-1) [62].
Inhibition of uPAR expression prevents tumour invasion and migration. For example, inhibiting the expression of uPA/uPAR blocks the invasion of glioma SNB19 cells by reducing Ras mediated phosphorylation of FAK, p38MAPK, c-Jun N-terminal kinase (JNK) and ERK1/2 and MAPK kinase (MEK) activation of the PI3K/AKT/mammalian target of rapamycin (mTOR) signalling pathway [63]. Inhibition of uPA/uPAR expression also prevents the invasion of glioma cells by inhibiting Notch-1 receptor cleavage, signal transduction and endosomal transport [64]. Treatments targeting uPAR in human pancreatic cancer cells inhibit the migration and invasion of mouse tumour cells mediated by c-met and insulin like growth factor 1 receptor (IGF1R) [65]. Inhibition of uPAR expression along with the expression of uPA, human epidermal growth factor receptor-2 (HER-2), or IGF1R or in combination with trastuzumab further inhibits the invasion and migration of different breast cancer cell lines [6668].
Angiogenesis is the process of forming new blood vessels from existing blood vessels. It plays a vital role in tumour growth, invasion and metastasis. uPAR also promotes tumour angiogenesis. For example, uPAR promotes angiogenesis by inhibiting the expression of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) [69]. In endothelial cells and glioblastoma cells, silencing the expression of uPA/uPAR inhibits tumour angiogenesis by increasing the expression of tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and increasing the secretion of soluble vascular endothelial growth factor (VEGF) receptor (VEGFR) 1 (SVEGFR1) [70]. Herkenne et al. also found that knockout of uPAR in human umbilical vein endothelial cells (HUVECs) blocks VEGFR2 signalling, thereby preventing VEGF-induced angiogenesis [71].
High levels of uPAR expression have been detected in a variety of cancer cells but very low levels are present in normal cells, indicating that the level of uPAR in tumour tissue is closely related to the tumour malignancy and prognosis of patients with cancer [72]. Elevated levels of uPAR are observed in prostate cancer, correlating with increased aggressiveness, postoperative progression and metastasis [73, 74]. In another study, Memarzadeh et al. found that the expression of uPAR in surgically removed endometrial tissue was positively correlated with the malignancy of endometrial cancer [75]. A study using 45 fresh tumour tissues observed the presence of uPAR in 1/3 of melanomas [76]. Yang et al. suggested that uPAR is useful as an independent prognostic factor for the survival and metastasis of patients with colorectal cancer [77]; Halamkova et al. also reported a correlation between uPAR expression and the grade of colorectal cancer [78]. Many studies have shown increased levels of uPAR and their related to liver metastasis and a poor prognosis for patients with hepatocellular carcinoma (HCC) [7981]. According to Chen et al., the levels of uPAR in patients with lung cancer are significantly increased [82]. A study has shown an association between an increased level of the uPAR D1 domain and shorter overall survival of patient with small cell lung cancer [83]. uPAR expression in tumour tissues is also significantly increased in non-small cell lung cancer (NSCLC) [84]. In gastric cancer, increased uPAR expression and decreased uPAR expression are related to a poor prognosis and prolonged patient survival, respectively [85, 86]. In oral squamous cell carcinoma (OSCC), the levels of uPAR are elevated, and a strong correlation between the expression of uPAR and the aggressiveness of the tumour has been identified [87]. Increased uPAR levels are closely related to a poor prognosis for patients with bladder cancer [88, 89]. High levels of uPAR are present in 94% of muscle-invasive bladder cancer and 54–71% of nonmuscle-invasive bladder cancer, but the protein is almost undetectable in healthy bladder tissue [90]. The expression of uPAR is significantly increased in laryngeal squamous cell carcinoma, which may help increase invasion and metastasis [91]. In acute myeloid leukaemia (AML), the high expression of uPAR is also associated with the aggressiveness of the disease [92]. Therefore, the expression level of uPAR may be an important marker for judging the degree of malignancy and the survival of patients.
An association between uPAR expression and the MDR of tumour cells has also been identified. Drug resistance is an important cause of the failure of tumour treatment. A study has shown that inhibition of uPAR in vitro promotes the apoptosis of melanoma cells resistant to B-RAF inhibitors and MEK inhibitors by increasing the level of Noxa [62]. High uPAR expression may allow head and neck squamous cell carcinoma, small cell lung cancer, and malignant pleural mesothelioma to develop resistance to chemotherapy [9395]. uPAR enhances the resistance of breast cancer to tamoxifen by activating ERK1/2 [96], and renders NSCLC resistant to gefitinib by activating the EGFR/pAKT/survivin signalling pathway [97]. Inhibition of uPAR expression reduces the resistance of mouse brain neuroma cells to 5-fluorouracil (5-FU), cisplatin (Cis), docetaxel (DTX) and doxorubicin (Dox) [98]. Laurenzana et al. showed that BRAF-mutated melanoma cells with different uPAR expression levels have different sensitivities to verofenil; high levels of uPAR decrease the sensitivity of BRAF-mutated melanoma cells to verofenil, while a reduction in uPAR expression restores the sensitivity of drug-resistant cells to verofenil [99]. As shown in the study by LeBeau et al., MCF-7 cells resistant to tamoxifen and MDA-MB-231 cells resistant to Dox and paclitaxel (PTX) exhibit markedly higher expression of uPAR than parental MCF-7 and MDA-MB-231 cells, respectively [100].
In summary, the dysregulation of uPAR plays a key role in tumour progression. Given the broad expression of uPAR by a variety of different tumour types and the selective expression of uPAR by tumour cells and tumour-related stromal cells in the tumour microenvironment compared to normal cells, uPAR is an attractive target for the treatment of tumours.

Targeting uPAR for antitumour therapy

Compared with normal tissues, high uPAR expression in tumours has been shown, and thus researchers have proposed uPAR as a therapeutic target and a targeting agent for the treatment of cancer [101]. Over the past 30 years, a variety of therapeutic agents that target uPAR have been developed to treat cancer. For example, peptides AE105 (D-Cha-F-s-r-Y-L-W-S) [102], AE120 ([D-Cha-F-s-r-Y-L-W-S]2-βA-K) [102], Å6 (Ac-KPSSPPEE-Am) [103], ATF [104], and U11 (VSNKYFSNIHW) [105], and the cyclic peptides cyclo19,31uPA19–31 [106], cyclo19,31[D-Cys19]-uPA19–31 [107], WX-360 (cyclo21,29[D-Cys21]-uPA21–30[S21C;H29C]) and WX-360-Nle (cyclo21,29[D-Cys21]-uPA21–30[S21C;K23Nle;H29C]) [108] block the uPA/uPAR interaction. Peptides M25 (PRYQHIGLVAMFRQNTG) [109], α325 (PRHRHMGAVFLLSQEAG) [110], p25 (AESTYHHLSLGYMYTLN-NH2) [111], m.P243-251 (TASWCQGSH) [112], D2A-Ala (IQEGAAGRPKDDR) [113] and polyethylene glycol (PEG)ylated D2A-Ala peptide (PEG-D2A-Ala) [114] inhibit the uPAR/integrin or uPAR/Vn interaction. Peptides pyro glutamic acid (pGlu)-Arg-Glu-Arg-Tyr-NH2 (pERERY-NH2) [115], RERF (Ac-Arg-Glu-Arg-Phe-NH2) [116], UPARANT (Ac-L-Arg-Aib-L-Arg-D-Ca(Me)Phe-NH2) [117], cyclic SRSRY peptide ([SRSRY]) [118], and RI-3 [Ac-(D)-Tyr-(D)-Arg-Aib-(D)-Arg-NH2] [119] block the interaction of SRSRY and N-formyl-Met-Leu-Phe (fMLF) with the FPR family of GPCRs. Human and mouse uPA1-48 (huPA1-48 and muPA1-48), human and murine uPA1-48 fusion proteins (huPA1-48Ig and muPA1-48Ig) [120], and human and mouse pegylated uPA1-48 (PEGh1-48 and PEGhm1-48) [121] also inhibit tumour growth by inhibiting tumour stromal cell uPAR-dependent plasminogen activation. The small-molecule inhibitors IPR-456 [122], IPR-803 [123], IPR-3011 [124], IPR-3577 [125], 7 [126], LLL-1fsi [127], MS#479 [2-(pyridin-2-ylamino)-quinolin-8-ol] and MS#305 [2,2′-(methylimino)di (8-quinolinol)] [128], Compounds 6 and 37 [129], and docosahexaenoic acid (DHA) [130] inhibit the uPAR/uPA, uPAR/integrin, uPAR/Vn or uPAR/FPR interaction. The ligand-targeted toxins DTAT [diphtheria toxin (DT) and ATF] [131, 132], DTATEGF (ATF, EGF and DT) [133], DTAT13 [ATF, interleukin-13 (IL-13) and DT] [134, 135], eBAT (EGFATFKDEL 7mut) [136141], ATF-SAP (ATF and Saporin) [142, 143], PAI-2-N-AIE conjugate [5,7-dibromo-N-(p-hydroxymethylbenzyl)isatin and PAI-2] [144], DTU2GMCSF [DT and granulocyte–macrophage colony-stimulating factor (GM-CSF)] [145], ATF-PE38 and ATF-PE38KDEL [ATF and Pseudomonas exotoxin A (PE38)] [146] exert antitumor effects by targeting uPAR and releasing toxins. The uPAR-targeted peptides, small-molecule inhibitors and ligand-targeted toxins are summarized in Table 1.
Table 1
The uPAR-targeted peptides, small-molecule inhibitors and ligand-targeted toxins
Peptides/small-molecule inhibitors/ligand-targeted toxins
Sequence/structure/composition
Action site/target
References
AE105
D-Cha-F-s-r-Y-L-W-S
uPA/uPAR
[102]
AE120
[D-Cha-F-s-r-Y-L-W-S]2-βA-K
uPA/uPAR
[102]
Å6
Ac-KPSSPPEE-Am
uPA/uPAR
[103]
ATF
An amino-terminal fragment of urokinase with EGF-like domain and kringle domain
uPA/uPAR
[104]
U11
VSNKYFSNIHW
uPA/uPAR
[105]
A stable disulfide-bridged cyclic form of the linear peptide uPA19–31
cyclo19,31uPA19–31
uPA/uPAR
[106]
A peptide variant of cyclo19,31uPA19–31
cyclo19,31[D-Cys19]-uPA19–31
uPA/uPAR
[107]
WX-360
cyclo21,29[D-Cys21]-uPA21–30[S21C;H29C]
uPA/uPAR
[108]
WX-360-Nle
cyclo21,29[D-Cys21]-uPA21–30[S21C;K23Nle;H29C]
uPA/uPAR
[108]
M25
PRYQHIGLVAMFRQNTG
uPAR/β1-integrins
[109]
α325
PRHRHMGAVFLLSQEAG
uPAR/Vn
[110]
p25
AESTYHHLSLGYMYTLN-NH2
uPAR-integrin
uPAR/Vn
[111]
m.P243-251
TASWCQGSH
uPAR/integrin α5β1
[112]
D2A-Ala
IQEGAAGRPKDDR
uPAR/integrin avβ3/a5β1
[113]
PEGylated D2A-Ala
PEG-D2A-Ala
uPAR/integrin avβ3/a5β1
[114]
pERERY-NH2
Pyro glutamic acid (pGlu)-Arg-Glu-Arg-Tyr-NH2
fMLF/FPR
[115]
RERF
Ac-Arg-Glu-Arg-Phe-NH2
SRSRY/FPR
fMLF/FPR
[116]
UPARANT
Ac-L-Arg-Aib-L-Arg-D-Ca(Me)Phe-NH2
fMLF/FPR
[117]
cyclic SRSRY peptide ([SRSRY])
[Ser-Arg-Ser-Arg-Tyr]§
SRSRY/FPR1 fMLF/FPR1
[118]
RI-3
Ac-(D)-Tyr-(D)-Arg-Aib-(D)-Arg-NH2
fMLF/FPR1
[119]
huPA1-48 and muPA1-48
The growth factor domains of human and murine urokinase
Tumour stromal cell uPAR dependent plasminogen activation
[120]
huPA1-48Ig and muPA1-48Ig
Modify huPA1-48 and muPA1-48 with the constant region of human IgG1
Tumour stromal cell uPAR dependent plasminogen activation
[120]
PEGh1-48 and PEGhm1-48
Human and mouse pegylated uPA1-48
Tumour stromal cell uPAR dependent plasminogen activation
[121]
IPR-456
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Figa_HTML.gif
uPA/uPAR
[122]
IPR-803
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Figb_HTML.gif
uPA/uPAR
[123]
IPR-3011
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Figc_HTML.gif
uPA/uPAR
[124]
IPR-3577
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Figd_HTML.gif
uPA/uPAR
[125]
7
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Fige_HTML.gif
uPAR/uPAATF
uPAR/Vn
[126]
LLL-1fsi
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Figf_HTML.gif
uPA/uPAR
[127]
MS#479 [2-(Pyridin-2-ylamino)-quinolin-8-ol]
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Figg_HTML.gif
uPAR/integrin
[128]
MS#305 [2,2′-(methylimino)di (8-quinolinol)]
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Figh_HTML.gif
uPAR/integrin
[128]
Compounds 6
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Figi_HTML.gif
uPAR/Vn
uPAR/FPR
[129]
Compounds 37
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Figj_HTML.gif
uPAR/Vn
uPAR/FPR
[129]
Docosahexaenoic acid (DHA)
https://static-content.springer.com/image/art%3A10.1186%2Fs12967-022-03329-3/MediaObjects/12967_2022_3329_Figk_HTML.gif
suppress uPAR expression
[130]
DTAT
DT and ATF
uPAR
[131, 132]
DTATEGF
ATF, EGF and DT
uPAR, EGFR
[133]
DTAT13
ATF, IL-13 and DT
uPAR, IL-13 receptors
[134, 135]
eBAT (EGFATFKDEL 7mut)
ATF, EGF, truncated PE38 with a terminal lysyl-aspartyl-glutamyl-leucine (KDEL) sequence and eight amino acids representing the seven major epitopes on PE38 were mutated
uPAR, EGFR
[136141]
ATF-SAP
ATF and SAP
uPAR
[142, 143]
PAI-2-N-AIE
PAI-2 and N-AIE
uPAR
[144]
DTU2GMCSF
DT, GM-CSF and uPA
uPAR, GM-CSF receptor
[145]
ATF-PE38
ATF and PE38
uPAR
[146]
ATF-PE38KDEL
ATF and PE38 with a terminal KDEL sequence
uPAR
[146]
uPA: urokinase plasminogen activator; uPAR: urokinase-type plasminogen activator receptor; Vn: vitronectin; PEG: polyethylene glycol; fMLF: N-formyl-Met-Leu-Phe; FPR: formyl peptide receptor; DT: diphtheria toxin; IL-13: interleukin-13; PE38: Pseudomonas exotoxin A; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; SAP: Saporin; PAI-2: plasminogen activator inhibitor type 2; N-AIE: 5,7-dibromo-N-(p-hydroxymethylbenzyl)isatin was conjugated to PAI-2 via an esterase-labile succinate linker; GM-CSF: granulocyte-macrophage colony-stimulating factor
However, although research has been conducted for more than 30 years, none of these treatments have advanced into clinical application. The pleiotropic nature of uPAR interactions and function, uPAR structural flexibility, species specificity of the uPA-uPAR interaction, limitations of tumour models, the characteristic that uPAR expression is increased on tumour cells and tumour-associated stromal cells, and the baseline expression of uPAR in the glomeruli of normal kidneys that may result in potential “on-target off-tumour” toxicity are all the main hurdles to the development of uPAR inhibitors [72, 101, 147152]. Furthermore, linear peptides based on the sequence of uPA lack potency and have poor pharmacological properties and stability due to susceptibility to exoprotease degradation in the plasma [153]; screening for small-molecule inhibitors is inefficient due to a lack of detailed structural information on the interactions of uPAR with its binding partners such as integrins [154156]. Some uPAR-targeted small-molecule inhibitors are hydrophobic and have limited bioavailability [123, 125, 157]; and due to the large surface area at the protein–protein interface, the development of small molecules specifically targeting this flexible hydrophobic cavity in uPAR also represent a challenging task [129, 158]. Similarly, ligand-targeted toxins must overcome many barriers before they reach human clinical trials, including determining the appropriate dosing strategy and sequence of administration, increasing the potency and reducing the immunogenicity of the toxin [159, 160].
In recent years, with the interdisciplinary integration of cell biology and materials science, many innovative tumour-targeted therapeutic technologies targeting uPAR have emerged, providing new development directions for precise and efficient tumour therapy. uPAR-targeted nanoplatforms carrying therapeutic agents have great potential in enhancing active tumour targeting, improving delivery efficiency, reducing drug toxicity, increasing the hydrophilicity of hydrophobic drugs, achieving tumour diagnosis and treatment integration, and in multimodal synergistic antitumor applications. uPAR-targeted PDT/PTT platforms may be regarded as promising cancer therapeutic strategies due to their unique advantages such as minor trauma, improved selectivity and reduced side effects. uPAR-targeting oncolytic measles virus (MV-uPA) is an innovative biological strategy associated with potent antitumour effects. uPAR-targeted clustered regularly interspaced short palindromic (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) gene-editing technology may provide new therapeutic trearments for aggressive cancers. uPAR-targeted monoclonal antibody therapy may provide new breakthroughs for the development of anticancer therapy. uPAR-targeted chimeric antigen receptor (CAR) T-cell immunotherapy and antibody-recruiting molecules (ARMs) have the ability to target uPAR-expressing cancers for immune-mediated cell death. Therefore, this review focuses on some new applications of uPAR in the six fields described above (Fig. 2).

uPAR-targeted nanoplatforms carrying therapeutic agents

More recently, several groups have not only utilized various uPAR-targeted nanoplatforms as drug delivery systems to enhance the antitumor effect but also used uPAR-targeted nanoparticles (NPs) as targeted therapeutic imaging probes. Dong et al. successfully loaded BRCA1 small interfering RNA (siRNA), which block DNA repair, and the DNA-damaging agent Pro-Pt into a shell-core pH-sensitive platform (uPA-SP@CaP NPs) to increase the sensitivity of triple-negative breast cancer (TNBC) to chemotherapy. The NPs achieved dual tumour targeting through the passive enhanced permeability and retention (EPR) effect and active uPA peptide [161] (Fig. 3). Yang et al. engineered uPAR-targeted magnetic iron oxide nanoparticle (IONP)-encapsulated Dox conjugated with the ATF of uPA that delivered higher Dox loads and exerted a stronger inhibitory effect on breast cancer cell growth than nontargeted NPs. Moreover, these NPs have been used as targeted therapeutic imaging probes for monitoring drug delivery using magnetic resonance imaging (MRI) [162]. Miller-Kleinhenz et al. prepared Wnt/LRP5/6- and uPAR-targeted ultrasmall magnetic IONPs carrying Dox (iWnt-ATF24-IONP-Dox) that showed a stronger inhibitory effect than non/single-targeted IONPs on a human breast cancer patient-derived xenograft model and markedly inhibited Wnt/β-catenin signalling and the cancer stem-like phenotype by decreasing the levels of the Wnt ligand, CD44 and uPAR [163]. Lee et al. engineered ATF-mediated IONPs carrying gemcitabine (Gem) (ATF-IONP-Gem) to target uPAR-expressing tumour and stromal cells and overcome the tumour–stromal, which not only provided contrast enhancement in MRI of tumours, but also significantly inhibited the growth of orthotopic pancreatic cancer [164]. Gao et al. prepared uPAR-targeted PEGylated theranostic NPs (ATF-PEG-IONPs), and detected threefold higher intratumour accumulation (i.p. injection) than i.v. delivery; the IONPs were detected with NIR-830 labelling using noninvasive optical and MRI in an orthotopic pancreatic cancer model. Moreover, these IONPs carrying Cis or Dox (ATF-PEG-IONP-Cis or ATF-PEG-IONP-Dox) markedly inhibited tumour angiogenesis and tumour growth and reduced the production of malignant ascites [165].
Ahmed et al. developed multifunctional double-receptor-targeting IONPs [luteinizing hormone-releasing hormone (LHRH) peptide- and AE105 peptide-targeted IONPs, LHRH-AE105-IONPs] that simultaneously targeted the LHRH receptor (LHRH-R) and uPAR and exhibited a significant MRI contrast in PCa cells. Importantly, the IONPs carrying PTX (LHRH-AE105-IONPs-PTX) showed two times higher cell cytotoxicity than IONPs targeting a single molecule [166]. Park et al. prepared AE147 peptide-conjugated liposomes encapsulating DTX (DTX/AE Lipo) to actively target uPAR-overexpressing metastatic tumours. In MDA-MB-231 cells, DTX/AE-Lipo (IC50 4.61 µg/mL) achieved better anticancer activity than free DTX (IC50 7.18 µg/mL) or DTX/Lipo (IC50 8.59 µg/mL). Additionally, AE147-conjugated liposomes showed improved tumour-targeting ability [167]. Belfiore et al. prepared anti-mitotic N-alkylisatin (N-AI)-loaded liposomes modified with plasminogen activator inhibitor type 2 (PAI-2/SerpinB2) to target uPA/uPAR. The liposomes showed a higher uptake in MDA-MB-231 cells than in MCF-7 cells and higher accumulation at the tumour site than the nontargeted liposomes [168]. Wang et al. prepared synthetic self-assembled NPs modified with the U11 peptide-lipid amphiphile, which showed an essentially tenfold higher transfection efficiency than scrambled peptide-targeted NPs in uPAR-positive DU145 cells [105]. Hong et al. employed a U11 peptide-decorated, pH-sensitive NP system by coencapsulating the U11 peptide-conjugated, pH-sensitive Dox prodrug (U11-Dox) and curcumin (Cur) (U11-Dox/Cur NPs), and this formulation displayed a higher cellular uptake and tumour accumulation than nontargeting NPs and inhibited tumour growth by 85% in vivo [169].
Our research group also developed β-elemene-loaded liposomes modified with ATF24 peptide (ATF24-PEG-Lipo-β-E); these liposomes showed better targeting efficiency and higher cytotoxicity than nondecorated liposomes and exerted a synergistic effect on inhibiting the growth of KU-19-19 bladder cancer with Cis [170]. Devulapally et al. successfully developed a uPA peptide (VSNKYFSNIHWGC)-conjugated, antisense-miR-21 and antisense-miR-10b coloaded PLGA-b-PEG-NPs (called uPA-Anti-miR-21-Anti-miR-10b-NPs) that simultaneously antagonized miR-21-induced inhibition of apoptosis and miR-10b-induced metastasis to achieve TNBC therapy [171]. Therefore, uPAR-targeted theranostic NPs have tremendous potential for future imaging and targeted therapeutic applications because they are capable of enhancing the therapeutic effect of NP drugs on various types of cancers. The uPAR-targeted nanoplatforms carrying therapeutic agents are summarized in Table 2.
Table 2
The uPAR-targeted nanoplatforms carrying therapeutic agents
Nano platform
Target
Drug
Imaging
Effect
References, year
uPA-SP@CaP NPs
uPA peptide, amino acid sequence: VSNKYFSNIHWGC (uPAR)
BRCA1 siRNA, Pro-Pt
Fluorescence imaging (Dir)
Improve anticancer efficacy of the TNBC (pH-responsive sequential release ability, lysosomal escape property, dual tumour targeting, and irreversible DNA damage behavior)
[161], 2019
ATF-IO-Dox
ATF (uPAR)
Dox
MRI
A marked inhibition of tumour cell growth in 4T1 and MDA-MB-231 cells
[162], 2008
iWnt-ATF24-IONP-Dox
iWnt, amino acid sequence: NSNAIKNKKHHH (Wnt/LRP5/6), ATF24, amino acid sequence: CHHHCLNGGTCVSNKYFSNIHWCNCPKK (uPAR)
Dox
NIR-830 dye for optical imaging
Strong tumour growth inhibition in a human chemo-resistant cancer patient-derived xenograft model (inhibited Wnt/β-catenin signaling and cancer stem-like phenotype of tumour cells; marked reduction of Wnt ligand, CD44 and uPAR)
[163], 2018
ATF-IONP-Gem
ATF (uPAR)
Gem
MRI
Inhibit the growth of orthotopic human pancreatic cancer xenografts in nude mice (overcoming the tumour stromal barrier)
[164], 2013
ATF-PEG-IONP-Cis or ATF-PEG-IONP-Dox
ATF (uPAR)
Cis or Dox
NIR optical imaging and MRI
Inhibit the growth of pancreatic tumours (i.p.); decrease proliferating tumour cells and tumour vessels; reduce the amount of ascites production
[165], 2017
LHRH-AE105-IONPs-PTX
LHRH (LHRH-R), AE105 (uPAR)
PTX
MRI
10 times reduction in the concentration of PTX required to achieve similar cytotoxic effect produced by the free drug (LHRH-R- and uPAR-overexpressing PC-3 cells)
[166], 2017
DTX/AE Lipo
AE147 (uPAR)
DTX
Fluorescence imaging
DTX/AE-Lipo (IC50 4.61 µg/mL) achieves better anticancer activity than free DTX (IC50 7.18 µg/mL) or DTX/Lipo (IC50 8.59 µg/mL)
[167], 2021
PAI-2 N-AI liposomes
PAI-2 (uPAR)
N-alkylisatin
NA
An increased accumulation at the primary tumour site in an orthotopic MDA-MB-231 BALB/c-Fox1nu/Ausb xenograft mouse model
[168], 2020
U11 peptide targeted NPs
U11 peptide (uPAR)
Plasmid DNA
Fluorescence imaging (Rhodamine)
Transfection of uPAR positive DU145 cells is essentially tenfold higher compared to transfection achieved by NPs having a scrambled peptide sequence on their surface
[105], 2009
U11-Dox/Cur NPs
U11 peptide (uPAR)
Dox/Cur
Fluorescence imaging (Coumarin 6)
Inhibit the tumour growth to a level of 85%
[169], 2019
ATF24-PEG-Lipo-β-E
ATF24 (uPAR)
β-E
Fluorescence imaging (Did)
Combined with Cis, exert a synergistic effect on cellular apoptosis and cell arrest at the G2/M phase (dependent on the caspase-dependent pathway and Cdc25C/Cdc2/cyclin B1 pathways)
[170], 2020
uPA-Anti-miR-21-Anti-miR-10b-NPs
uPA peptide (VSNKYFSNIHWGC)
Antisense-miR-21, antisense-miR-10b
Optical bioluminescence imaging (MDA-MB-231-Fluc-eGFP cells)
40% reduction in tumour growth compared to scrambled peptide conjugated NPs treated mice (0.15 mg/kg)
[171], 2015
siRNA small interfering RNA, TNBC triple-negative breast cancer, NIR near infrared, MRI magnetic resonance imaging, Gem gemcitabine, Cis Cisplatin, Dox doxorubicin, DTX docetaxel, Cur curcumin, PTX paclitaxel, β-E β-elemene, Cdc25C cell division cyclin 25C, Cdc2 cell division cycle protein 2, Dir 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindotricarbocyanine iodide, Did 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine perchlorate, NPs nanoparticles

uPAR-targeted PDT/PTT platforms

Among anticancer treatments, PDT and PTT are widely regarded as promising cancer therapeutic strategies due to their unique advantages such as minor trauma, improved selectivity, remarkable spatial/temporal resolution and reduced side effects [172]. PDT depends on photosensitizers (PSs) that produce reactive oxygen species (ROS) upon light activation, and subsequently induce cell apoptosis [173]. PTT is a type of phototherapy that converts absorbed light to local heat in tumours using various nanomaterials such as gold nanorods, carbon nanohorns and graphene oxide, and thus induces cell death [174]. Recently, a variety of uPAR-targeted PDT/PTT strategies have been developed to enhance the therapeutic effect on malignant tumours and reduce systemic side effects.
Li et al. engineered a U11 peptide modified gold nanocluster platform carrying the cathepsin E (CTSE)-sensitive PDT prodrug/imaging agent CRQAGFSL-5-aminolevulinic acid (5-ALA)/-cyanine 5.5 (Cy5.5) (AuS-U11), which showed excellent efficacy with endomicroscopy-guided PTT/PDT through the combination of active tumour targeting and enzyme-triggered release of 5-ALA and Cy5.5 in a PANC1-CSTE orthotopic tumour model [172] (Fig. 4). Li et al. prepared a human ATF-decorated human serum albumin (HSA) carrying the photosensitizer monosubstituted β-carboxy phthalocyanine zinc (CPZ) (hATF-HSA:CPZ), and detected a greater tumour accumulation than HSA:CPZ using fluorescent molecular tomography (FMT) by targeting uPAR on the tumour cell surface to subsequently achieve highly efficient photodynamic killing of tumours in an H22 tumour model [175]. Zhou et al. also generated a CPZ loaded mouse ATF-HSA (mATF-HSA:CPZ) that achieved an enhanced murine tumour targeting ability and an enhanced PDT efficacy compared with hATF-HSA:CPZ [176]. Based on this information, the author further developed CPZ-loaded uPAR-targeted receptor-responsive NPs (ATF-HSA:CPZ@RRNP) with a diameter of ~ 40 nm. Interestingly, ATF-HSA:CPZ@RRNP, but not the nontargeting NPs, disintegrated into 7.5 nm fragments and released its cargo in the presence of uPAR. These NPs also exhibited higher cytotoxicity toward H1299 cells and greater tumour accumulation and antitumor effects on the H22 tumour model than HSA:CPZ@RRNP [177]. Chen et al. designed an active targeting phototherapeutic agent by conjugating zinc phthalocyanine (ZnPc) with ATF (ATF-ZnPc), which not only exhibited a high binding affinity and potent PDT activities to uPAR-positive U937 and H1299 cells, but also was used as a biomarker for the noninvasive imaging of tumours [178].
In addition, Yu et al. developed uPAR-targeted polyetherimide-AE105 peptide (P-AE105) conjugated gold nanostars (GNS) carrying an iridium (Ir) complex that exerted enhanced anti-TNBC effects through the ROS-induced p53 apoptotic pathway, and showed excellent PT/photoacoustic (PA)/X-ray computed tomography (CT) imaging properties [179]. Hu et al. constructed an AE105 peptide conjugated gold nanorod mesoporous silica heterostructure loaded with Cis and Avastin (Cis-AuNRs@SiO2-Avastin@PEI/AE105), and observed a prominent photodynamic killing effect and anti-angiogenic activity by targeting uPAR and smart light-controlled drug release in a HeLa tumour model [180]. Zuo et al. designed and constructed AE105-decorated dendritic mesoporous silica NPs (DMSN) encapsulating photonic active ultrasmall Cu2−xS NPs and the sonosensitizer Rose Bengal (RB) (Cu2−xS-RB@DMSN-AE105, abbreviated as CRDA) for OSCC-targeting and synergetic PTT/sonodynamic therapy (SDT) [181]. Hu et al. also developed anti-uPAR antibody and indocyanine green (ICG)-modifed gold nanoshells (uIGNs), and achieved a 25% higher median survival rate and complete tumour ablation than clinical iodine-125 (125I) interstitial brachy-therapy (IBT-125-I). Furthermore, uIGNs prevented pancreatic tumour metastasis, as evidenced by real-time monitoring of metastatic tumours (less than 2 mm) using CT and NIR imaging [182]. The uPAR-targeted PDT/PTT platforms are summarized in Table 3.
Table 3
The uPAR-targeted PDT/PTT platforms
uPAR-targeted PDT/PTT platform
Target
Photosensitizer and drug
Imaging
Effect
References, year
AuS-U11 for confocal laser endomicroscopy-guided PTT/ PDT
U11 peptide (uPAR)
PTT-carrier gold nanocluster, CRQAGFSL-5-ALA, CRQAGFSL-Cy5.5
Fluorescence images (enzyme-triggered release of NIR fluorescent dye Cy5.5)
Better synergistic therapeutic effects as well as the reduced side effects in normal pancreas tissue (human pancreatic tumour cell line PANC1-CSTE and its orthotopic tumour model)
[172], 2017
hATF-HSA:CPZ
hATF (uPAR)
CPZ
FMT imaging (CPZ, 0.08 μmol/kg or 0.05 mg/kg)
A significant reduced tumour growth rate (H22 tumour-bearing Kunming mice model)
[175], 2014
mATF-HSA:CPZ
mATF (uPAR)
CPZ
FMT imaging (CPZ, 0.05 mg/kg)
A higher tumour killing efficacy than hATF-HSA:CPZ (H22 tumour-bearing mouse model)
[176], 2015
ATF-HSA: CPZ@RRNP
ATF (uPAR)
CPZ-loaded receptor-responsive nanoparticles
FMT imaging (CPZ, 0.05 mg/kg)
Higher uptake and cytotoxicity (H1299 lung cancer cells), higher tumour accumulation and better antitumour effect (H22 tumour-bearing mice), lower CPZ concentration (liver, kidney, spleen, lung, and heart)
[177], 2019
ATF-ZnPc
ATF (uPAR)
ZnPc
FMT imaging (ATF-ZnPc, 0.4 μmol/kg)
Potent PDT activities and enhanced antitumour activity (U937 and H1299 cells and H22 tumour-bearing mice)
[178], 2014
GNS@Ir@P-AE105
AE105 (uPAR)
GNS, Ir complex
PT/PA/X-ray CT trimodal imaging
Combinational photothermal-chemotherapeutic efficiency against TNBC via a ROS-induced p53 apoptotic pathway
[179], 2020
Cisplatin-AuNRs@SiO2-Avastin@PEI/AE105
AE105 (uPAR)
Gold nanorod mesoporous silica heterostructure, cisplatin, Avastin
Photothermal imaging (3 mg/kg)
Photodynamic activity via induction of ROS overproduction-mediated cell apoptosis, suppresses HeLa tumour growth and angiogenesis
[180], 2019
Cu2−xS-RB@DMSN-AE105
AE105 (uPAR)
Cu2−xS NPs, Rose Bengal
Infrared thermal imaging
Synergetic PTT/SDT nanotherapeutics against the OSCC both in vitro and in vivo, a prominent tumour inhibition rate of 103.4%
[181], 2020
uIGNs
Anti-uPAR antibody
ICG modifed gold nanoshells
CT and optical imaging (bioluminescence imaging and fluorescence imaging)
25% higher median survival rate of IPTT and complete tumour ablation by one-time intervention, inhibit pancreatic tumour metastasis
[182], 2017
PDT photodynamic therapy, PTT photothermal therapy, 5-ALA 5-aminolevulinic acid, Cy5.5 cyanine 5.5, HSA human serum albumin, CPZ mono-substituted β-carboxy phthalocyanine zinc, FMT fluorescent molecular tomography, ZnPc zinc phthalocyanine, SDT sonodynamic therapy, OSCC oral squamous cell carcinoma, CT computed tomography, PT photothermal, PA photoacoustic, GNS gold nanostars, Ir iridium, ICG indocyanine green, ROS reactive oxygen species, IPTT interventional PTT

uPAR-targeted oncolytic virotherapy

Oncolytic virotherapy is an emerging platform that represents a novel frontier for cancer treatment. Redirecting viral tropism to specific tumour targets is a promising strategy in the field of oncolytic viruses, which may increase safety and inhibit distant metastases of tumours [183]. Recently, some retargeted oncolytic measles viruses (MVs) against uPAR have been developed.
MV-h-uPA or MV-m-uPA, an Edmonston vaccine strain of oncolytic MVs constructed by the ATF of human or murine uPA and mutant MV-H glycoprotein, was able to replicate, and induce cytotoxicity in a species-specific manner. In vivo, MV-h-uPA successfully inhibited tumour growth (inhibition rate of 76% at Day 39), prolonged survival (70% survival rate at Day 80) and reduced metastatic progression in an MDA-MB-231 tumour model [184]. In addition, MV-m-uPA increased the death of murine mammary (4T1) and colon (MC-38 and CT-26) tumour cells overexpressing uPAR. MV-m-uPA also significantly enhanced the anticancer effects and prolonged survival in CT-26 and 4T1 tumour models [185], and delayed 4T1 lung metastasis progression. In conclusion, MV-uPA is a novel oncolytic MV associated with potent and specific antitumour and antimetastatic effects [186].
Tumour stroma-selective targeting by uPAR retargeted MVs is also associated with enhanced antitumour effects. For example, MV-m-uPA inhibits breast cancer cell proliferation by selectively targeting fibroblasts, and delays tumour progression and prolongs survival in mice bearing a human MDA-MB-231 tumour model [187]. MV-CD46-muPA, a dual-targeted oncolytic MV that simultaneously targets murine stromal (via uPAR) and human cancer cells (via CD46), markedly enhances antitumour effects on the HT-29 tumour model compared to CD46-targeted MV alone. The improved effect was associated with the modulation of viral deposition, cell cycle and metabolic pathways, increased apoptosis and decreased murine stromal [188].

uPAR-targeted gene therapy technologies

The development of efficient and reliable methods to generate precise, targeted changes in the genome of living cells is a long-standing goal for biomedical researchers. In uPAR-targeted gene therapy technologies, adenovirus-mediated antisense uPAR therapy first emerged as an effective tool for cancer treatment. For example, an adenoviral vector containing the uPAR antisense sequence (Ad-uPAR), an adenovirus containing uPAR antisense and p16 sense expression cassettes (Ad-uPAR/p16), an adenovirus expressing antisense uPAR and uPA sequences (Ad-uPAR-uPA), an adenovirus vector containing antisense uPAR and cathepsin B sequences (Ad-uPAR-Cath B), and an adenovirus expressing antisense uPAR and MMP-9 sequences (Ad-uPAR-MMP-9) were all successfully constructed and inhibited tumour growth and metastasis in gliomas and lung cancer models [189193].
Subsequently, RNA interference (RNAi) technologies, including siRNAs and short hairpin RNAs (shRNAs) targeting uPAR (siRNAs against uPAR, siRNAs against uPAR and cathepsin B, siRNAs against uPA and uPAR, shRNAs against uPAR, and shRNAs against uPA and uPAR), were developed to prevent tumour progression. Compared with siRNAs/shRNAs targeting uPAR, siRNAs targeting uPAR and uPA or siRNAs targeting uPAR and cathepsin B exerted a better antitumor effect by inhibiting tumour cell proliferation, migration and invasion and angiogenesis and promoting tumour cell apoptosis [70, 194198].
Recently, a new tool based on bacterial Cas9 from Streptococcus pyogenes has generated a considerable level of excitement. The RNA-guided CRISPR/Cas9 system is a powerful RNA-guided genome editing tool that utilizes a guide RNA (gRNA) to cleave the desired sequence in the genome and remove existing genes or add new genes. Due to the advantages of being fast, precise, and highly efficient, targeting uPAR with CRISPR/Cas9 technology has been successfully applied in a variety of malignant tumours to enhance the treatment effect [98]. Targeting uPAR in Neuro 2A cells using CRISPR/Cas9 decreases cell proliferation (~ 60%) and the number of Ki-67-positive cells by activating caspase-3, cleaving poly(ADP-ribose) polymerase-1 (PARP-1), and inhibiting tropomyosin receptor kinase C (TrkC) sactivity and AKT phosphorylation [199]. Wang et al. also targeted uPAR using CRISPR/Cas9 technology to suppress the proliferation, migration and invasion of HCT8/T and KBV200 cells. Furthermore, uPAR knockout inhibited MDR to 5-FU, Cis, DTX, and Dox [98]. Biagioni et al. also knocked out uPAR using the CRISPR/Cas9 system in human melanoma A375p and A375M6 cells and colon cancer HCT116 cells, inducing extensive glycolytic and oxidative phosphorylation reprogramming by blocking the glycolytic pathway while enhancing the mitochondrial spare respiratory capacity [200]. They also reported that uPAR deficiency mediated by CRISPR/Cas9 induced a stem-like phenotype, but uPAR knockout completely eliminated tumorigenesis [201].

uPAR-targeted monoclonal antibody therapy

A variety of monoclonal antibodies targeting uPAR have been developed, and exert antitumor effects by blocking the uPA/uPAR interaction or inhibiting the interactions between uPAR and integrin, EGFR, FPR, and Vn. The 2G10 antibody binds tightly to uPAR (Fab Kd = 10 × 10–9; IgG Kd = 2 × 10–12) by forming a stable complex with uPAR and disrupting the uPA/uPAR interaction. LeBeau et al. found that 30 mg/kg 2G10 IgG prevents the growth of TNBC, and 177Lu-labelled 2G10 completely eliminates tumours in orthotopic breast cancer models [202]. Harel et al. further prepared the antibody–drug conjugate 2G10-RED-244-MMAE to treat TNBC, and the tumour volume was significantly reduced [203]. Duriseti et al. identified a series of monoclonal antibodies that bind uPAR, including 2G10, 2E9 and 3C6. The 2G10 and 2E9 antibodies inhibited the uPA/uPAR interaction, whereas 3C6 inhibited the uPAR/β1 integrin interaction. Additionally, 3C6 abrogated uPAR/β1 integrin-mediated adhesion to Vn and fibronectin and exerted a synergistic effect with 2G10 on inhibiting invasion in H1299 cells [204].
ATN-658 is a humanized monoclonal antibody that binds to the D2D3 region of uPAR with high affinity (Kd ≈ 1 nmol/L), and the binding of ATN-658 to uPAR is not affected by the binding of uPA to uPAR. ATN-658 mainly inhibits the activation of downstream signalling pathways by inhibiting the uPAR/integrin interaction. ATN-658 inhibits the growth and liver metastasis of pancreatic cancer in situ and completely inhibits retroperitoneal infiltration; the antitumour effect is more obvious when this antibody is combined with Gem [65]. ATN-658 also significantly inhibits the growth of human colorectal cancer in the liver, and prevents the growth, migration, invasion and bone metastasis of prostate cancer [205, 206]. In addition, ATN-658 inhibits the metastasis of ovarian cancer and reduces the uPAR/α5-integrin interaction, and the tumour suppression rate is higher when it is combined with PTX [207]. ATN-658 significantly reduces the growth of MDA-MB-231 breast tumours, and when combined with Zometa, it significantly reduces the number of bone lesions caused by breast cancer by inhibiting the activity of osteoclasts [208]. Li et al. also prepared the monoclonal antibody ATN-615 that binds uPAR with high affinity (Kd ≈ 1 nmol/L) and does not block the uPA/uPAR interaction [209]. ATN-292, isotype IgG1κ, decreases the migration of human pancreatic carcinoma L3.6pl cells (70% ± 8%) by inhibiting the binding of uPA to uPAR [65].
Two antibodies, mAb R3 and mAb R5, are competitive and noncompetitive inhibiters of the uPA/uPAR interaction, respectively. mAb R5 binds the preformed complex and promotes the dissociation of the uPA/PAR complex, while mAb R3 does not promote the dissociation of the preformed complex [210]. Pass et al. developed an anti-muPAR murine mAb (mR1) that interferes with the muPA/muPAR interaction on P388D.1 cells with an IC50 of 0.67 nM [211]. A monoclonal antibody against human uPAR, mAb 3936, also inhibits hepatocyte growth factor (HGF)-mediated HepG2 and Hep3B cell invasion in a dose-dependent manner [212]. The mAb 8B12, a specific inhibitor that blocks the uPAR/Vn interaction, significantly decreases tumour growth by increasing cell apoptosis and reducing cell proliferation in a prostate cancer model. A crystal structure of the uPAR-8B12 complex showed that the structural epitope for 8B12 is located at the D2–D3 domain interface on the surface of uPAR [213].

uPAR-targeted tumour immunotherapy

As an innovative treatment method, tumour immunotherapy has shown potential to fight cancer by modulating the immune system, such as checkpoint inhibitors and adoptive cellular therapy using CAR T-cell [214]. Based on the high expression of uPAR on the surface of tumour cells, some researchers have explored the combination of CAR T-cell immunotherapy and uPAR targeting to treat uPAR-expressing malignancies or the use of uPAR as a target to induce immune-mediated clearance of uPAR-positive tumour cells by constructing ARMs.

uPAR-targeted CAR T-cell immunotherapy

CARs are synthetic receptors that contain an extracellular single-chain variable fragment (scFv), a hinge region that provides flexibility to the scFv, a transmembrane domain, and intracellular signalling/activation domain(s) [215, 216]. CAR T-cell immunotherapy, extracts the patient’s own key immune T-cells and embeds them with a CAR, that recognizes tumour cell surface antigens while activating T-cells to kill tumour cells. CAR T-cell immunotherapy has achieved remarkable success in treating refractory B-cell malignancies [217]. In recent years, some researchers have combined ATF and CAR T-cells to treat solid tumours with high uPAR expression. Wang et al. designed anti-uPAR CAR (ATF-CAR) T-cells constructed by combining an antigen recognition domain with ATF to transduce T-cells, and this treatment exhibited strong cytotoxicity toward uPAR-expressing ovarian cancer cells and released higher levels of Th1 cytokines [interferon-γ (IFN-γ), tumour necrosis factor (TNF) and interleukin-2 (IL-2)] and granzyme B than control T-cells [218]. Pathologically, cellular senescence may lead to a variety of diseases including cancer. Given the contribution of senescence to tumorigenesis, Amor et al. also developed an anti-uPAR CAR T-cells (m.uPAR-h.28z CAR T cells) by linking an anti-murine uPAR single chain variable fragment and human CD28 costimulatory and CD3ζ signalling domains to transduce human T-cells that efficiently cleared uPAR-expressing KP lung cancer cells, accompanied by increased secretion of granzyme B and IFN-γ. They also markedly prolonged survival and induced a significant decrease in the number of senescent tumour cells, accompanied by increased infiltration of CD4+ and CD8+ T cells in a mouse model of orthotopic KP lung adenocarcinoma [219].

uPAR-targeted ARMs

ARMs are antibody-binding molecules that exert antitumour effects by delivering endogenous antibodies to tumour tissues and destroying tumour cells via the activated immune system [220]. Jakobsche et al. designed and synthesized an antibody-recruiting complex ARM-U1 by attaching chloromethyl ketone 2 and 2,4-dinitrophenyl (DNP) to the active site of uPA that mediated both antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC) against uPAR-expressing cancer cells [221]. The authors further designed a second-generation ARM-U2 by replacing the uPA protein with a molecule of IPR-803. ARM-U2 also induced both ADCP and ADCC, and achieved a tumour growth inhibition of approximately 90% compared to PBS treatment in the B16-uPAR mouse allograft model. They also reported a cocrystal structure of the ARM-U2/uPAR complex for the first time. In conclusion, uPAR-specific CAR T cells and ARMs are promising immunotherapies that not only block the uPA/uPAR interaction, but also achieve immune-mediated cell death by targeting uPAR-expressing tumour cells [222]. In addition, Hu et al. developed an antibody-like molecule, ATF-Fc, formed by linking ATF and the human IgG1 Fc fragment. ATF-Fc inhibits the growth and metastasis of MCF-7 breast cancer and BGC-823 gastric cancer cells by destroying the interaction of uPA/uPAR and inhibiting tumour angiogenesis [223]. Zhou et al. further showed that the combination of ATF-Fc and trastuzumab better inhibits the growth and metastasis of HER-2-positive breast cancer cells by interfering with the uPA/uPAR and HER-2 pathways [224].

Concluding remarks

uPAR is an attractive target for the treatment of cancer because it appears to be expressed at high levels in tumours but low levels in normal tissue. uPAR also plays a comprehensive role in the development of tumours and is closely related to tumour proliferation and apoptosis, invasion and metastasis, prognosis, and tumour MDR, providing a basis for the development of multiple therapeutics agents targeting this protein. This review has summarized multiple new applications of uPAR as a target in nanoplatforms carrying therapeutic agents, PTT/PDT platforms, oncolytic virotherapy, gene therapy technologies, monoclonal antibody therapy and tumour immunotherapy in recent years. The development of therapeutic strategies that target tumours via uPAR recognition has proven its potential in animal models, but no uPAR-targeted therapeutic agents have been developed or evaluated in cancer clinical trials to date. Recently, ATN-658 has been humanized (huATN-658) and is awaiting clinical translation; and phase I clinical trials with 64Cu-DOTA-AE105 are being conducted to diagnose aggressive cancers and determine cancer aggressiveness. These two agents are expected to be administered to patients in the future.
Among uPAR-targeted therapeutic strategies, uPAR-targeted nanoplatforms also have great potential to achieve translation from laboratory findings to the clinic. Based on the high expression of uPAR on the surface of a variety of tumour cells, uPA/ATF/AE105/AE147/PAI-2/U11 modified nanoplatforms provide the possibility of reducing or overcoming the therapeutic limitations of conventional chemotherapy or PTT/PDT through targeted delivery to tumour cells without obvious toxicity to healthy tissue. Moreover, recent studies have a key role for the tumour microenvironment in promoting tumour proliferation, invasion and metastasis [225]. uPAR expression is not confined to tumour cells and is found on tumour-associated cell types, including macrophages, endothelial cells and fibroblasts. The development of uPAR-targeted stroma-breaking or stroma-penetrating NPs may allow therapeutic agents to overcome stromal barriers and reach tumour cells, which is highly likely to improve the therapeutic effect of current treatment agents and may provide better therapeutic options for patients to reduce tumour-associated metastasis.

Acknowledgements

Not applicable.

Declarations

Not applicable.
All authors have reviewed the final version of the manuscript and approved it for publication.

Competing interests

The authors declare no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Palfree RG. The urokinase-type plasminogen activator receptor is a member of the Ly-6 superfamily. Immunol Today. 1991;12(5):170.PubMedCrossRef Palfree RG. The urokinase-type plasminogen activator receptor is a member of the Ly-6 superfamily. Immunol Today. 1991;12(5):170.PubMedCrossRef
2.
Zurück zum Zitat Williams AF. Emergence of the Ly-6 superfamily of GPI-anchored molecules. Cell Biol Int Rep. 1991;15(9):769–77.PubMedCrossRef Williams AF. Emergence of the Ly-6 superfamily of GPI-anchored molecules. Cell Biol Int Rep. 1991;15(9):769–77.PubMedCrossRef
3.
Zurück zum Zitat Stoppelli MP, Corti A, Soffientini A, Cassani G, Blasi F, Assoian RK. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci USA. 1985;82(15):4939–43.PubMedPubMedCentralCrossRef Stoppelli MP, Corti A, Soffientini A, Cassani G, Blasi F, Assoian RK. Differentiation-enhanced binding of the amino-terminal fragment of human urokinase plasminogen activator to a specific receptor on U937 monocytes. Proc Natl Acad Sci USA. 1985;82(15):4939–43.PubMedPubMedCentralCrossRef
4.
Zurück zum Zitat Vassalli JD, Baccino D, Belin D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol. 1985;100(1):86–92.PubMedCrossRef Vassalli JD, Baccino D, Belin D. A cellular binding site for the Mr 55,000 form of the human plasminogen activator, urokinase. J Cell Biol. 1985;100(1):86–92.PubMedCrossRef
5.
Zurück zum Zitat Nielsen LS, Kellerman GM, Behrendt N, Picone R, Danø K, Blasi F. A 55000–60000 Mr receptor protein for urokinase-type plasminogen activator. Identification in human tumor cell lines and partial purification. J Biol Chem. 1988;263(5):2358–63.PubMedCrossRef Nielsen LS, Kellerman GM, Behrendt N, Picone R, Danø K, Blasi F. A 55000–60000 Mr receptor protein for urokinase-type plasminogen activator. Identification in human tumor cell lines and partial purification. J Biol Chem. 1988;263(5):2358–63.PubMedCrossRef
6.
Zurück zum Zitat Ploug M, Rønne E, Behrendt N, Jensen AL, Blasi F, Danø K. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem. 1991;266(3):1926–33.PubMedCrossRef Ploug M, Rønne E, Behrendt N, Jensen AL, Blasi F, Danø K. Cellular receptor for urokinase plasminogen activator. Carboxyl-terminal processing and membrane anchoring by glycosyl-phosphatidylinositol. J Biol Chem. 1991;266(3):1926–33.PubMedCrossRef
7.
Zurück zum Zitat Ellis V, Scully MF, Kakkar VV. Plasminogen activation initiated by single-chain urokinase-type plasminogen activator. Potentiation by U937 monocytes. J Biol Chem. 1989;264(4):2185–8.PubMedCrossRef Ellis V, Scully MF, Kakkar VV. Plasminogen activation initiated by single-chain urokinase-type plasminogen activator. Potentiation by U937 monocytes. J Biol Chem. 1989;264(4):2185–8.PubMedCrossRef
8.
Zurück zum Zitat Ellis V, Behrendt N, Danø K. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem. 1991;266(19):12752–8.PubMedCrossRef Ellis V, Behrendt N, Danø K. Plasminogen activation by receptor-bound urokinase. A kinetic study with both cell-associated and isolated receptor. J Biol Chem. 1991;266(19):12752–8.PubMedCrossRef
9.
Zurück zum Zitat Behrendt N, Rønne E, Danø K. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chem Hoppe Seyler. 1995;376(5):269–79.PubMed Behrendt N, Rønne E, Danø K. The structure and function of the urokinase receptor, a membrane protein governing plasminogen activation on the cell surface. Biol Chem Hoppe Seyler. 1995;376(5):269–79.PubMed
10.
Zurück zum Zitat Behrendt N. The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180): membrane proteins engaged in matrix turnover during tissue remodeling. Biol Chem. 2004;385(2):103–36.PubMedCrossRef Behrendt N. The urokinase receptor (uPAR) and the uPAR-associated protein (uPARAP/Endo180): membrane proteins engaged in matrix turnover during tissue remodeling. Biol Chem. 2004;385(2):103–36.PubMedCrossRef
11.
Zurück zum Zitat Cooper F, Overmiller AM, Loder A, Brennan-Crispi DM, McGuinn KP, Marous MR, Freeman TA, Riobo-Del Galdo NA, Siracusa LD, Wahl JR 3rd, et al. Enhancement of cutaneous wound healing by Dsg2 augmentation of uPAR secretion. J Invest Dermatol. 2018;138(11):2470–9.PubMedPubMedCentralCrossRef Cooper F, Overmiller AM, Loder A, Brennan-Crispi DM, McGuinn KP, Marous MR, Freeman TA, Riobo-Del Galdo NA, Siracusa LD, Wahl JR 3rd, et al. Enhancement of cutaneous wound healing by Dsg2 augmentation of uPAR secretion. J Invest Dermatol. 2018;138(11):2470–9.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Genua M, D’Alessio S, Cibella J, Gandelli A, Sala E, Correale C, Spinelli A, Arena V, Malesci A, Rutella S, et al. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut. 2015;64(4):589–600.PubMedCrossRef Genua M, D’Alessio S, Cibella J, Gandelli A, Sala E, Correale C, Spinelli A, Arena V, Malesci A, Rutella S, et al. The urokinase plasminogen activator receptor (uPAR) controls macrophage phagocytosis in intestinal inflammation. Gut. 2015;64(4):589–600.PubMedCrossRef
13.
Zurück zum Zitat Cheng Y, Hall TR, Xu X, Yung I, Souza D, Zheng J, Schiele F, Hoffmann M, Mbow ML, Garnett JP, et al. Targeting uPA-uPAR interaction to improve intestinal epithelial barrier integrity in inflammatory bowel disease. Ebiomedicine. 2022;75: 103758.PubMedCrossRef Cheng Y, Hall TR, Xu X, Yung I, Souza D, Zheng J, Schiele F, Hoffmann M, Mbow ML, Garnett JP, et al. Targeting uPA-uPAR interaction to improve intestinal epithelial barrier integrity in inflammatory bowel disease. Ebiomedicine. 2022;75: 103758.PubMedCrossRef
14.
Zurück zum Zitat Multhaupt HA, Mazar A, Cines DB, Warhol MJ, McCrae KR. Expression of urokinase receptors by human trophoblast. A histochemical and ultrastructural analysis. Lab Invest. 1994;71(3):392–400.PubMed Multhaupt HA, Mazar A, Cines DB, Warhol MJ, McCrae KR. Expression of urokinase receptors by human trophoblast. A histochemical and ultrastructural analysis. Lab Invest. 1994;71(3):392–400.PubMed
15.
Zurück zum Zitat Stephens RW, Pöllänen J, Tapiovaara H, Leung KC, Sim PS, Salonen EM, Rønne E, Behrendt N, Danø K, Vaheri A. Activation of pro-urokinase and plasminogen on human sarcoma cells: a proteolytic system with surface-bound reactants. J Cell Biol. 1989;108(5):1987–95.PubMedCrossRef Stephens RW, Pöllänen J, Tapiovaara H, Leung KC, Sim PS, Salonen EM, Rønne E, Behrendt N, Danø K, Vaheri A. Activation of pro-urokinase and plasminogen on human sarcoma cells: a proteolytic system with surface-bound reactants. J Cell Biol. 1989;108(5):1987–95.PubMedCrossRef
16.
Zurück zum Zitat Plow EF, Miles LA. Plasminogen receptors in the mediation of pericellular proteolysis. Cell Differ Dev. 1990;32(3):293–8.PubMedCrossRef Plow EF, Miles LA. Plasminogen receptors in the mediation of pericellular proteolysis. Cell Differ Dev. 1990;32(3):293–8.PubMedCrossRef
17.
Zurück zum Zitat Hahn-Dantona E, Ramos-DeSimone N, Sipley J, Nagase H, French DL, Quigley JP. Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann N Y Acad Sci. 1999;878:372–87.PubMedCrossRef Hahn-Dantona E, Ramos-DeSimone N, Sipley J, Nagase H, French DL, Quigley JP. Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann N Y Acad Sci. 1999;878:372–87.PubMedCrossRef
18.
Zurück zum Zitat Legrand C, Polette M, Tournier JM, de Bentzmann S, Huet E, Monteau M, Birembaut P. uPA/plasmin system-mediated MMP-9 activation is implicated in bronchial epithelial cell migration. Exp Cell Res. 2001;264(2):326–36.PubMedCrossRef Legrand C, Polette M, Tournier JM, de Bentzmann S, Huet E, Monteau M, Birembaut P. uPA/plasmin system-mediated MMP-9 activation is implicated in bronchial epithelial cell migration. Exp Cell Res. 2001;264(2):326–36.PubMedCrossRef
19.
Zurück zum Zitat Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem. 1999;274(19):13066–76.PubMedCrossRef Ramos-DeSimone N, Hahn-Dantona E, Sipley J, Nagase H, French DL, Quigley JP. Activation of matrix metalloproteinase-9 (MMP-9) via a converging plasmin/stromelysin-1 cascade enhances tumor cell invasion. J Biol Chem. 1999;274(19):13066–76.PubMedCrossRef
20.
Zurück zum Zitat Pedrozo HA, Schwartz Z, Robinson M, Gomes R, Dean DD, Bonewald LF, Boyan BD. Potential mechanisms for the plasmin-mediated release and activation of latent transforming growth factor-beta1 from the extracellular matrix of growth plate chondrocytes. Endocrinology. 1999;140(12):5806–16.PubMedCrossRef Pedrozo HA, Schwartz Z, Robinson M, Gomes R, Dean DD, Bonewald LF, Boyan BD. Potential mechanisms for the plasmin-mediated release and activation of latent transforming growth factor-beta1 from the extracellular matrix of growth plate chondrocytes. Endocrinology. 1999;140(12):5806–16.PubMedCrossRef
21.
Zurück zum Zitat Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993;4(12):1317–26.PubMedPubMedCentralCrossRef Park JE, Keller GA, Ferrara N. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993;4(12):1317–26.PubMedPubMedCentralCrossRef
22.
Zurück zum Zitat Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem. 1994;269(51):32380–8.PubMedCrossRef Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem. 1994;269(51):32380–8.PubMedCrossRef
23.
Zurück zum Zitat Kugler MC, Wei Y, Chapman HA. Urokinase receptor and integrin interactions. Curr Pharm Des. 2003;9(19):1565–74.PubMedCrossRef Kugler MC, Wei Y, Chapman HA. Urokinase receptor and integrin interactions. Curr Pharm Des. 2003;9(19):1565–74.PubMedCrossRef
24.
Zurück zum Zitat Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA. Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell. 2001;12(10):2975–86.PubMedPubMedCentralCrossRef Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA. Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell. 2001;12(10):2975–86.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Wei Y, Czekay RP, Robillard L, Kugler MC, Zhang F, Kim KK, Xiong JP, Humphries MJ, Chapman HA. Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding. J Cell Biol. 2005;168(3):501–11.PubMedPubMedCentralCrossRef Wei Y, Czekay RP, Robillard L, Kugler MC, Zhang F, Kim KK, Xiong JP, Humphries MJ, Chapman HA. Regulation of alpha5beta1 integrin conformation and function by urokinase receptor binding. J Cell Biol. 2005;168(3):501–11.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Tarui T, Mazar AP, Cines DB, Takada Y. Urokinase-type plasminogen activator receptor (CD87) is a ligand for integrins and mediates cell-cell interaction. J Biol Chem. 2001;276(6):3983–90.PubMedCrossRef Tarui T, Mazar AP, Cines DB, Takada Y. Urokinase-type plasminogen activator receptor (CD87) is a ligand for integrins and mediates cell-cell interaction. J Biol Chem. 2001;276(6):3983–90.PubMedCrossRef
27.
Zurück zum Zitat Carriero MV, Del Vecchio S, Capozzoli M, Franco P, Fontana L, Zannetti A, Botti G, D’Aiuto G, Salvatore M, Stoppelli MP. Urokinase receptor interacts with alpha(v)beta5 vitronectin receptor, promoting urokinase-dependent cell migration in breast cancer. Cancer Res. 1999;59(20):5307–14.PubMed Carriero MV, Del Vecchio S, Capozzoli M, Franco P, Fontana L, Zannetti A, Botti G, D’Aiuto G, Salvatore M, Stoppelli MP. Urokinase receptor interacts with alpha(v)beta5 vitronectin receptor, promoting urokinase-dependent cell migration in breast cancer. Cancer Res. 1999;59(20):5307–14.PubMed
28.
Zurück zum Zitat Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell. 2002;1(5):445–57.PubMedCrossRef Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L. EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell. 2002;1(5):445–57.PubMedCrossRef
29.
Zurück zum Zitat Aguirre Ghiso JA. Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene. 2002;21(16):2513–24.PubMedCrossRef Aguirre Ghiso JA. Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo. Oncogene. 2002;21(16):2513–24.PubMedCrossRef
30.
Zurück zum Zitat Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell. 2001;12(4):863–79.PubMedPubMedCentralCrossRef Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L. Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell. 2001;12(4):863–79.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Ma Z, Thomas KS, Webb DJ, Moravec R, Salicioni AM, Mars WM, Gonias SL. Regulation of Rac1 activation by the low density lipoprotein receptor-related protein. J Cell Biol. 2002;159(6):1061–70.PubMedPubMedCentralCrossRef Ma Z, Thomas KS, Webb DJ, Moravec R, Salicioni AM, Mars WM, Gonias SL. Regulation of Rac1 activation by the low density lipoprotein receptor-related protein. J Cell Biol. 2002;159(6):1061–70.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Kiyan J, Kiyan R, Haller H, Dumler I. Urokinase-induced signaling in human vascular smooth muscle cells is mediated by PDGFR-beta. EMBO J. 2005;24(10):1787–97.PubMedPubMedCentralCrossRef Kiyan J, Kiyan R, Haller H, Dumler I. Urokinase-induced signaling in human vascular smooth muscle cells is mediated by PDGFR-beta. EMBO J. 2005;24(10):1787–97.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Liu K, Fan J, Wu J. Sushi repeat-containing protein X-linked 2 promotes angiogenesis through the urokinase-type plasminogen activator receptor dependent integrin avβ3/focal adhesion kinase pathways. Drug Discov Ther. 2017;11(4):212–7.PubMedCrossRef Liu K, Fan J, Wu J. Sushi repeat-containing protein X-linked 2 promotes angiogenesis through the urokinase-type plasminogen activator receptor dependent integrin avβ3/focal adhesion kinase pathways. Drug Discov Ther. 2017;11(4):212–7.PubMedCrossRef
34.
Zurück zum Zitat Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, Blasi F. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci USA. 2002;99(3):1359–64.PubMedPubMedCentralCrossRef Resnati M, Pallavicini I, Wang JM, Oppenheim J, Serhan CN, Romano M, Blasi F. The fibrinolytic receptor for urokinase activates the G protein-coupled chemotactic receptor FPRL1/LXA4R. Proc Natl Acad Sci USA. 2002;99(3):1359–64.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Han Q, Leng J, Bian D, Mahanivong C, Carpenter KA, Pan ZK, Han J, Huang S. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem. 2002;277(50):48379–85.PubMedCrossRef Han Q, Leng J, Bian D, Mahanivong C, Carpenter KA, Pan ZK, Han J, Huang S. Rac1-MKK3-p38-MAPKAPK2 pathway promotes urokinase plasminogen activator mRNA stability in invasive breast cancer cells. J Biol Chem. 2002;277(50):48379–85.PubMedCrossRef
36.
Zurück zum Zitat Koshelnick Y, Ehart M, Hufnagl P, Heinrich PC, Binder BR. Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J Biol Chem. 1997;272(45):28563–7.PubMedCrossRef Koshelnick Y, Ehart M, Hufnagl P, Heinrich PC, Binder BR. Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J Biol Chem. 1997;272(45):28563–7.PubMedCrossRef
37.
Zurück zum Zitat Bifulco K, Longanesi-Cattani I, Gala M, Di Carluccio G, Masucci MT, Pavone V, Lista L, Arra C, Stoppelli MP, Carriero MV. The soluble form of urokinase receptor promotes angiogenesis through its Ser88-Arg-Ser-Arg-Tyr92 chemotactic sequence. J Thromb Haemost. 2010;8(12):2789–99.PubMedCrossRef Bifulco K, Longanesi-Cattani I, Gala M, Di Carluccio G, Masucci MT, Pavone V, Lista L, Arra C, Stoppelli MP, Carriero MV. The soluble form of urokinase receptor promotes angiogenesis through its Ser88-Arg-Ser-Arg-Tyr92 chemotactic sequence. J Thromb Haemost. 2010;8(12):2789–99.PubMedCrossRef
38.
Zurück zum Zitat Rossi FW, Prevete N, Rivellese F, Napolitano F, Montuori N, Postiglione L, Selleri C, de Paulis A. The urokinase/urokinase receptor system in mast cells: effects of its functional interaction with fMLF receptors. Transl Med UniSa. 2016;15:34–41.PubMedPubMedCentral Rossi FW, Prevete N, Rivellese F, Napolitano F, Montuori N, Postiglione L, Selleri C, de Paulis A. The urokinase/urokinase receptor system in mast cells: effects of its functional interaction with fMLF receptors. Transl Med UniSa. 2016;15:34–41.PubMedPubMedCentral
39.
Zurück zum Zitat Olson D, Pöllänen J, Høyer-Hansen G, Rønne E, Sakaguchi K, Wun TC, Appella E, Danø K, Blasi F. Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. J Biol Chem. 1992;267(13):9129–33.PubMedCrossRef Olson D, Pöllänen J, Høyer-Hansen G, Rønne E, Sakaguchi K, Wun TC, Appella E, Danø K, Blasi F. Internalization of the urokinase-plasminogen activator inhibitor type-1 complex is mediated by the urokinase receptor. J Biol Chem. 1992;267(13):9129–33.PubMedCrossRef
40.
Zurück zum Zitat Nykjaer A, Conese M, Christensen EI, Olson D, Cremona O, Gliemann J, Blasi F. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. Embo J. 1997;16(10):2610–20.PubMedPubMedCentralCrossRef Nykjaer A, Conese M, Christensen EI, Olson D, Cremona O, Gliemann J, Blasi F. Recycling of the urokinase receptor upon internalization of the uPA:serpin complexes. Embo J. 1997;16(10):2610–20.PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Czekay RP, Kuemmel TA, Orlando RA, Farquhar MG. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol Biol Cell. 2001;12(5):1467–79.PubMedPubMedCentralCrossRef Czekay RP, Kuemmel TA, Orlando RA, Farquhar MG. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol Biol Cell. 2001;12(5):1467–79.PubMedPubMedCentralCrossRef
42.
Zurück zum Zitat Fisher JL, Field CL, Zhou H, Harris TL, Henderson MA, Choong PF. Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastases—a comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases. Breast Cancer Res Treat. 2000;61(1):1–12.PubMedCrossRef Fisher JL, Field CL, Zhou H, Harris TL, Henderson MA, Choong PF. Urokinase plasminogen activator system gene expression is increased in human breast carcinoma and its bone metastases—a comparison of normal breast tissue, non-invasive and invasive carcinoma and osseous metastases. Breast Cancer Res Treat. 2000;61(1):1–12.PubMedCrossRef
43.
Zurück zum Zitat He C, He P, Liu LP, Zhu YS. Analysis of expressions of components in the plasminogen activator system in high- and low-metastatic human lung cancer cells. J Cancer Res Clin Oncol. 2001;127(3):180–6.PubMedCrossRef He C, He P, Liu LP, Zhu YS. Analysis of expressions of components in the plasminogen activator system in high- and low-metastatic human lung cancer cells. J Cancer Res Clin Oncol. 2001;127(3):180–6.PubMedCrossRef
44.
Zurück zum Zitat Dohn LH, Pappot H, Iversen BR, Illemann M, Høyer-Hansen G, Christensen IJ, Thind P, Salling L, von der Maase H, Laerum OD. uPAR expression pattern in patients with urothelial carcinoma of the bladder—possible clinical implications. PLoS ONE. 2015;10(8): e0135824.PubMedPubMedCentralCrossRef Dohn LH, Pappot H, Iversen BR, Illemann M, Høyer-Hansen G, Christensen IJ, Thind P, Salling L, von der Maase H, Laerum OD. uPAR expression pattern in patients with urothelial carcinoma of the bladder—possible clinical implications. PLoS ONE. 2015;10(8): e0135824.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Mabrouk RA, Ali-Labib R. Detection of urokinase plasminogen activator receptor and c-erbB-2 in sera of patients with breast and ovarian carcinoma. Clin Biochem. 2003;36(7):537–43.PubMedCrossRef Mabrouk RA, Ali-Labib R. Detection of urokinase plasminogen activator receptor and c-erbB-2 in sera of patients with breast and ovarian carcinoma. Clin Biochem. 2003;36(7):537–43.PubMedCrossRef
46.
Zurück zum Zitat Kimura S, D’Andrea D, Iwata T, Foerster B, Janisch F, Parizi MK, Moschini M, Briganti A, Babjuk M, Chlosta P, et al. Expression of urokinase-type plasminogen activator system in non-metastatic prostate cancer. World J Urol. 2020;38(10):2501–11.PubMedCrossRef Kimura S, D’Andrea D, Iwata T, Foerster B, Janisch F, Parizi MK, Moschini M, Briganti A, Babjuk M, Chlosta P, et al. Expression of urokinase-type plasminogen activator system in non-metastatic prostate cancer. World J Urol. 2020;38(10):2501–11.PubMedCrossRef
47.
Zurück zum Zitat Morita Y, Hayashi Y, Wang Y, Kanamaru T, Suzuki S, Kawasaki K, Ohta K, Yamamoto M, Saitoh Y, Itoh H, et al. Expression of urokinase-type plasminogen activator receptor in hepatocellular carcinoma. Hepatology. 1997;25(4):856–61.PubMedCrossRef Morita Y, Hayashi Y, Wang Y, Kanamaru T, Suzuki S, Kawasaki K, Ohta K, Yamamoto M, Saitoh Y, Itoh H, et al. Expression of urokinase-type plasminogen activator receptor in hepatocellular carcinoma. Hepatology. 1997;25(4):856–61.PubMedCrossRef
48.
Zurück zum Zitat Pyke C, Ralfkiaer E, Rønne E, Høyer-Hansen G, Kirkeby L, Danø K. Immunohistochemical detection of the receptor for urokinase plasminogen activator in human colon cancer. Histopathology. 1994;24(2):131–8.PubMedCrossRef Pyke C, Ralfkiaer E, Rønne E, Høyer-Hansen G, Kirkeby L, Danø K. Immunohistochemical detection of the receptor for urokinase plasminogen activator in human colon cancer. Histopathology. 1994;24(2):131–8.PubMedCrossRef
49.
Zurück zum Zitat Cantero D, Friess H, Deflorin J, Zimmermann A, Bründler MA, Riesle E, Korc M, Büchler MW. Enhanced expression of urokinase plasminogen activator and its receptor in pancreatic carcinoma. Br J Cancer. 1997;75(3):388–95.PubMedPubMedCentralCrossRef Cantero D, Friess H, Deflorin J, Zimmermann A, Bründler MA, Riesle E, Korc M, Büchler MW. Enhanced expression of urokinase plasminogen activator and its receptor in pancreatic carcinoma. Br J Cancer. 1997;75(3):388–95.PubMedPubMedCentralCrossRef
50.
Zurück zum Zitat Hong SI, Park IC, Son YS, Lee SH, Kim BG, Lee JI, Lee TW, Kook YH, Min YI, Hong WS. Expression of urokinase-type plasminogen activator, its receptor, and its inhibitor in gastric adenocarcinoma tissues. J Korean Med Sci. 1996;11(1):33–7.PubMedPubMedCentralCrossRef Hong SI, Park IC, Son YS, Lee SH, Kim BG, Lee JI, Lee TW, Kook YH, Min YI, Hong WS. Expression of urokinase-type plasminogen activator, its receptor, and its inhibitor in gastric adenocarcinoma tissues. J Korean Med Sci. 1996;11(1):33–7.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Yamamoto M, Sawaya R, Mohanam S, Rao VH, Bruner JM, Nicolson GL, Rao JS. Expression and localization of urokinase-type plasminogen activator receptor in human gliomas. Cancer Res. 1994;54(18):5016–20.PubMed Yamamoto M, Sawaya R, Mohanam S, Rao VH, Bruner JM, Nicolson GL, Rao JS. Expression and localization of urokinase-type plasminogen activator receptor in human gliomas. Cancer Res. 1994;54(18):5016–20.PubMed
52.
Zurück zum Zitat Graf M, Reif S, Hecht K, Pelka-Fleischer R, Pfister K, Schmetzer H. High expression of urokinase plasminogen activator receptor (UPA-R) in acute myeloid leukemia (AML) is associated with worse prognosis. Am J Hematol. 2005;79(1):26–35.PubMedCrossRef Graf M, Reif S, Hecht K, Pelka-Fleischer R, Pfister K, Schmetzer H. High expression of urokinase plasminogen activator receptor (UPA-R) in acute myeloid leukemia (AML) is associated with worse prognosis. Am J Hematol. 2005;79(1):26–35.PubMedCrossRef
53.
Zurück zum Zitat Shou LH, Cao D, Dong XH, Fang Q, Xu BL, Fei JP. Bone marrow urokinase plasminogen activator receptor levels are associated with the progress of multiple myeloma. Chin Med Sci J. 2016;31(3):155–60.PubMedCrossRef Shou LH, Cao D, Dong XH, Fang Q, Xu BL, Fei JP. Bone marrow urokinase plasminogen activator receptor levels are associated with the progress of multiple myeloma. Chin Med Sci J. 2016;31(3):155–60.PubMedCrossRef
54.
Zurück zum Zitat Pierga JY, Bonneton C, Magdelénat H, Vincent-Salomon A, Nos C, Boudou E, Pouillart P, Thiery JP, de Cremoux P. Real-time quantitative PCR determination of urokinase-type plasminogen activator receptor (uPAR) expression of isolated micrometastatic cells from bone marrow of breast cancer patients. Int J Cancer. 2005;114(2):291–8.PubMedCrossRef Pierga JY, Bonneton C, Magdelénat H, Vincent-Salomon A, Nos C, Boudou E, Pouillart P, Thiery JP, de Cremoux P. Real-time quantitative PCR determination of urokinase-type plasminogen activator receptor (uPAR) expression of isolated micrometastatic cells from bone marrow of breast cancer patients. Int J Cancer. 2005;114(2):291–8.PubMedCrossRef
55.
Zurück zum Zitat Hildenbrand R, Schaaf A, Dorn-Beineke A, Allgayer H, Sütterlin M, Marx A, Stroebel P. Tumor stroma is the predominant uPA-, uPAR-, PAI-1-expressing tissue in human breast cancer: prognostic impact. Histol Histopathol. 2009;24(7):869–77.PubMed Hildenbrand R, Schaaf A, Dorn-Beineke A, Allgayer H, Sütterlin M, Marx A, Stroebel P. Tumor stroma is the predominant uPA-, uPAR-, PAI-1-expressing tissue in human breast cancer: prognostic impact. Histol Histopathol. 2009;24(7):869–77.PubMed
56.
Zurück zum Zitat Boonstra MC, Verbeek FP, Mazar AP, Prevoo HA, Kuppen PJ, van de Velde CJ, Vahrmeijer AL, Sier CF. Expression of uPAR in tumor-associated stromal cells is associated with colorectal cancer patient prognosis: a TMA study. BMC Cancer. 2014;14:269.PubMedPubMedCentralCrossRef Boonstra MC, Verbeek FP, Mazar AP, Prevoo HA, Kuppen PJ, van de Velde CJ, Vahrmeijer AL, Sier CF. Expression of uPAR in tumor-associated stromal cells is associated with colorectal cancer patient prognosis: a TMA study. BMC Cancer. 2014;14:269.PubMedPubMedCentralCrossRef
57.
Zurück zum Zitat de Geus SW, Baart VM, Boonstra MC, Kuppen PJ, Prevoo HA, Mazar AP, Bonsing BA, Morreau H, van de Velde CJ, Vahrmeijer AL, et al. Prognostic impact of urokinase plasminogen activator receptor expression in pancreatic cancer: malignant versus stromal cells. Biomark Insights. 2017;12:1177271917715443.PubMedPubMedCentral de Geus SW, Baart VM, Boonstra MC, Kuppen PJ, Prevoo HA, Mazar AP, Bonsing BA, Morreau H, van de Velde CJ, Vahrmeijer AL, et al. Prognostic impact of urokinase plasminogen activator receptor expression in pancreatic cancer: malignant versus stromal cells. Biomark Insights. 2017;12:1177271917715443.PubMedPubMedCentral
58.
Zurück zum Zitat Tang CH, Hill ML, Brumwell AN, Chapman HA, Wei Y. Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins. J Cell Sci. 2008;121(Pt 22):3747–56.PubMedCrossRef Tang CH, Hill ML, Brumwell AN, Chapman HA, Wei Y. Signaling through urokinase and urokinase receptor in lung cancer cells requires interactions with beta1 integrins. J Cell Sci. 2008;121(Pt 22):3747–56.PubMedCrossRef
59.
Zurück zum Zitat Gomes-Giacoia E, Miyake M, Goodison S, Rosser CJ. Targeting plasminogen activator inhibitor-1 inhibits angiogenesis and tumor growth in a human cancer xenograft model. Mol Cancer Ther. 2013;12(12):2697–708.PubMedPubMedCentralCrossRef Gomes-Giacoia E, Miyake M, Goodison S, Rosser CJ. Targeting plasminogen activator inhibitor-1 inhibits angiogenesis and tumor growth in a human cancer xenograft model. Mol Cancer Ther. 2013;12(12):2697–708.PubMedPubMedCentralCrossRef
60.
Zurück zum Zitat Gogineni VR, Gupta R, Nalla AK, Velpula KK, Rao JS. uPAR and cathepsin B shRNA impedes TGF-β1-driven proliferation and invasion of meningioma cells in a XIAP-dependent pathway. Cell Death Dis. 2012;3(12): e439.PubMedPubMedCentralCrossRef Gogineni VR, Gupta R, Nalla AK, Velpula KK, Rao JS. uPAR and cathepsin B shRNA impedes TGF-β1-driven proliferation and invasion of meningioma cells in a XIAP-dependent pathway. Cell Death Dis. 2012;3(12): e439.PubMedPubMedCentralCrossRef
61.
Zurück zum Zitat Yanamandra N, Konduri SD, Mohanam S, Dinh DH, Olivero WC, Gujrati M, Nicolson GL, Obeyeseke M, Rao JS. Downregulation of urokinase-type plasminogen activator receptor (uPAR) induces caspase-mediated cell death in human glioblastoma cells. Clin Exp Metastasis. 2001;18(7):611–5.CrossRef Yanamandra N, Konduri SD, Mohanam S, Dinh DH, Olivero WC, Gujrati M, Nicolson GL, Obeyeseke M, Rao JS. Downregulation of urokinase-type plasminogen activator receptor (uPAR) induces caspase-mediated cell death in human glioblastoma cells. Clin Exp Metastasis. 2001;18(7):611–5.CrossRef
62.
Zurück zum Zitat Matheis F, Heppt MV, Graf SA, Düwell P, Kammerbauer C, Aigner A, Besch R, Berking C. A bifunctional approach of immunostimulation and uPAR inhibition shows potent antitumor activity in melanoma. J Invest Dermatol. 2016;136(12):2475–84.PubMedCrossRef Matheis F, Heppt MV, Graf SA, Düwell P, Kammerbauer C, Aigner A, Besch R, Berking C. A bifunctional approach of immunostimulation and uPAR inhibition shows potent antitumor activity in melanoma. J Invest Dermatol. 2016;136(12):2475–84.PubMedCrossRef
63.
Zurück zum Zitat Gondi CS, Kandhukuri N, Dinh DH, Gujrati M, Rao JS. Down-regulation of uPAR and uPA activates caspase-mediated apoptosis and inhibits the PI3K/AKT pathway. Int J Oncol. 2007;31(1):19–27.PubMed Gondi CS, Kandhukuri N, Dinh DH, Gujrati M, Rao JS. Down-regulation of uPAR and uPA activates caspase-mediated apoptosis and inhibits the PI3K/AKT pathway. Int J Oncol. 2007;31(1):19–27.PubMed
64.
Zurück zum Zitat Raghu H, Gondi CS, Dinh DH, Gujrati M, Rao JS. Specific knockdown of uPA/uPAR attenuates invasion in glioblastoma cells and xenografts by inhibition of cleavage and trafficking of Notch-1 receptor. Mol Cancer. 2011;10:130.PubMedPubMedCentralCrossRef Raghu H, Gondi CS, Dinh DH, Gujrati M, Rao JS. Specific knockdown of uPA/uPAR attenuates invasion in glioblastoma cells and xenografts by inhibition of cleavage and trafficking of Notch-1 receptor. Mol Cancer. 2011;10:130.PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Bauer TW, Liu W, Fan F, Camp ER, Yang A, Somcio RJ, Bucana CD, Callahan J, Parry GC, Evans DB, et al. Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-Met- and insulin-like growth factor-I receptor-mediated migration and invasion and orthotopic tumor growth in mice. Cancer Res. 2005;65(17):7775–81.PubMedCrossRef Bauer TW, Liu W, Fan F, Camp ER, Yang A, Somcio RJ, Bucana CD, Callahan J, Parry GC, Evans DB, et al. Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-Met- and insulin-like growth factor-I receptor-mediated migration and invasion and orthotopic tumor growth in mice. Cancer Res. 2005;65(17):7775–81.PubMedCrossRef
66.
Zurück zum Zitat Subramanian R, Gondi CS, Lakka SS, Jutla A, Rao JS. siRNA-mediated simultaneous downregulation of uPA and its receptor inhibits angiogenesis and invasiveness triggering apoptosis in breast cancer cells. Int J Oncol. 2006;28(4):831–9.PubMed Subramanian R, Gondi CS, Lakka SS, Jutla A, Rao JS. siRNA-mediated simultaneous downregulation of uPA and its receptor inhibits angiogenesis and invasiveness triggering apoptosis in breast cancer cells. Int J Oncol. 2006;28(4):831–9.PubMed
67.
Zurück zum Zitat Li C, Cao S, Liu Z, Ye X, Chen L, Meng S. RNAi-mediated downregulation of uPAR synergizes with targeting of HER2 through the ERK pathway in breast cancer cells. Int J Cancer. 2010;127(7):1507–16.PubMedCrossRef Li C, Cao S, Liu Z, Ye X, Chen L, Meng S. RNAi-mediated downregulation of uPAR synergizes with targeting of HER2 through the ERK pathway in breast cancer cells. Int J Cancer. 2010;127(7):1507–16.PubMedCrossRef
68.
Zurück zum Zitat Huber MC, Mall R, Braselmann H, Feuchtinger A, Molatore S, Lindner K, Walch A, Gross E, Schmitt M, Falkenberg N, et al. uPAR enhances malignant potential of triple-negative breast cancer by directly interacting with uPA and IGF1R. BMC Cancer. 2016;16:615.PubMedPubMedCentralCrossRef Huber MC, Mall R, Braselmann H, Feuchtinger A, Molatore S, Lindner K, Walch A, Gross E, Schmitt M, Falkenberg N, et al. uPAR enhances malignant potential of triple-negative breast cancer by directly interacting with uPA and IGF1R. BMC Cancer. 2016;16:615.PubMedPubMedCentralCrossRef
69.
Zurück zum Zitat Unseld M, Chilla A, Pausz C, Mawas R, Breuss J, Zielinski C, Schabbauer G, Prager GW. PTEN expression in endothelial cells is down-regulated by uPAR to promote angiogenesis. Thromb Haemost. 2015;114(2):379–89.PubMedCrossRef Unseld M, Chilla A, Pausz C, Mawas R, Breuss J, Zielinski C, Schabbauer G, Prager GW. PTEN expression in endothelial cells is down-regulated by uPAR to promote angiogenesis. Thromb Haemost. 2015;114(2):379–89.PubMedCrossRef
70.
Zurück zum Zitat Raghu H, Nalla AK, Gondi CS, Gujrati M, Dinh DH, Rao JS. uPA and uPAR shRNA inhibit angiogenesis via enhanced secretion of SVEGFR1 independent of GM-CSF but dependent on TIMP-1 in endothelial and glioblastoma cells. Mol Oncol. 2012;6(1):33–47.PubMedCrossRef Raghu H, Nalla AK, Gondi CS, Gujrati M, Dinh DH, Rao JS. uPA and uPAR shRNA inhibit angiogenesis via enhanced secretion of SVEGFR1 independent of GM-CSF but dependent on TIMP-1 in endothelial and glioblastoma cells. Mol Oncol. 2012;6(1):33–47.PubMedCrossRef
71.
Zurück zum Zitat Herkenne S, Paques C, Nivelles O, Lion M, Bajou K, Pollenus T, Fontaine M, Carmeliet P, Martial JA, Nguyen NQ, et al. The interaction of uPAR with VEGFR2 promotes VEGF-induced angiogenesis. Sci Signal. 2015;8(403): ra117.PubMedCrossRef Herkenne S, Paques C, Nivelles O, Lion M, Bajou K, Pollenus T, Fontaine M, Carmeliet P, Martial JA, Nguyen NQ, et al. The interaction of uPAR with VEGFR2 promotes VEGF-induced angiogenesis. Sci Signal. 2015;8(403): ra117.PubMedCrossRef
72.
Zurück zum Zitat Madunić J. The urokinase plasminogen activator system in human cancers: an overview of its prognostic and predictive role. Thromb Haemost. 2018;118(12):2020–36.PubMedCrossRef Madunić J. The urokinase plasminogen activator system in human cancers: an overview of its prognostic and predictive role. Thromb Haemost. 2018;118(12):2020–36.PubMedCrossRef
73.
Zurück zum Zitat Shariat SF, Roehrborn CG, McConnell JD, Park S, Alam N, Wheeler TM, Slawin KM. Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J Clin Oncol. 2007;25(4):349–55.PubMedCrossRef Shariat SF, Roehrborn CG, McConnell JD, Park S, Alam N, Wheeler TM, Slawin KM. Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J Clin Oncol. 2007;25(4):349–55.PubMedCrossRef
74.
Zurück zum Zitat Kumano M, Miyake H, Muramaki M, Furukawa J, Takenaka A, Fujisawa M. Expression of urokinase-type plasminogen activator system in prostate cancer: correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. Urol Oncol. 2009;27(2):180–6.PubMedCrossRef Kumano M, Miyake H, Muramaki M, Furukawa J, Takenaka A, Fujisawa M. Expression of urokinase-type plasminogen activator system in prostate cancer: correlation with clinicopathological outcomes in patients undergoing radical prostatectomy. Urol Oncol. 2009;27(2):180–6.PubMedCrossRef
75.
Zurück zum Zitat Memarzadeh S, Kozak KR, Chang L, Natarajan S, Shintaku P, Reddy ST, Farias-Eisner R. Urokinase plasminogen activator receptor: prognostic biomarker for endometrial cancer. Proc Natl Acad Sci USA. 2002;99(16):10647–52.PubMedPubMedCentralCrossRef Memarzadeh S, Kozak KR, Chang L, Natarajan S, Shintaku P, Reddy ST, Farias-Eisner R. Urokinase plasminogen activator receptor: prognostic biomarker for endometrial cancer. Proc Natl Acad Sci USA. 2002;99(16):10647–52.PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat De Vries TJ, Mooy CM, Van Balken MR, Luyten GP, Quax PH, Verspaget HW, Weidle UH, Ruiter DJ, Van Muijen GN. Components of the plasminogen activation system in uveal melanoma—a clinico-pathological study. J Pathol. 1995;175(1):59–67.PubMedCrossRef De Vries TJ, Mooy CM, Van Balken MR, Luyten GP, Quax PH, Verspaget HW, Weidle UH, Ruiter DJ, Van Muijen GN. Components of the plasminogen activation system in uveal melanoma—a clinico-pathological study. J Pathol. 1995;175(1):59–67.PubMedCrossRef
77.
Zurück zum Zitat Yang JL, Seetoo DQ, Wang Y, Ranson M, Berney CR, Ham JM, Russell PJ, Crowe PJ. Urokinase-type plasminogen activator and its receptor in colorectal cancer: independent prognostic factors of metastasis and cancer-specific survival and potential therapeutic targets. Int J Cancer. 2000;89(5):431–9.PubMedCrossRef Yang JL, Seetoo DQ, Wang Y, Ranson M, Berney CR, Ham JM, Russell PJ, Crowe PJ. Urokinase-type plasminogen activator and its receptor in colorectal cancer: independent prognostic factors of metastasis and cancer-specific survival and potential therapeutic targets. Int J Cancer. 2000;89(5):431–9.PubMedCrossRef
78.
Zurück zum Zitat Halamkova J, Kiss I, Pavlovsky Z, Tomasek J, Jarkovsky J, Cech Z, Tucek S, Hanakova L, Moulis M, Zavrelova J, et al. Clinical significance of the plasminogen activator system in relation to grade of tumor and treatment response in colorectal carcinoma patients. Neoplasma. 2011;58(5):377–85.PubMedCrossRef Halamkova J, Kiss I, Pavlovsky Z, Tomasek J, Jarkovsky J, Cech Z, Tucek S, Hanakova L, Moulis M, Zavrelova J, et al. Clinical significance of the plasminogen activator system in relation to grade of tumor and treatment response in colorectal carcinoma patients. Neoplasma. 2011;58(5):377–85.PubMedCrossRef
79.
Zurück zum Zitat Dubuisson L, Monvoisin A, Nielsen BS, Le Bail B, Bioulac-Sage P, Rosenbaum J. Expression and cellular localization of the urokinase-type plasminogen activator and its receptor in human hepatocellular carcinoma. J Pathol. 2000;190(2):190–5.PubMedCrossRef Dubuisson L, Monvoisin A, Nielsen BS, Le Bail B, Bioulac-Sage P, Rosenbaum J. Expression and cellular localization of the urokinase-type plasminogen activator and its receptor in human hepatocellular carcinoma. J Pathol. 2000;190(2):190–5.PubMedCrossRef
80.
Zurück zum Zitat Zheng Q, Tang Z, Wu Z, Shi D, Song H. Inhibitor of plasminogen activator 1 (PAI-1) in hepatocellular carcinoma. Zhonghua Wai Ke Za Zhi. 1998;36(8):474–6.PubMed Zheng Q, Tang Z, Wu Z, Shi D, Song H. Inhibitor of plasminogen activator 1 (PAI-1) in hepatocellular carcinoma. Zhonghua Wai Ke Za Zhi. 1998;36(8):474–6.PubMed
81.
Zurück zum Zitat Zheng Q, Tang Z, Wu Z. Urokinase-type plasminogen activator (uPA), uPA receptor (uPA-R) and inhibitors (PA I -1) expression in hepatocellular carcinoma in relation to cancer invasion/metastasis and prognosis. Zhonghua Zhong Liu Za Zhi. 1998;20(1):57–9.PubMed Zheng Q, Tang Z, Wu Z. Urokinase-type plasminogen activator (uPA), uPA receptor (uPA-R) and inhibitors (PA I -1) expression in hepatocellular carcinoma in relation to cancer invasion/metastasis and prognosis. Zhonghua Zhong Liu Za Zhi. 1998;20(1):57–9.PubMed
82.
Zurück zum Zitat Chen Q, Fei J, Wu L, Jiang Z, Wu Y, Zheng Y, Lu G. Detection of cathepsin B, cathepsin L, cystatin C, urokinase plasminogen activator and urokinase plasminogen activator receptor in the sera of lung cancer patients. Oncol Lett. 2011;2(4):693–9.PubMedPubMedCentralCrossRef Chen Q, Fei J, Wu L, Jiang Z, Wu Y, Zheng Y, Lu G. Detection of cathepsin B, cathepsin L, cystatin C, urokinase plasminogen activator and urokinase plasminogen activator receptor in the sera of lung cancer patients. Oncol Lett. 2011;2(4):693–9.PubMedPubMedCentralCrossRef
83.
Zurück zum Zitat Almasi CE, Drivsholm L, Pappot H, Høyer-Hansen G, Christensen IJ. The liberated domain I of urokinase plasminogen activator receptor—a new tumour marker in small cell lung cancer. APMIS. 2013;121(3):189–96.PubMedCrossRef Almasi CE, Drivsholm L, Pappot H, Høyer-Hansen G, Christensen IJ. The liberated domain I of urokinase plasminogen activator receptor—a new tumour marker in small cell lung cancer. APMIS. 2013;121(3):189–96.PubMedCrossRef
84.
Zurück zum Zitat Salden M, Splinter TA, Peters HA, Look MP, Timmermans M, van Meerbeeck JP, Foekens JA. The urokinase-type plasminogen activator system in resected non-small-cell lung cancer. Ann Oncol. 2000;11(3):327–32.PubMedCrossRef Salden M, Splinter TA, Peters HA, Look MP, Timmermans M, van Meerbeeck JP, Foekens JA. The urokinase-type plasminogen activator system in resected non-small-cell lung cancer. Ann Oncol. 2000;11(3):327–32.PubMedCrossRef
85.
Zurück zum Zitat Beyer BC, Heiss MM, Simon EH, Gruetzner KU, Babic R, Jauch KW, Schildberg FW, Allgayer H. Urokinase system expression in gastric carcinoma: prognostic impact in an independent patient series and first evidence of predictive value in preoperative biopsy and intestinal metaplasia specimens. Cancer. 2006;106(5):1026–35.PubMedCrossRef Beyer BC, Heiss MM, Simon EH, Gruetzner KU, Babic R, Jauch KW, Schildberg FW, Allgayer H. Urokinase system expression in gastric carcinoma: prognostic impact in an independent patient series and first evidence of predictive value in preoperative biopsy and intestinal metaplasia specimens. Cancer. 2006;106(5):1026–35.PubMedCrossRef
86.
Zurück zum Zitat Plebani M, Herszènyi L, Carraro P, De Paoli M, Roveroni G, Cardin R, Tulassay Z, Naccarato R, Farinati F. Urokinase-type plasminogen activator receptor in gastric cancer: tissue expression and prognostic role. Clin Exp Metastasis. 1997;15(4):418–25.PubMedCrossRef Plebani M, Herszènyi L, Carraro P, De Paoli M, Roveroni G, Cardin R, Tulassay Z, Naccarato R, Farinati F. Urokinase-type plasminogen activator receptor in gastric cancer: tissue expression and prognostic role. Clin Exp Metastasis. 1997;15(4):418–25.PubMedCrossRef
87.
Zurück zum Zitat Baker EA, Leaper DJ, Hayter JP, Dickenson AJ. Plasminogen activator system in oral squamous cell carcinoma. Br J Oral Maxillofac Surg. 2007;45(8):623–7.PubMedCrossRef Baker EA, Leaper DJ, Hayter JP, Dickenson AJ. Plasminogen activator system in oral squamous cell carcinoma. Br J Oral Maxillofac Surg. 2007;45(8):623–7.PubMedCrossRef
88.
Zurück zum Zitat Seddighzadeh M, Steineck G, Larsson P, Wijkström H, Norming U, Onelöv E, Linder S. Expression of UPA and UPAR is associated with the clinical course of urinary bladder neoplasms. Int J Cancer. 2002;99(5):721–6.PubMedCrossRef Seddighzadeh M, Steineck G, Larsson P, Wijkström H, Norming U, Onelöv E, Linder S. Expression of UPA and UPAR is associated with the clinical course of urinary bladder neoplasms. Int J Cancer. 2002;99(5):721–6.PubMedCrossRef
89.
Zurück zum Zitat Sidaway P. Bladder cancer: uPAR expression indicates worse prognosis of urothelial carcinoma. Nat Rev Urol. 2015;12(3):120.PubMed Sidaway P. Bladder cancer: uPAR expression indicates worse prognosis of urothelial carcinoma. Nat Rev Urol. 2015;12(3):120.PubMed
90.
Zurück zum Zitat Hau AM, Leivo MZ, Gilder AS, Hu JJ, Gonias SL, Hansel DE. mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer. Cell Signal. 2017;29:96–106.PubMedCrossRef Hau AM, Leivo MZ, Gilder AS, Hu JJ, Gonias SL, Hansel DE. mTORC2 activation is regulated by the urokinase receptor (uPAR) in bladder cancer. Cell Signal. 2017;29:96–106.PubMedCrossRef
91.
Zurück zum Zitat Wang D, Wang T. Expressions and clinical significance of urokinase-type activator (uPA) and uPA receptor (uPAR) in laryngeal squamous cell carcinoma. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2005;19(12):529–31.PubMed Wang D, Wang T. Expressions and clinical significance of urokinase-type activator (uPA) and uPA receptor (uPAR) in laryngeal squamous cell carcinoma. Lin Chuang Er Bi Yan Hou Ke Za Zhi. 2005;19(12):529–31.PubMed
92.
Zurück zum Zitat Lanza F, Castoldi GL, Castagnari B, Todd RF 3rd, Moretti S, Spisani S, Latorraca A, Focarile E, Roberti MG, Traniello S. Expression and functional role of urokinase-type plasminogen activator receptor in normal and acute leukaemic cells. Br J Haematol. 1998;103(1):110–23.PubMedCrossRef Lanza F, Castoldi GL, Castagnari B, Todd RF 3rd, Moretti S, Spisani S, Latorraca A, Focarile E, Roberti MG, Traniello S. Expression and functional role of urokinase-type plasminogen activator receptor in normal and acute leukaemic cells. Br J Haematol. 1998;103(1):110–23.PubMedCrossRef
93.
Zurück zum Zitat Gutova M, Najbauer J, Gevorgyan A, Metz MZ, Weng Y, Shih CC, Aboody KS. Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE. 2007;2(2): e243.PubMedPubMedCentralCrossRef Gutova M, Najbauer J, Gevorgyan A, Metz MZ, Weng Y, Shih CC, Aboody KS. Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE. 2007;2(2): e243.PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Cortes-Dericks L, Carboni GL, Schmid RA, Karoubi G. Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed. Int J Oncol. 2010;37(2):437–44.PubMed Cortes-Dericks L, Carboni GL, Schmid RA, Karoubi G. Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed. Int J Oncol. 2010;37(2):437–44.PubMed
95.
Zurück zum Zitat Huang Z, Wang L, Wang Y, Zhuo Y, Li H, Chen J, Chen W. Overexpression of CD147 contributes to the chemoresistance of head and neck squamous cell carcinoma cells. J Oral Pathol Med. 2013;42(7):541–6.PubMedCrossRef Huang Z, Wang L, Wang Y, Zhuo Y, Li H, Chen J, Chen W. Overexpression of CD147 contributes to the chemoresistance of head and neck squamous cell carcinoma cells. J Oral Pathol Med. 2013;42(7):541–6.PubMedCrossRef
96.
Zurück zum Zitat Eastman BM, Jo M, Webb DL, Takimoto S, Gonias SL. A transformation in the mechanism by which the urokinase receptor signals provides a selection advantage for estrogen receptor-expressing breast cancer cells in the absence of estrogen. Cell Signal. 2012;24(9):1847–55.PubMedPubMedCentralCrossRef Eastman BM, Jo M, Webb DL, Takimoto S, Gonias SL. A transformation in the mechanism by which the urokinase receptor signals provides a selection advantage for estrogen receptor-expressing breast cancer cells in the absence of estrogen. Cell Signal. 2012;24(9):1847–55.PubMedPubMedCentralCrossRef
97.
Zurück zum Zitat Zhou J, Kwak K, Wu Z, Yang D, Li J, Chang M, Song Y, Zeng H, Lee L, Hu J, et al. PLAUR confers resistance to gefitinib through EGFR/p-AKT/survivin signaling pathway. Cell Physiol Biochem. 2018;47(5):1909–24.PubMedCrossRef Zhou J, Kwak K, Wu Z, Yang D, Li J, Chang M, Song Y, Zeng H, Lee L, Hu J, et al. PLAUR confers resistance to gefitinib through EGFR/p-AKT/survivin signaling pathway. Cell Physiol Biochem. 2018;47(5):1909–24.PubMedCrossRef
98.
Zurück zum Zitat Wang K, Xing ZH, Jiang QW, Yang Y, Huang JR, Yuan ML, Wei MN, Li Y, Wang ST, Liu K, et al. Targeting uPAR by CRISPR/Cas9 system attenuates cancer malignancy and multidrug resistance. Front Oncol. 2019;9:80.PubMedPubMedCentralCrossRef Wang K, Xing ZH, Jiang QW, Yang Y, Huang JR, Yuan ML, Wei MN, Li Y, Wang ST, Liu K, et al. Targeting uPAR by CRISPR/Cas9 system attenuates cancer malignancy and multidrug resistance. Front Oncol. 2019;9:80.PubMedPubMedCentralCrossRef
99.
Zurück zum Zitat Laurenzana A, Margheri F, Biagioni A, Chillà A, Pimpinelli N, Ruzzolini J, Peppicelli S, Andreucci E, Calorini L, Serratì S, et al. EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells. EBioMedicine. 2019;39:194–206.PubMedPubMedCentralCrossRef Laurenzana A, Margheri F, Biagioni A, Chillà A, Pimpinelli N, Ruzzolini J, Peppicelli S, Andreucci E, Calorini L, Serratì S, et al. EGFR/uPAR interaction as druggable target to overcome vemurafenib acquired resistance in melanoma cells. EBioMedicine. 2019;39:194–206.PubMedPubMedCentralCrossRef
100.
Zurück zum Zitat LeBeau AM, Sevillano N, King ML, Duriseti S, Murphy ST, Craik CS, Murphy LL, VanBrocklin HF. Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance. Theranostics. 2014;4(3):267–79.PubMedPubMedCentralCrossRef LeBeau AM, Sevillano N, King ML, Duriseti S, Murphy ST, Craik CS, Murphy LL, VanBrocklin HF. Imaging the urokinase plasminongen activator receptor in preclinical breast cancer models of acquired drug resistance. Theranostics. 2014;4(3):267–79.PubMedPubMedCentralCrossRef
101.
Zurück zum Zitat Mazar AP, Ahn RW, O’Halloran TV. Development of novel therapeutics targeting the urokinase plasminogen activator receptor (uPAR) and their translation toward the clinic. Curr Pharm Des. 2011;17(19):1970–8.PubMedPubMedCentralCrossRef Mazar AP, Ahn RW, O’Halloran TV. Development of novel therapeutics targeting the urokinase plasminogen activator receptor (uPAR) and their translation toward the clinic. Curr Pharm Des. 2011;17(19):1970–8.PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Ploug M, Østergaard S, Gårdsvoll H, Kovalski K, Holst-Hansen C, Holm A, Ossowski L, Danø K. Peptide-derived antagonists of the urokinase receptor. Affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell intravasation. Biochemistry. 2001;40(40):12157–68.PubMedCrossRef Ploug M, Østergaard S, Gårdsvoll H, Kovalski K, Holst-Hansen C, Holm A, Ossowski L, Danø K. Peptide-derived antagonists of the urokinase receptor. Affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell intravasation. Biochemistry. 2001;40(40):12157–68.PubMedCrossRef
103.
Zurück zum Zitat Guo Y, Higazi AA, Arakelian A, Sachais BS, Cines D, Goldfarb RH, Jones TR, Kwaan H, Mazar AP, Rabbani SA. A peptide derived from the nonreceptor binding region of urokinase plasminogen activator (uPA) inhibits tumor progression and angiogenesis and induces tumor cell death in vivo. Faseb J. 2000;14(10):1400–10.PubMedCrossRef Guo Y, Higazi AA, Arakelian A, Sachais BS, Cines D, Goldfarb RH, Jones TR, Kwaan H, Mazar AP, Rabbani SA. A peptide derived from the nonreceptor binding region of urokinase plasminogen activator (uPA) inhibits tumor progression and angiogenesis and induces tumor cell death in vivo. Faseb J. 2000;14(10):1400–10.PubMedCrossRef
104.
Zurück zum Zitat Lin Y, Peng N, Li J, Zhuang H, Hua ZC. Herbal compound triptolide synergistically enhanced antitumor activity of amino-terminal fragment of urokinase. Mol Cancer. 2013;12:54.PubMedPubMedCentralCrossRef Lin Y, Peng N, Li J, Zhuang H, Hua ZC. Herbal compound triptolide synergistically enhanced antitumor activity of amino-terminal fragment of urokinase. Mol Cancer. 2013;12:54.PubMedPubMedCentralCrossRef
105.
Zurück zum Zitat Wang M, Löwik DW, Miller AD, Thanou M. Targeting the urokinase plasminogen activator receptor with synthetic self-assembly nanoparticles. Bioconjug Chem. 2009;20(1):32–40.PubMedCrossRef Wang M, Löwik DW, Miller AD, Thanou M. Targeting the urokinase plasminogen activator receptor with synthetic self-assembly nanoparticles. Bioconjug Chem. 2009;20(1):32–40.PubMedCrossRef
106.
Zurück zum Zitat Burgle M, Koppitz M, Riemer C, Kessler H, König B, Weidle UH, Kellermann J, Lottspeich F, Graeff H, Schmitt M, et al. Inhibition of the interaction of urokinase-type plasminogen activator (uPA) with its receptor (uPAR) by synthetic peptides. Biol Chem. 1997;378(3–4):231–7.PubMed Burgle M, Koppitz M, Riemer C, Kessler H, König B, Weidle UH, Kellermann J, Lottspeich F, Graeff H, Schmitt M, et al. Inhibition of the interaction of urokinase-type plasminogen activator (uPA) with its receptor (uPAR) by synthetic peptides. Biol Chem. 1997;378(3–4):231–7.PubMed
107.
Zurück zum Zitat Magdolen V, Bürgle M, de Prada NA, Schmiedeberg N, Riemer C, Schroeck F, Kellermann J, Degitz K, Wilhelm OG, Schmitt M, et al. Cyclo 19,31[D-Cys19]-uPA19-31 is a potent competitive antagonist of the interaction of urokinase-type plasminogen activator with its receptor (CD87). Biol Chem. 2001;382(8):1197–205.PubMedCrossRef Magdolen V, Bürgle M, de Prada NA, Schmiedeberg N, Riemer C, Schroeck F, Kellermann J, Degitz K, Wilhelm OG, Schmitt M, et al. Cyclo 19,31[D-Cys19]-uPA19-31 is a potent competitive antagonist of the interaction of urokinase-type plasminogen activator with its receptor (CD87). Biol Chem. 2001;382(8):1197–205.PubMedCrossRef
108.
Zurück zum Zitat Sato S, Kopitz C, Schmalix WA, Muehlenweg B, Kessler H, Schmitt M, Krüger A, Magdolen V. High-affinity urokinase-derived cyclic peptides inhibiting urokinase/urokinase receptor-interaction: effects on tumor growth and spread. Febs Lett. 2002;528(1–3):212–6.PubMedCrossRef Sato S, Kopitz C, Schmalix WA, Muehlenweg B, Kessler H, Schmitt M, Krüger A, Magdolen V. High-affinity urokinase-derived cyclic peptides inhibiting urokinase/urokinase receptor-interaction: effects on tumor growth and spread. Febs Lett. 2002;528(1–3):212–6.PubMedCrossRef
109.
Zurück zum Zitat Simon DI, Wei Y, Zhang L, Rao NK, Xu H, Chen Z, Liu Q, Rosenberg S, Chapman HA. Identification of a urokinase receptor-integrin interaction site. Promiscuous regulator of integrin function. J Biol Chem. 2000;275(14):10228–34.PubMedCrossRef Simon DI, Wei Y, Zhang L, Rao NK, Xu H, Chen Z, Liu Q, Rosenberg S, Chapman HA. Identification of a urokinase receptor-integrin interaction site. Promiscuous regulator of integrin function. J Biol Chem. 2000;275(14):10228–34.PubMedCrossRef
110.
Zurück zum Zitat Ghosh S, Johnson JJ, Sen R, Mukhopadhyay S, Liu Y, Zhang F, Wei Y, Chapman HA, Stack MS. Functional relevance of urinary-type plasminogen activator receptor-alpha3beta1 integrin association in proteinase regulatory pathways. J Biol Chem. 2006;281(19):13021–9.PubMedCrossRef Ghosh S, Johnson JJ, Sen R, Mukhopadhyay S, Liu Y, Zhang F, Wei Y, Chapman HA, Stack MS. Functional relevance of urinary-type plasminogen activator receptor-alpha3beta1 integrin association in proteinase regulatory pathways. J Biol Chem. 2006;281(19):13021–9.PubMedCrossRef
111.
Zurück zum Zitat van der Pluijm G, Sijmons B, Vloedgraven H, van der Bent C, Drijfhout JW, Verheijen J, Quax P, Karperien M, Papapoulos S, Löwik C. Urokinase-receptor/integrin complexes are functionally involved in adhesion and progression of human breast cancer in vivo. Am J Pathol. 2001;159(3):971–82.PubMedPubMedCentralCrossRef van der Pluijm G, Sijmons B, Vloedgraven H, van der Bent C, Drijfhout JW, Verheijen J, Quax P, Karperien M, Papapoulos S, Löwik C. Urokinase-receptor/integrin complexes are functionally involved in adhesion and progression of human breast cancer in vivo. Am J Pathol. 2001;159(3):971–82.PubMedPubMedCentralCrossRef
112.
Zurück zum Zitat Alexander RA, Prager GW, Mihaly-Bison J, Uhrin P, Sunzenauer S, Binder BR, Schütz GJ, Freissmuth M, Breuss JM. VEGF-induced endothelial cell migration requires urokinase receptor (uPAR)-dependent integrin redistribution. Cardiovasc Res. 2012;94(1):125–35.PubMedCrossRef Alexander RA, Prager GW, Mihaly-Bison J, Uhrin P, Sunzenauer S, Binder BR, Schütz GJ, Freissmuth M, Breuss JM. VEGF-induced endothelial cell migration requires urokinase receptor (uPAR)-dependent integrin redistribution. Cardiovasc Res. 2012;94(1):125–35.PubMedCrossRef
113.
Zurück zum Zitat Degryse B, Resnati M, Czekay RP, Loskutoff DJ, Blasi F. Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity: generation of a new integrin inhibitor. J Biol Chem. 2005;280(26):24792–803.PubMedCrossRef Degryse B, Resnati M, Czekay RP, Loskutoff DJ, Blasi F. Domain 2 of the urokinase receptor contains an integrin-interacting epitope with intrinsic signaling activity: generation of a new integrin inhibitor. J Biol Chem. 2005;280(26):24792–803.PubMedCrossRef
114.
Zurück zum Zitat Furlan F, Eden G, Archinti M, Arnaudova R, Andreotti G, Citro V, Cubellis MV, Motta A, Degryse B. D2A-Ala peptide derived from the urokinase receptor exerts anti-tumoural effects in vitro and in vivo. Peptides. 2018;101:17–24.PubMedCrossRef Furlan F, Eden G, Archinti M, Arnaudova R, Andreotti G, Citro V, Cubellis MV, Motta A, Degryse B. D2A-Ala peptide derived from the urokinase receptor exerts anti-tumoural effects in vitro and in vivo. Peptides. 2018;101:17–24.PubMedCrossRef
115.
Zurück zum Zitat Bifulco K, Longanesi-Cattani I, Gargiulo L, Maglio O, Cataldi M, De Rosa M, Stoppelli MP, Pavone V, Carriero MV. An urokinase receptor antagonist that inhibits cell migration by blocking the formyl peptide receptor. Febs Lett. 2008;582(7):1141–6.PubMedCrossRef Bifulco K, Longanesi-Cattani I, Gargiulo L, Maglio O, Cataldi M, De Rosa M, Stoppelli MP, Pavone V, Carriero MV. An urokinase receptor antagonist that inhibits cell migration by blocking the formyl peptide receptor. Febs Lett. 2008;582(7):1141–6.PubMedCrossRef
116.
Zurück zum Zitat Carriero MV, Longanesi-Cattani I, Bifulco K, Maglio O, Lista L, Barbieri A, Votta G, Masucci MT, Arra C, Franco R, et al. Structure-based design of an urokinase-type plasminogen activator receptor-derived peptide inhibiting cell migration and lung metastasis. Mol Cancer Ther. 2009;8(9):2708–17.PubMedCrossRef Carriero MV, Longanesi-Cattani I, Bifulco K, Maglio O, Lista L, Barbieri A, Votta G, Masucci MT, Arra C, Franco R, et al. Structure-based design of an urokinase-type plasminogen activator receptor-derived peptide inhibiting cell migration and lung metastasis. Mol Cancer Ther. 2009;8(9):2708–17.PubMedCrossRef
117.
Zurück zum Zitat Carriero MV, Bifulco K, Minopoli M, Lista L, Maglio O, Mele L, Di Carluccio G, De Rosa M, Pavone V. UPARANT: a urokinase receptor-derived peptide inhibitor of VEGF-driven angiogenesis with enhanced stability and in vitro and in vivo potency. Mol Cancer Ther. 2014;13(5):1092–104.PubMedCrossRef Carriero MV, Bifulco K, Minopoli M, Lista L, Maglio O, Mele L, Di Carluccio G, De Rosa M, Pavone V. UPARANT: a urokinase receptor-derived peptide inhibitor of VEGF-driven angiogenesis with enhanced stability and in vitro and in vivo potency. Mol Cancer Ther. 2014;13(5):1092–104.PubMedCrossRef
118.
Zurück zum Zitat Yousif AM, Minopoli M, Bifulco K, Ingangi V, Di Carluccio G, Merlino F, Motti ML, Grieco P, Carriero MV. Cyclization of the urokinase receptor-derived ser-arg-ser-arg-tyr peptide generates a potent inhibitor of trans-endothelial migration of monocytes. PLoS ONE. 2015;10(5): e0126172.PubMedPubMedCentralCrossRef Yousif AM, Minopoli M, Bifulco K, Ingangi V, Di Carluccio G, Merlino F, Motti ML, Grieco P, Carriero MV. Cyclization of the urokinase receptor-derived ser-arg-ser-arg-tyr peptide generates a potent inhibitor of trans-endothelial migration of monocytes. PLoS ONE. 2015;10(5): e0126172.PubMedPubMedCentralCrossRef
119.
Zurück zum Zitat Minopoli M, Botti G, Gigantino V, Ragone C, Sarno S, Motti ML, Scognamiglio G, Greggi S, Scaffa C, Roca MS, et al. Targeting the formyl peptide receptor type 1 to prevent the adhesion of ovarian cancer cells onto mesothelium and subsequent invasion. J Exp Clin Cancer Res. 2019;38(1):459.PubMedPubMedCentralCrossRef Minopoli M, Botti G, Gigantino V, Ragone C, Sarno S, Motti ML, Scognamiglio G, Greggi S, Scaffa C, Roca MS, et al. Targeting the formyl peptide receptor type 1 to prevent the adhesion of ovarian cancer cells onto mesothelium and subsequent invasion. J Exp Clin Cancer Res. 2019;38(1):459.PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Tressler RJ, Pitot PA, Stratton JR, Forrest LD, Zhuo S, Drummond RJ, Fong S, Doyle MV, Doyle LV, Min HY, Rosenberg S. Urokinase receptor antagonists: discovery and application to in vivo models of tumor growth. APMIS. 1999;107(1):168–73.PubMedCrossRef Tressler RJ, Pitot PA, Stratton JR, Forrest LD, Zhuo S, Drummond RJ, Fong S, Doyle MV, Doyle LV, Min HY, Rosenberg S. Urokinase receptor antagonists: discovery and application to in vivo models of tumor growth. APMIS. 1999;107(1):168–73.PubMedCrossRef
121.
Zurück zum Zitat Bu X, Khankaldyyan V, Gonzales-Gomez I, Groshen S, Ye W, Zhuo S, Pons J, Stratton JR, Rosenberg S, Laug WE. Species-specific urokinase receptor ligands reduce glioma growth and increase survival primarily by an antiangiogenesis mechanism. Lab Invest. 2004;84(6):667–78.PubMedCrossRef Bu X, Khankaldyyan V, Gonzales-Gomez I, Groshen S, Ye W, Zhuo S, Pons J, Stratton JR, Rosenberg S, Laug WE. Species-specific urokinase receptor ligands reduce glioma growth and increase survival primarily by an antiangiogenesis mechanism. Lab Invest. 2004;84(6):667–78.PubMedCrossRef
122.
Zurück zum Zitat Khanna M, Wang F, Jo I, Knabe WE, Wilson SM, Li L, Bum-Erdene K, Li J, Sledge GW, Khanna R, et al. Targeting multiple conformations leads to small molecule inhibitors of the uPAR·uPA protein–protein interaction that block cancer cell invasion. Acs Chem Biol. 2011;6(11):1232–43.PubMedPubMedCentralCrossRef Khanna M, Wang F, Jo I, Knabe WE, Wilson SM, Li L, Bum-Erdene K, Li J, Sledge GW, Khanna R, et al. Targeting multiple conformations leads to small molecule inhibitors of the uPAR·uPA protein–protein interaction that block cancer cell invasion. Acs Chem Biol. 2011;6(11):1232–43.PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Mani T, Wang F, Knabe WE, Sinn AL, Khanna M, Jo I, Sandusky GE, Sledge GW Jr, Jones DR, Khanna R, et al. Small-molecule inhibition of the uPAR·uPA interaction: synthesis, biochemical, cellular, in vivo pharmacokinetics and efficacy studies in breast cancer metastasis. Bioorg Med Chem. 2013;21(7):2145–55.PubMedPubMedCentralCrossRef Mani T, Wang F, Knabe WE, Sinn AL, Khanna M, Jo I, Sandusky GE, Sledge GW Jr, Jones DR, Khanna R, et al. Small-molecule inhibition of the uPAR·uPA interaction: synthesis, biochemical, cellular, in vivo pharmacokinetics and efficacy studies in breast cancer metastasis. Bioorg Med Chem. 2013;21(7):2145–55.PubMedPubMedCentralCrossRef
124.
Zurück zum Zitat Xu D, Bum-Erdene K, Si Y, Zhou D, Ghozayel MK, Meroueh SO. Mimicking intermolecular interactions of tight protein–protein complexes for small-molecule antagonists. ChemMedChem. 2017;12(21):1794–809.PubMedPubMedCentralCrossRef Xu D, Bum-Erdene K, Si Y, Zhou D, Ghozayel MK, Meroueh SO. Mimicking intermolecular interactions of tight protein–protein complexes for small-molecule antagonists. ChemMedChem. 2017;12(21):1794–809.PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Xu D, Bum-Erdene K, Leth JM, Ghozayel MK, Ploug M, Meroueh SO. Small-molecule inhibition of the uPAR·uPA interaction by conformational selection. ChemMedChem. 2021;16(2):377–87.PubMedCrossRef Xu D, Bum-Erdene K, Leth JM, Ghozayel MK, Ploug M, Meroueh SO. Small-molecule inhibition of the uPAR·uPA interaction by conformational selection. ChemMedChem. 2021;16(2):377–87.PubMedCrossRef
126.
Zurück zum Zitat Liu D, Zhou D, Wang B, Knabe WE, Meroueh SO. A new class of orthosteric uPAR·uPA small-molecule antagonists are allosteric inhibitors of the uPAR·vitronectin interaction. Acs Chem Biol. 2015;10(6):1521–34.PubMedPubMedCentralCrossRef Liu D, Zhou D, Wang B, Knabe WE, Meroueh SO. A new class of orthosteric uPAR·uPA small-molecule antagonists are allosteric inhibitors of the uPAR·vitronectin interaction. Acs Chem Biol. 2015;10(6):1521–34.PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Lin CM, Arancillo M, Whisenant J, Burgess K. Unconventional secondary structure mimics: ladder-rungs. Angew Chem Int Ed Engl. 2020;59(24):9398–402.PubMedPubMedCentralCrossRef Lin CM, Arancillo M, Whisenant J, Burgess K. Unconventional secondary structure mimics: ladder-rungs. Angew Chem Int Ed Engl. 2020;59(24):9398–402.PubMedPubMedCentralCrossRef
128.
Zurück zum Zitat Chaurasia P, Mezei M, Zhou MM, Ossowski L. Computer aided identification of small molecules disrupting uPAR/alpha5beta1–integrin interaction: a new paradigm for metastasis prevention. PLoS ONE. 2009;4(2): e4617.PubMedPubMedCentralCrossRef Chaurasia P, Mezei M, Zhou MM, Ossowski L. Computer aided identification of small molecules disrupting uPAR/alpha5beta1–integrin interaction: a new paradigm for metastasis prevention. PLoS ONE. 2009;4(2): e4617.PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Rea VE, Lavecchia A, Di Giovanni C, Rossi FW, Gorrasi A, Pesapane A, de Paulis A, Ragno P, Montuori N. Discovery of new small molecules targeting the vitronectin-binding site of the urokinase receptor that block cancer cell invasion. Mol Cancer Ther. 2013;12(8):1402–16.PubMedCrossRef Rea VE, Lavecchia A, Di Giovanni C, Rossi FW, Gorrasi A, Pesapane A, de Paulis A, Ragno P, Montuori N. Discovery of new small molecules targeting the vitronectin-binding site of the urokinase receptor that block cancer cell invasion. Mol Cancer Ther. 2013;12(8):1402–16.PubMedCrossRef
130.
Zurück zum Zitat Lian S, Li S, Sah DK, Kim NH, Lakshmanan VK, Jung YD. Suppression of urokinase-type plasminogen activator receptor by docosahexaenoic acid mediated by heme oxygenase-1 in 12-O-tetradecanoylphorbol-13-acetate-induced human endothelial cells. Front Pharmacol. 2020;11: 577302.PubMedPubMedCentralCrossRef Lian S, Li S, Sah DK, Kim NH, Lakshmanan VK, Jung YD. Suppression of urokinase-type plasminogen activator receptor by docosahexaenoic acid mediated by heme oxygenase-1 in 12-O-tetradecanoylphorbol-13-acetate-induced human endothelial cells. Front Pharmacol. 2020;11: 577302.PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Vallera DA, Li C, Jin N, Panoskaltsis-Mortari A, Hall WA. Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst. 2002;94(8):597–606.PubMedCrossRef Vallera DA, Li C, Jin N, Panoskaltsis-Mortari A, Hall WA. Targeting urokinase-type plasminogen activator receptor on human glioblastoma tumors with diphtheria toxin fusion protein DTAT. J Natl Cancer Inst. 2002;94(8):597–606.PubMedCrossRef
132.
Zurück zum Zitat Ramage JG, Vallera DA, Black JH, Aplan PD, Kees UR, Frankel AE. The diphtheria toxin/urokinase fusion protein (DTAT) is selectively toxic to CD87 expressing leukemic cells. Leuk Res. 2003;27(1):79–84.PubMedCrossRef Ramage JG, Vallera DA, Black JH, Aplan PD, Kees UR, Frankel AE. The diphtheria toxin/urokinase fusion protein (DTAT) is selectively toxic to CD87 expressing leukemic cells. Leuk Res. 2003;27(1):79–84.PubMedCrossRef
133.
Zurück zum Zitat Huang J, Yuan D, Liu D, Li J, Li Y, Hall WA, Li B. Efficacy of antiangiogenic targeted immunotoxin DTAT and DTATEGF against glioblastoma multiforme. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2014;39(1):1–5.PubMed Huang J, Yuan D, Liu D, Li J, Li Y, Hall WA, Li B. Efficacy of antiangiogenic targeted immunotoxin DTAT and DTATEGF against glioblastoma multiforme. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2014;39(1):1–5.PubMed
134.
Zurück zum Zitat Hall WA, Vallera DA. Efficacy of antiangiogenic targeted toxins against glioblastoma multiforme. Neurosurg Focus. 2006;20(4):E23.PubMedCrossRef Hall WA, Vallera DA. Efficacy of antiangiogenic targeted toxins against glioblastoma multiforme. Neurosurg Focus. 2006;20(4):E23.PubMedCrossRef
135.
Zurück zum Zitat Todhunter DA, Hall WA, Rustamzadeh E, Shu Y, Doumbia SO, Vallera DA. A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng Des Sel. 2004;17(2):157–64.PubMedCrossRef Todhunter DA, Hall WA, Rustamzadeh E, Shu Y, Doumbia SO, Vallera DA. A bispecific immunotoxin (DTAT13) targeting human IL-13 receptor (IL-13R) and urokinase-type plasminogen activator receptor (uPAR) in a mouse xenograft model. Protein Eng Des Sel. 2004;17(2):157–64.PubMedCrossRef
136.
Zurück zum Zitat Tsai AK, Oh S, Chen H, Shu Y, Ohlfest JR, Vallera DA. A novel bispecific ligand-directed toxin designed to simultaneously target EGFR on human glioblastoma cells and uPAR on tumor neovasculature. J Neurooncol. 2011;103(2):255–66.PubMedCrossRef Tsai AK, Oh S, Chen H, Shu Y, Ohlfest JR, Vallera DA. A novel bispecific ligand-directed toxin designed to simultaneously target EGFR on human glioblastoma cells and uPAR on tumor neovasculature. J Neurooncol. 2011;103(2):255–66.PubMedCrossRef
137.
Zurück zum Zitat Waldron NN, Oh S, Vallera DA. Bispecific targeting of EGFR and uPAR in a mouse model of head and neck squamous cell carcinoma. Oral Oncol. 2012;48(12):1202–7.PubMedPubMedCentralCrossRef Waldron NN, Oh S, Vallera DA. Bispecific targeting of EGFR and uPAR in a mouse model of head and neck squamous cell carcinoma. Oral Oncol. 2012;48(12):1202–7.PubMedPubMedCentralCrossRef
138.
Zurück zum Zitat Schappa JT, Frantz AM, Gorden BH, Dickerson EB, Vallera DA, Modiano JF. Hemangiosarcoma and its cancer stem cell subpopulation are effectively killed by a toxin targeted through epidermal growth factor and urokinase receptors. Int J Cancer. 2013;133(8):1936–44.PubMedPubMedCentralCrossRef Schappa JT, Frantz AM, Gorden BH, Dickerson EB, Vallera DA, Modiano JF. Hemangiosarcoma and its cancer stem cell subpopulation are effectively killed by a toxin targeted through epidermal growth factor and urokinase receptors. Int J Cancer. 2013;133(8):1936–44.PubMedPubMedCentralCrossRef
139.
Zurück zum Zitat Oh F, Todhunter D, Taras E, Vallera DA, Borgatti A. Targeting EGFR and uPAR on human rhabdomyosarcoma, osteosarcoma, and ovarian adenocarcinoma with a bispecific ligand-directed toxin. Clin Pharmacol. 2018;10:113–21.PubMedPubMedCentral Oh F, Todhunter D, Taras E, Vallera DA, Borgatti A. Targeting EGFR and uPAR on human rhabdomyosarcoma, osteosarcoma, and ovarian adenocarcinoma with a bispecific ligand-directed toxin. Clin Pharmacol. 2018;10:113–21.PubMedPubMedCentral
140.
Zurück zum Zitat Pilbeam K, Wang H, Taras E, Bergerson RJ, Ettestad B, DeFor T, Borgatti A, Vallera DA, Verneris MR. Targeting pediatric sarcoma with a bispecific ligand immunotoxin targeting urokinase and epidermal growth factor receptors. Oncotarget. 2017;9(15):11938–47.PubMedPubMedCentralCrossRef Pilbeam K, Wang H, Taras E, Bergerson RJ, Ettestad B, DeFor T, Borgatti A, Vallera DA, Verneris MR. Targeting pediatric sarcoma with a bispecific ligand immunotoxin targeting urokinase and epidermal growth factor receptors. Oncotarget. 2017;9(15):11938–47.PubMedPubMedCentralCrossRef
141.
Zurück zum Zitat Borgatti A, Koopmeiners JS, Sarver AL, Winter AL, Stuebner K, Todhunter D, Rizzardi AE, Henriksen JC, Schmechel S, Forster CL, et al. Safe and effective sarcoma therapy through bispecific targeting of EGFR and uPAR. Mol Cancer Ther. 2017;16(5):956–65.PubMedPubMedCentralCrossRef Borgatti A, Koopmeiners JS, Sarver AL, Winter AL, Stuebner K, Todhunter D, Rizzardi AE, Henriksen JC, Schmechel S, Forster CL, et al. Safe and effective sarcoma therapy through bispecific targeting of EGFR and uPAR. Mol Cancer Ther. 2017;16(5):956–65.PubMedPubMedCentralCrossRef
142.
Zurück zum Zitat Errico Provenzano A, Posteri R, Giansanti F, Angelucci F, Flavell SU, Flavell DJ, Fabbrini MS, Porro D, Ippoliti R, Ceriotti A, et al. Optimization of construct design and fermentation strategy for the production of bioactive ATF-SAP, a saporin based anti-tumoral uPAR-targeted chimera. Microb Cell Fact. 2016;15(1):194.PubMedPubMedCentralCrossRef Errico Provenzano A, Posteri R, Giansanti F, Angelucci F, Flavell SU, Flavell DJ, Fabbrini MS, Porro D, Ippoliti R, Ceriotti A, et al. Optimization of construct design and fermentation strategy for the production of bioactive ATF-SAP, a saporin based anti-tumoral uPAR-targeted chimera. Microb Cell Fact. 2016;15(1):194.PubMedPubMedCentralCrossRef
143.
Zurück zum Zitat Zuppone S, Assalini C, Minici C, Bertagnoli S, Branduardi P, Degano M, Fabbrini MS, Montorsi F, Salonia A, Vago R. The anti-tumoral potential of the saporin-based uPAR-targeting chimera ATF-SAP. Sci Rep. 2020;10(1):2521.PubMedPubMedCentralCrossRef Zuppone S, Assalini C, Minici C, Bertagnoli S, Branduardi P, Degano M, Fabbrini MS, Montorsi F, Salonia A, Vago R. The anti-tumoral potential of the saporin-based uPAR-targeting chimera ATF-SAP. Sci Rep. 2020;10(1):2521.PubMedPubMedCentralCrossRef
144.
Zurück zum Zitat Vine KL, Indira Chandran V, Locke JM, Matesic L, Lee J, Skropeta D, Bremner JB, Ranson M. Targeting urokinase and the transferrin receptor with novel, anti-mitotic N-alkylisatin cytotoxin conjugates causes selective cancer cell death and reduces tumor growth. Curr Cancer Drug Targets. 2012;12(1):64–73.PubMedCrossRef Vine KL, Indira Chandran V, Locke JM, Matesic L, Lee J, Skropeta D, Bremner JB, Ranson M. Targeting urokinase and the transferrin receptor with novel, anti-mitotic N-alkylisatin cytotoxin conjugates causes selective cancer cell death and reduces tumor growth. Curr Cancer Drug Targets. 2012;12(1):64–73.PubMedCrossRef
145.
Zurück zum Zitat Abi-Habib RJ, Liu S, Bugge TH, Leppla SH, Frankel AE. A urokinase-activated recombinant diphtheria toxin targeting the granulocyte-macrophage colony-stimulating factor receptor is selectively cytotoxic to human acute myeloid leukemia blasts. Blood. 2004;104(7):2143–8.PubMedCrossRef Abi-Habib RJ, Liu S, Bugge TH, Leppla SH, Frankel AE. A urokinase-activated recombinant diphtheria toxin targeting the granulocyte-macrophage colony-stimulating factor receptor is selectively cytotoxic to human acute myeloid leukemia blasts. Blood. 2004;104(7):2143–8.PubMedCrossRef
146.
Zurück zum Zitat Rajagopal V, Kreitman RJ. Recombinant toxins that bind to the urokinase receptor are cytotoxic without requiring binding to the alpha(2)-macroglobulin receptor. J Biol Chem. 2000;275(11):7566–73.PubMedCrossRef Rajagopal V, Kreitman RJ. Recombinant toxins that bind to the urokinase receptor are cytotoxic without requiring binding to the alpha(2)-macroglobulin receptor. J Biol Chem. 2000;275(11):7566–73.PubMedCrossRef
147.
Zurück zum Zitat Mertens HD, Kjaergaard M, Mysling S, Gårdsvoll H, Jørgensen TJ, Svergun DI, Ploug M. A flexible multidomain structure drives the function of the urokinase-type plasminogen activator receptor (uPAR). J Biol Chem. 2012;287(41):34304–15.PubMedPubMedCentralCrossRef Mertens HD, Kjaergaard M, Mysling S, Gårdsvoll H, Jørgensen TJ, Svergun DI, Ploug M. A flexible multidomain structure drives the function of the urokinase-type plasminogen activator receptor (uPAR). J Biol Chem. 2012;287(41):34304–15.PubMedPubMedCentralCrossRef
148.
Zurück zum Zitat Lin L, Gårdsvoll H, Huai Q, Huang M, Ploug M. Structure-based engineering of species selectivity in the interaction between urokinase and its receptor: implication for preclinical cancer therapy. J Biol Chem. 2010;285(14):10982–92.PubMedPubMedCentralCrossRef Lin L, Gårdsvoll H, Huai Q, Huang M, Ploug M. Structure-based engineering of species selectivity in the interaction between urokinase and its receptor: implication for preclinical cancer therapy. J Biol Chem. 2010;285(14):10982–92.PubMedPubMedCentralCrossRef
149.
Zurück zum Zitat Metrangolo V, Ploug M, Engelholm LH. The urokinase receptor (uPAR) as a “Trojan horse” in targeted cancer therapy: challenges and opportunities. Cancers. 2021;13(21):5376.PubMedPubMedCentralCrossRef Metrangolo V, Ploug M, Engelholm LH. The urokinase receptor (uPAR) as a “Trojan horse” in targeted cancer therapy: challenges and opportunities. Cancers. 2021;13(21):5376.PubMedPubMedCentralCrossRef
150.
Zurück zum Zitat Tyndall JD, Kelso MJ, Clingan P, Ranson M. Peptides and small molecules targeting the plasminogen activation system: towards prophylactic anti-metastasis drugs for breast cancer. Recent Pat Anticancer Drug Discov. 2008;3(1):1–13.PubMedCrossRef Tyndall JD, Kelso MJ, Clingan P, Ranson M. Peptides and small molecules targeting the plasminogen activation system: towards prophylactic anti-metastasis drugs for breast cancer. Recent Pat Anticancer Drug Discov. 2008;3(1):1–13.PubMedCrossRef
151.
Zurück zum Zitat Wei C, Möller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med. 2008;14(1):55–63.PubMedCrossRef Wei C, Möller CC, Altintas MM, Li J, Schwarz K, Zacchigna S, Xie L, Henger A, Schmid H, Rastaldi MP, et al. Modification of kidney barrier function by the urokinase receptor. Nat Med. 2008;14(1):55–63.PubMedCrossRef
152.
Zurück zum Zitat Boonstra MC, Verspaget HW, Ganesh S, Kubben FJ, Vahrmeijer AL, van de Velde CJ, Kuppen PJ, Quax PH, Sier CF. Clinical applications of the urokinase receptor (uPAR) for cancer patients. Curr Pharm Des. 2011;17(19):1890–910.PubMedCrossRef Boonstra MC, Verspaget HW, Ganesh S, Kubben FJ, Vahrmeijer AL, van de Velde CJ, Kuppen PJ, Quax PH, Sier CF. Clinical applications of the urokinase receptor (uPAR) for cancer patients. Curr Pharm Des. 2011;17(19):1890–910.PubMedCrossRef
153.
Zurück zum Zitat Mazar AP. The urokinase plasminogen activator receptor (uPAR) as a target for the diagnosis and therapy of cancer. Anticancer Drugs. 2001;12(5):387–400.PubMedCrossRef Mazar AP. The urokinase plasminogen activator receptor (uPAR) as a target for the diagnosis and therapy of cancer. Anticancer Drugs. 2001;12(5):387–400.PubMedCrossRef
154.
Zurück zum Zitat Yuan C, Guo Z, Yu S, Jiang L, Huang M. Development of inhibitors for uPAR: blocking the interaction of uPAR with its partners. Drug Discov Today. 2021;26(4):1076–85.PubMedCrossRef Yuan C, Guo Z, Yu S, Jiang L, Huang M. Development of inhibitors for uPAR: blocking the interaction of uPAR with its partners. Drug Discov Today. 2021;26(4):1076–85.PubMedCrossRef
155.
Zurück zum Zitat Li D, Liu S, Shan H, Conti P, Li Z. Urokinase plasminogen activator receptor (uPAR) targeted nuclear imaging and radionuclide therapy. Theranostics. 2013;3(7):507–15.PubMedPubMedCentralCrossRef Li D, Liu S, Shan H, Conti P, Li Z. Urokinase plasminogen activator receptor (uPAR) targeted nuclear imaging and radionuclide therapy. Theranostics. 2013;3(7):507–15.PubMedPubMedCentralCrossRef
156.
Zurück zum Zitat Ngo JC, Jiang L, Lin Z, Yuan C, Chen Z, Zhang X, Yu H, Wang J, Lin L, Huang M. Structural basis for therapeutic intervention of uPA/uPAR system. Curr Drug Targets. 2011;12(12):1729–43.PubMedCrossRef Ngo JC, Jiang L, Lin Z, Yuan C, Chen Z, Zhang X, Yu H, Wang J, Lin L, Huang M. Structural basis for therapeutic intervention of uPA/uPAR system. Curr Drug Targets. 2011;12(12):1729–43.PubMedCrossRef
157.
Zurück zum Zitat Chen Z, Lin L, Huai Q, Huang M. Challenges for drug discovery—a case study of urokinase receptor inhibition. Comb Chem High Throughput Screen. 2009;12(10):961–7.PubMedPubMedCentralCrossRef Chen Z, Lin L, Huai Q, Huang M. Challenges for drug discovery—a case study of urokinase receptor inhibition. Comb Chem High Throughput Screen. 2009;12(10):961–7.PubMedPubMedCentralCrossRef
158.
Zurück zum Zitat Kriegbaum MC, Persson M, Haldager L, Alpízar-Alpízar W, Jacobsen B, Gårdsvoll H, Kjaer A, Ploug M. Rational targeting of the urokinase receptor (uPAR): development of antagonists and non-invasive imaging probes. Curr Drug Targets. 2011;12(12):1711–28.PubMedCrossRef Kriegbaum MC, Persson M, Haldager L, Alpízar-Alpízar W, Jacobsen B, Gårdsvoll H, Kjaer A, Ploug M. Rational targeting of the urokinase receptor (uPAR): development of antagonists and non-invasive imaging probes. Curr Drug Targets. 2011;12(12):1711–28.PubMedCrossRef
159.
Zurück zum Zitat de Virgilio M, Silvestris F. Urokinase receptor (uPAR) ligand based recombinant toxins for human cancer therapy. Curr Pharm Des. 2011;17(19):1979–83.PubMedCrossRef de Virgilio M, Silvestris F. Urokinase receptor (uPAR) ligand based recombinant toxins for human cancer therapy. Curr Pharm Des. 2011;17(19):1979–83.PubMedCrossRef
160.
Zurück zum Zitat Oh F, Modiano JF, Bachanova V, Vallera DA. Bispecific targeting of EGFR and urokinase receptor (uPAR) using ligand-targeted toxins in solid tumors. Biomolecules. 2020;10(6):956.PubMedCentralCrossRef Oh F, Modiano JF, Bachanova V, Vallera DA. Bispecific targeting of EGFR and urokinase receptor (uPAR) using ligand-targeted toxins in solid tumors. Biomolecules. 2020;10(6):956.PubMedCentralCrossRef
161.
Zurück zum Zitat Dong Y, Liao H, Fu H, Yu J, Guo Q, Wang Q, Duan Y. pH-sensitive shell-core platform block DNA repair pathway to amplify irreversible DNA damage of triple negative breast cancer. ACS Appl Mater Interfaces. 2019;11(42):38417–28.PubMedCrossRef Dong Y, Liao H, Fu H, Yu J, Guo Q, Wang Q, Duan Y. pH-sensitive shell-core platform block DNA repair pathway to amplify irreversible DNA damage of triple negative breast cancer. ACS Appl Mater Interfaces. 2019;11(42):38417–28.PubMedCrossRef
162.
Zurück zum Zitat Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, Xu H, Jiang T, Wood WC, Nie S, et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol. 2008;4(4):439–49.PubMedPubMedCentralCrossRef Yang L, Cao Z, Sajja HK, Mao H, Wang L, Geng H, Xu H, Jiang T, Wood WC, Nie S, et al. Development of receptor targeted magnetic iron oxide nanoparticles for efficient drug delivery and tumor imaging. J Biomed Nanotechnol. 2008;4(4):439–49.PubMedPubMedCentralCrossRef
163.
Zurück zum Zitat Miller-Kleinhenz J, Guo X, Qian W, Zhou H, Bozeman EN, Zhu L, Ji X, Wang YA, Styblo T, O’Regan R, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials. 2018;152:47–62.PubMedCrossRef Miller-Kleinhenz J, Guo X, Qian W, Zhou H, Bozeman EN, Zhu L, Ji X, Wang YA, Styblo T, O’Regan R, et al. Dual-targeting Wnt and uPA receptors using peptide conjugated ultra-small nanoparticle drug carriers inhibited cancer stem-cell phenotype in chemo-resistant breast cancer. Biomaterials. 2018;152:47–62.PubMedCrossRef
164.
Zurück zum Zitat Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7(3):2078–89.PubMedPubMedCentralCrossRef Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, Nie S, Mao H, Yang L. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7(3):2078–89.PubMedPubMedCentralCrossRef
165.
Zurück zum Zitat Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, Staley CA, Wang YA, Mao H, Yang L. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics. 2017;7(6):1689–704.PubMedPubMedCentralCrossRef Gao N, Bozeman EN, Qian W, Wang L, Chen H, Lipowska M, Staley CA, Wang YA, Mao H, Yang L. Tumor penetrating theranostic nanoparticles for enhancement of targeted and image-guided drug delivery into peritoneal tumors following intraperitoneal delivery. Theranostics. 2017;7(6):1689–704.PubMedPubMedCentralCrossRef
166.
Zurück zum Zitat Ahmed MS, Bin Salam A, Yates C, Willian K, Jaynes J, Turner T, Abdalla MO. Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer. Int J Nanomed. 2017;12:6973–84.CrossRef Ahmed MS, Bin Salam A, Yates C, Willian K, Jaynes J, Turner T, Abdalla MO. Double-receptor-targeting multifunctional iron oxide nanoparticles drug delivery system for the treatment and imaging of prostate cancer. Int J Nanomed. 2017;12:6973–84.CrossRef
167.
Zurück zum Zitat Park JY, Shin Y, Won WR, Lim C, Kim JC, Kang K, Husni P, Lee ES, Youn YS, Oh KT. Development of AE147 peptide-conjugated nanocarriers for targeting uPAR-overexpressing cancer cells. Int J Nanomed. 2021;16:5437–49.CrossRef Park JY, Shin Y, Won WR, Lim C, Kim JC, Kang K, Husni P, Lee ES, Youn YS, Oh KT. Development of AE147 peptide-conjugated nanocarriers for targeting uPAR-overexpressing cancer cells. Int J Nanomed. 2021;16:5437–49.CrossRef
168.
Zurück zum Zitat Belfiore L, Saunders DN, Ranson M, Vine KL. N-alkylisatin-loaded liposomes target the urokinase plasminogen activator system in breast cancer. Pharmaceutics. 2020;12(7):641.PubMedCentralCrossRef Belfiore L, Saunders DN, Ranson M, Vine KL. N-alkylisatin-loaded liposomes target the urokinase plasminogen activator system in breast cancer. Pharmaceutics. 2020;12(7):641.PubMedCentralCrossRef
169.
Zurück zum Zitat Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, Qiang Y, Ma H. Lung cancer therapy using doxorubicin and curcumin combination: targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother. 2019;112: 108614.PubMedCrossRef Hong Y, Che S, Hui B, Yang Y, Wang X, Zhang X, Qiang Y, Ma H. Lung cancer therapy using doxorubicin and curcumin combination: targeted prodrug based, pH sensitive nanomedicine. Biomed Pharmacother. 2019;112: 108614.PubMedCrossRef
170.
Zurück zum Zitat Zhai B, Chen P, Wang W, Liu S, Feng J, Duan T, Xiang Y, Zhang R, Zhang M, Han X, et al. An ATF24 peptide-functionalized β-elemene-nanostructured lipid carrier combined with cisplatin for bladder cancer treatment. Cancer Biol Med. 2020;17(3):676–92.PubMedPubMedCentralCrossRef Zhai B, Chen P, Wang W, Liu S, Feng J, Duan T, Xiang Y, Zhang R, Zhang M, Han X, et al. An ATF24 peptide-functionalized β-elemene-nanostructured lipid carrier combined with cisplatin for bladder cancer treatment. Cancer Biol Med. 2020;17(3):676–92.PubMedPubMedCentralCrossRef
171.
Zurück zum Zitat Devulapally R, Sekar NM, Sekar TV, Foygel K, Massoud TF, Willmann JK, Paulmurugan R. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano. 2015;9(3):2290–302.PubMedPubMedCentralCrossRef Devulapally R, Sekar NM, Sekar TV, Foygel K, Massoud TF, Willmann JK, Paulmurugan R. Polymer nanoparticles mediated codelivery of antimiR-10b and antimiR-21 for achieving triple negative breast cancer therapy. ACS Nano. 2015;9(3):2290–302.PubMedPubMedCentralCrossRef
172.
Zurück zum Zitat Li H, Wang P, Deng Y, Zeng M, Tang Y, Zhu WH, Cheng Y. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials. 2017;139:30–8.PubMedCrossRef Li H, Wang P, Deng Y, Zeng M, Tang Y, Zhu WH, Cheng Y. Combination of active targeting, enzyme-triggered release and fluorescent dye into gold nanoclusters for endomicroscopy-guided photothermal/photodynamic therapy to pancreatic ductal adenocarcinoma. Biomaterials. 2017;139:30–8.PubMedCrossRef
173.
Zurück zum Zitat Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.PubMedCrossRef Dolmans DE, Fukumura D, Jain RK. Photodynamic therapy for cancer. Nat Rev Cancer. 2003;3(5):380–7.PubMedCrossRef
174.
Zurück zum Zitat Wang K, Zhang Y, Wang J, Yuan A, Sun M, Wu J, Hu Y. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci Rep. 2016;6:27421.PubMedPubMedCentralCrossRef Wang K, Zhang Y, Wang J, Yuan A, Sun M, Wu J, Hu Y. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci Rep. 2016;6:27421.PubMedPubMedCentralCrossRef
175.
Zurück zum Zitat Li R, Zheng K, Hu P, Chen Z, Zhou S, Chen J, Yuan C, Chen S, Zheng W, Ma E, et al. A novel tumor targeting drug carrier for optical imaging and therapy. Theranostics. 2014;4(6):642–59.PubMedPubMedCentralCrossRef Li R, Zheng K, Hu P, Chen Z, Zhou S, Chen J, Yuan C, Chen S, Zheng W, Ma E, et al. A novel tumor targeting drug carrier for optical imaging and therapy. Theranostics. 2014;4(6):642–59.PubMedPubMedCentralCrossRef
176.
Zurück zum Zitat Zhou X, Zheng K, Li R, Chen Z, Yuan C, Hu P, Chen J, Xue J, Huang M. A drug carrier targeting murine uPAR for photodynamic therapy and tumor imaging. Acta Biomater. 2015;23:116–26.PubMedCrossRef Zhou X, Zheng K, Li R, Chen Z, Yuan C, Hu P, Chen J, Xue J, Huang M. A drug carrier targeting murine uPAR for photodynamic therapy and tumor imaging. Acta Biomater. 2015;23:116–26.PubMedCrossRef
177.
Zurück zum Zitat Li S, Yuan C, Chen J, Chen D, Chen Z, Chen W, Yan S, Hu P, Xue J, Li R, et al. Nanoparticle binding to urokinase receptor on cancer cell surface triggers nanoparticle disintegration and cargo release. Theranostics. 2019;9(3):884–99.PubMedPubMedCentralCrossRef Li S, Yuan C, Chen J, Chen D, Chen Z, Chen W, Yan S, Hu P, Xue J, Li R, et al. Nanoparticle binding to urokinase receptor on cancer cell surface triggers nanoparticle disintegration and cargo release. Theranostics. 2019;9(3):884–99.PubMedPubMedCentralCrossRef
178.
Zurück zum Zitat Chen Z, Xu P, Chen J, Chen H, Hu P, Chen X, Lin L, Huang Y, Zheng K, Zhou S, et al. Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy. Acta Biomater. 2014;10(10):4257–68.PubMedCrossRef Chen Z, Xu P, Chen J, Chen H, Hu P, Chen X, Lin L, Huang Y, Zheng K, Zhou S, et al. Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy. Acta Biomater. 2014;10(10):4257–68.PubMedCrossRef
179.
Zurück zum Zitat Yu S, Huang G, Yuan R, Chen T. A uPAR targeted nanoplatform with an NIR laser-responsive drug release property for tri-modal imaging and synergistic photothermal-chemotherapy of triple-negative breast cancer. Biomater Sci. 2020;8(2):720–38.PubMedCrossRef Yu S, Huang G, Yuan R, Chen T. A uPAR targeted nanoplatform with an NIR laser-responsive drug release property for tri-modal imaging and synergistic photothermal-chemotherapy of triple-negative breast cancer. Biomater Sci. 2020;8(2):720–38.PubMedCrossRef
180.
Zurück zum Zitat Hu X, Mandika C, He L, You Y, Chang Y, Wang J, Chen T, Zhu X. Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis. Acs Appl Mater Inter. 2019;11(43):39688–705.CrossRef Hu X, Mandika C, He L, You Y, Chang Y, Wang J, Chen T, Zhu X. Construction of urokinase-type plasminogen activator receptor-targeted heterostructures for efficient photothermal chemotherapy against cervical cancer to achieve simultaneous anticancer and antiangiogenesis. Acs Appl Mater Inter. 2019;11(43):39688–705.CrossRef
181.
Zurück zum Zitat Zuo J, Huo M, Wang L, Li J, Chen Y, Xiong P. Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma. J Mater Chem B. 2020;8(39):9084–93.CrossRef Zuo J, Huo M, Wang L, Li J, Chen Y, Xiong P. Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma. J Mater Chem B. 2020;8(39):9084–93.CrossRef
182.
Zurück zum Zitat Hu Y, Chi C, Wang S, Wang L, Liang P, Liu F, Shang W, Wang W, Zhang F, Li S, et al. A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer. Adv Mater. 2017;29(33):1700448.CrossRef Hu Y, Chi C, Wang S, Wang L, Liang P, Liu F, Shang W, Wang W, Zhang F, Li S, et al. A comparative study of clinical intervention and interventional photothermal therapy for pancreatic cancer. Adv Mater. 2017;29(33):1700448.CrossRef
183.
184.
Zurück zum Zitat Jing Y, Tong C, Zhang J, Nakamura T, Iankov I, Russell SJ, Merchan JR. Tumor and vascular targeting of a novel oncolytic measles virus retargeted against the urokinase receptor. Cancer Res. 2009;69(4):1459–68.PubMedPubMedCentralCrossRef Jing Y, Tong C, Zhang J, Nakamura T, Iankov I, Russell SJ, Merchan JR. Tumor and vascular targeting of a novel oncolytic measles virus retargeted against the urokinase receptor. Cancer Res. 2009;69(4):1459–68.PubMedPubMedCentralCrossRef
185.
Zurück zum Zitat Jing Y, Zaias J, Duncan R, Russell SJ, Merchan JR. In vivo safety, biodistribution and antitumor effects of uPAR retargeted oncolytic measles virus in syngeneic cancer models. Gene Ther. 2014;21(3):289–97.PubMedPubMedCentralCrossRef Jing Y, Zaias J, Duncan R, Russell SJ, Merchan JR. In vivo safety, biodistribution and antitumor effects of uPAR retargeted oncolytic measles virus in syngeneic cancer models. Gene Ther. 2014;21(3):289–97.PubMedPubMedCentralCrossRef
186.
Zurück zum Zitat Jing Y, Bejarano MT, Zaias J, Merchan JR. In vivo anti-metastatic effects of uPAR retargeted measles virus in syngeneic and xenograft models of mammary cancer. Breast Cancer Res Treat. 2015;149(1):99–108.PubMedCrossRef Jing Y, Bejarano MT, Zaias J, Merchan JR. In vivo anti-metastatic effects of uPAR retargeted measles virus in syngeneic and xenograft models of mammary cancer. Breast Cancer Res Treat. 2015;149(1):99–108.PubMedCrossRef
187.
Zurück zum Zitat Jing Y, Chavez V, Ban Y, Acquavella N, El-Ashry D, Pronin A, Chen X, Merchan JR. Molecular effects of stromal-selective targeting by uPAR-retargeted oncolytic virus in breast cancer. Mol Cancer Res. 2017;15(10):1410–20.PubMedPubMedCentralCrossRef Jing Y, Chavez V, Ban Y, Acquavella N, El-Ashry D, Pronin A, Chen X, Merchan JR. Molecular effects of stromal-selective targeting by uPAR-retargeted oncolytic virus in breast cancer. Mol Cancer Res. 2017;15(10):1410–20.PubMedPubMedCentralCrossRef
188.
Zurück zum Zitat Jing Y, Chavez V, Khatwani N, Ban Y, Espejo AP, Chen X, Merchan JR. In vivo antitumor activity by dual stromal and tumor-targeted oncolytic measles viruses. Cancer Gene Ther. 2020;27(12):910–22.PubMedPubMedCentralCrossRef Jing Y, Chavez V, Khatwani N, Ban Y, Espejo AP, Chen X, Merchan JR. In vivo antitumor activity by dual stromal and tumor-targeted oncolytic measles viruses. Cancer Gene Ther. 2020;27(12):910–22.PubMedPubMedCentralCrossRef
189.
Zurück zum Zitat Lakka SS, Rajagopal R, Rajan MK, Mohan PM, Adachi Y, Dinh DH, Olivero WC, Gujrati M, Ali-Osman F, Roth JA, et al. Adenovirus-mediated antisense urokinase-type plasminogen activator receptor gene transfer reduces tumor cell invasion and metastasis in non-small cell lung cancer cell lines. Clin Cancer Res. 2001;7(4):1087–93.PubMed Lakka SS, Rajagopal R, Rajan MK, Mohan PM, Adachi Y, Dinh DH, Olivero WC, Gujrati M, Ali-Osman F, Roth JA, et al. Adenovirus-mediated antisense urokinase-type plasminogen activator receptor gene transfer reduces tumor cell invasion and metastasis in non-small cell lung cancer cell lines. Clin Cancer Res. 2001;7(4):1087–93.PubMed
190.
Zurück zum Zitat Nalabothula N, Lakka SS, Dinh DH, Gujrati M, Olivero WC, Rao JS. Sense p16 and antisense uPAR bicistronic construct inhibits angiogenesis and induces glioma cell death. Int J Oncol. 2007;30(3):669–78.PubMed Nalabothula N, Lakka SS, Dinh DH, Gujrati M, Olivero WC, Rao JS. Sense p16 and antisense uPAR bicistronic construct inhibits angiogenesis and induces glioma cell death. Int J Oncol. 2007;30(3):669–78.PubMed
191.
Zurück zum Zitat Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, Olivero WC, Gujrati M, Rao JS. Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene. 2003;22(38):5967–75.PubMedCrossRef Gondi CS, Lakka SS, Yanamandra N, Siddique K, Dinh DH, Olivero WC, Gujrati M, Rao JS. Expression of antisense uPAR and antisense uPA from a bicistronic adenoviral construct inhibits glioma cell invasion, tumor growth, and angiogenesis. Oncogene. 2003;22(38):5967–75.PubMedCrossRef
192.
Zurück zum Zitat Gondi CS, Lakka SS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Tung CH, Weissleder R, Rao JS. Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas. Cancer Res. 2004;64(12):4069–77.PubMedCrossRef Gondi CS, Lakka SS, Yanamandra N, Olivero WC, Dinh DH, Gujrati M, Tung CH, Weissleder R, Rao JS. Adenovirus-mediated expression of antisense urokinase plasminogen activator receptor and antisense cathepsin B inhibits tumor growth, invasion, and angiogenesis in gliomas. Cancer Res. 2004;64(12):4069–77.PubMedCrossRef
193.
Zurück zum Zitat Rao JS, Gondi C, Chetty C, Chittivelu S, Joseph PA, Lakka SS. Inhibition of invasion, angiogenesis, tumor growth, and metastasis by adenovirus-mediated transfer of antisense uPAR and MMP-9 in non-small cell lung cancer cells. Mol Cancer Ther. 2005;4(9):1399–408.PubMedPubMedCentralCrossRef Rao JS, Gondi C, Chetty C, Chittivelu S, Joseph PA, Lakka SS. Inhibition of invasion, angiogenesis, tumor growth, and metastasis by adenovirus-mediated transfer of antisense uPAR and MMP-9 in non-small cell lung cancer cells. Mol Cancer Ther. 2005;4(9):1399–408.PubMedPubMedCentralCrossRef
194.
Zurück zum Zitat Nozaki S, Endo Y, Nakahara H, Yoshizawa K, Hashiba Y, Kawashiri S, Tanaka A, Nakagawa K, Matsuoka Y, Kogo M, et al. Inhibition of invasion and metastasis in oral cancer by targeting urokinase-type plasminogen activator receptor. Oral Oncol. 2005;41(10):971–7.PubMedCrossRef Nozaki S, Endo Y, Nakahara H, Yoshizawa K, Hashiba Y, Kawashiri S, Tanaka A, Nakagawa K, Matsuoka Y, Kogo M, et al. Inhibition of invasion and metastasis in oral cancer by targeting urokinase-type plasminogen activator receptor. Oral Oncol. 2005;41(10):971–7.PubMedCrossRef
195.
Zurück zum Zitat Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene. 2004;23(52):8486–96.PubMedCrossRef Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene. 2004;23(52):8486–96.PubMedCrossRef
196.
Zurück zum Zitat Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. Intraperitoneal injection of a hairpin RNA-expressing plasmid targeting urokinase-type plasminogen activator (uPA) receptor and uPA retards angiogenesis and inhibits intracranial tumor growth in nude mice. Clin Cancer Res. 2007;13(14):4051–60.PubMedPubMedCentralCrossRef Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS. Intraperitoneal injection of a hairpin RNA-expressing plasmid targeting urokinase-type plasminogen activator (uPA) receptor and uPA retards angiogenesis and inhibits intracranial tumor growth in nude mice. Clin Cancer Res. 2007;13(14):4051–60.PubMedPubMedCentralCrossRef
197.
Zurück zum Zitat Kondraganti S, Gondi CS, McCutcheon I, Dinh DH, Gujrati M, Rao JS, Olivero WC. RNAi-mediated downregulation of urokinase plasminogen activator and its receptor in human meningioma cells inhibits tumor invasion and growth. Int J Oncol. 2006;28(6):1353–60.PubMed Kondraganti S, Gondi CS, McCutcheon I, Dinh DH, Gujrati M, Rao JS, Olivero WC. RNAi-mediated downregulation of urokinase plasminogen activator and its receptor in human meningioma cells inhibits tumor invasion and growth. Int J Oncol. 2006;28(6):1353–60.PubMed
198.
Zurück zum Zitat Gorantla B, Asuthkar S, Rao JS, Patel J, Gondi CS. Suppression of the uPAR-uPA system retards angiogenesis, invasion, and in vivo tumor development in pancreatic cancer cells. Mol Cancer Res. 2011;9(4):377–89.PubMedCrossRef Gorantla B, Asuthkar S, Rao JS, Patel J, Gondi CS. Suppression of the uPAR-uPA system retards angiogenesis, invasion, and in vivo tumor development in pancreatic cancer cells. Mol Cancer Res. 2011;9(4):377–89.PubMedCrossRef
199.
Zurück zum Zitat Rysenkova KD, Semina EV, Karagyaur MN, Shmakova AA, Dyikanov DT, Vasiluev PA, Rubtsov YP, Rubina KA, Tkachuk VA. CRISPR/Cas9 nickase mediated targeting of urokinase receptor gene inhibits neuroblastoma cell proliferation. Oncotarget. 2018;9(50):29414–30.PubMedPubMedCentralCrossRef Rysenkova KD, Semina EV, Karagyaur MN, Shmakova AA, Dyikanov DT, Vasiluev PA, Rubtsov YP, Rubina KA, Tkachuk VA. CRISPR/Cas9 nickase mediated targeting of urokinase receptor gene inhibits neuroblastoma cell proliferation. Oncotarget. 2018;9(50):29414–30.PubMedPubMedCentralCrossRef
200.
Zurück zum Zitat Biagioni A, Laurenzana A, Chillà A, Del Rosso M, Andreucci E, Poteti M, Bani D, Guasti D, Fibbi G, Margheri F. uPAR knockout results in a deep glycolytic and OXPHOS reprogramming in melanoma and colon carcinoma cell lines. Cells. 2020;9(2):308.PubMedCentralCrossRef Biagioni A, Laurenzana A, Chillà A, Del Rosso M, Andreucci E, Poteti M, Bani D, Guasti D, Fibbi G, Margheri F. uPAR knockout results in a deep glycolytic and OXPHOS reprogramming in melanoma and colon carcinoma cell lines. Cells. 2020;9(2):308.PubMedCentralCrossRef
201.
Zurück zum Zitat Biagioni A, Chillà A, Del Rosso M, Fibbi G, Scavone F, Andreucci E, Peppicelli S, Bianchini F, Calorini L, Li Santi A, et al. CRISPR/Cas9 uPAR gene knockout results in tumor growth inhibition, EGFR downregulation and induction of stemness markers in melanoma and colon carcinoma cell lines. Front Oncol. 2021;11: 663225.PubMedPubMedCentralCrossRef Biagioni A, Chillà A, Del Rosso M, Fibbi G, Scavone F, Andreucci E, Peppicelli S, Bianchini F, Calorini L, Li Santi A, et al. CRISPR/Cas9 uPAR gene knockout results in tumor growth inhibition, EGFR downregulation and induction of stemness markers in melanoma and colon carcinoma cell lines. Front Oncol. 2021;11: 663225.PubMedPubMedCentralCrossRef
202.
Zurück zum Zitat LeBeau AM, Duriseti S, Murphy ST, Pepin F, Hann B, Gray JW, VanBrocklin HF, Craik CS. Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer. Cancer Res. 2013;73(7):2070–81.PubMedPubMedCentralCrossRef LeBeau AM, Duriseti S, Murphy ST, Pepin F, Hann B, Gray JW, VanBrocklin HF, Craik CS. Targeting uPAR with antagonistic recombinant human antibodies in aggressive breast cancer. Cancer Res. 2013;73(7):2070–81.PubMedPubMedCentralCrossRef
203.
Zurück zum Zitat Harel ET, Drake PM, Barfield RM, Lui I, Farr-Jones S, Van’t Veer L, Gartner ZJ, Green EM, Lourenço AL, Cheng Y, et al. Antibody-drug conjugates targeting the urokinase receptor (uPAR) as a possible treatment of aggressive breast cancer. Antibodies. 2019;8(4):54.PubMedCentralCrossRef Harel ET, Drake PM, Barfield RM, Lui I, Farr-Jones S, Van’t Veer L, Gartner ZJ, Green EM, Lourenço AL, Cheng Y, et al. Antibody-drug conjugates targeting the urokinase receptor (uPAR) as a possible treatment of aggressive breast cancer. Antibodies. 2019;8(4):54.PubMedCentralCrossRef
204.
Zurück zum Zitat Duriseti S, Goetz DH, Hostetter DR, LeBeau AM, Wei Y, Craik CS. Antagonistic anti-urokinase plasminogen activator receptor (uPAR) antibodies significantly inhibit uPAR-mediated cellular signaling and migration. J Biol Chem. 2010;285(35):26878–88.PubMedPubMedCentralCrossRef Duriseti S, Goetz DH, Hostetter DR, LeBeau AM, Wei Y, Craik CS. Antagonistic anti-urokinase plasminogen activator receptor (uPAR) antibodies significantly inhibit uPAR-mediated cellular signaling and migration. J Biol Chem. 2010;285(35):26878–88.PubMedPubMedCentralCrossRef
205.
Zurück zum Zitat Van Buren II G, Gray MJ, Dallas NA, Xia L, Lim SJ, Fan F, Mazar AP, Ellis LM. Targeting the urokinase plasminogen activator receptor with a monoclonal antibody impairs the growth of human colorectal cancer in the liver. Cancer. 2009;115(14):3360–8.PubMedCrossRef Van Buren II G, Gray MJ, Dallas NA, Xia L, Lim SJ, Fan F, Mazar AP, Ellis LM. Targeting the urokinase plasminogen activator receptor with a monoclonal antibody impairs the growth of human colorectal cancer in the liver. Cancer. 2009;115(14):3360–8.PubMedCrossRef
206.
Zurück zum Zitat Rabbani SA, Ateeq B, Arakelian A, Valentino ML, Shaw DE, Dauffenbach LM, Kerfoot CA, Mazar AP. An anti-urokinase plasminogen activator receptor antibody (ATN-658) blocks prostate cancer invasion, migration, growth, and experimental skeletal metastasis in vitro and in vivo. Neoplasia. 2010;12(10):778–88.PubMedPubMedCentralCrossRef Rabbani SA, Ateeq B, Arakelian A, Valentino ML, Shaw DE, Dauffenbach LM, Kerfoot CA, Mazar AP. An anti-urokinase plasminogen activator receptor antibody (ATN-658) blocks prostate cancer invasion, migration, growth, and experimental skeletal metastasis in vitro and in vivo. Neoplasia. 2010;12(10):778–88.PubMedPubMedCentralCrossRef
207.
Zurück zum Zitat Kenny HA, Leonhardt P, Ladanyi A, Yamada SD, Montag A, Im HK, Jagadeeswaran S, Shaw DE, Mazar AP, Lengyel E. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis. Clin Cancer Res. 2011;17(3):459–71.PubMedCrossRef Kenny HA, Leonhardt P, Ladanyi A, Yamada SD, Montag A, Im HK, Jagadeeswaran S, Shaw DE, Mazar AP, Lengyel E. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis. Clin Cancer Res. 2011;17(3):459–71.PubMedCrossRef
208.
Zurück zum Zitat Mahmood N, Arakelian A, Khan HA, Tanvir I, Mazar AP, Rabbani SA. uPAR antibody (huATN-658) and Zometa reduce breast cancer growth and skeletal lesions. Bone Res. 2020;8:18.PubMedPubMedCentralCrossRef Mahmood N, Arakelian A, Khan HA, Tanvir I, Mazar AP, Rabbani SA. uPAR antibody (huATN-658) and Zometa reduce breast cancer growth and skeletal lesions. Bone Res. 2020;8:18.PubMedPubMedCentralCrossRef
209.
Zurück zum Zitat Li Y, Parry G, Chen L, Callahan JA, Shaw DE, Meehan EJ, Mazar AP, Huang M. An anti-urokinase plasminogen activator receptor (uPAR) antibody: crystal structure and binding epitope. J Mol Biol. 2007;365(4):1117–29.PubMedCrossRef Li Y, Parry G, Chen L, Callahan JA, Shaw DE, Meehan EJ, Mazar AP, Huang M. An anti-urokinase plasminogen activator receptor (uPAR) antibody: crystal structure and binding epitope. J Mol Biol. 2007;365(4):1117–29.PubMedCrossRef
210.
Zurück zum Zitat List K, Høyer-Hansen G, Rønne E, Danø K, Behrendt N. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor: a study based on biosensor technology. J Immunol Methods. 1999;222(1–2):125–33.PubMedCrossRef List K, Høyer-Hansen G, Rønne E, Danø K, Behrendt N. Different mechanisms are involved in the antibody mediated inhibition of ligand binding to the urokinase receptor: a study based on biosensor technology. J Immunol Methods. 1999;222(1–2):125–33.PubMedCrossRef
211.
Zurück zum Zitat Pass J, Jögi A, Lund IK, Rønø B, Rasch MG, Gårdsvoll H, Lund LR, Ploug M, Rømer J, Danø K, et al. Murine monoclonal antibodies against murine uPA receptor produced in gene-deficient mice: inhibitory effects on receptor-mediated uPA activity in vitro and in vivo. Thromb Haemost. 2007;97(6):1013–22.PubMedCrossRef Pass J, Jögi A, Lund IK, Rønø B, Rasch MG, Gårdsvoll H, Lund LR, Ploug M, Rømer J, Danø K, et al. Murine monoclonal antibodies against murine uPA receptor produced in gene-deficient mice: inhibitory effects on receptor-mediated uPA activity in vitro and in vivo. Thromb Haemost. 2007;97(6):1013–22.PubMedCrossRef
212.
Zurück zum Zitat Lee KH, Choi EY, Hyun MS, Jang BI, Kim TN, Lee HJ, Eun JY, Kim HG, Yoon SS, Lee DS, et al. Role of hepatocyte growth factor/c-Met signaling in regulating urokinase plasminogen activator on invasiveness in human hepatocellular carcinoma: a potential therapeutic target. Clin Exp Metastasis. 2008;25(1):89–96.PubMedCrossRef Lee KH, Choi EY, Hyun MS, Jang BI, Kim TN, Lee HJ, Eun JY, Kim HG, Yoon SS, Lee DS, et al. Role of hepatocyte growth factor/c-Met signaling in regulating urokinase plasminogen activator on invasiveness in human hepatocellular carcinoma: a potential therapeutic target. Clin Exp Metastasis. 2008;25(1):89–96.PubMedCrossRef
213.
Zurück zum Zitat Zhao B, Gandhi S, Yuan C, Luo Z, Li R, Gårdsvoll H, de Lorenzi V, Sidenius N, Huang M, Ploug M. Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation. J Mol Biol. 2015;427(6 Pt B):1389–403.PubMedCrossRef Zhao B, Gandhi S, Yuan C, Luo Z, Li R, Gårdsvoll H, de Lorenzi V, Sidenius N, Huang M, Ploug M. Stabilizing a flexible interdomain hinge region harboring the SMB binding site drives uPAR into its closed conformation. J Mol Biol. 2015;427(6 Pt B):1389–403.PubMedCrossRef
214.
Zurück zum Zitat Wahid B, Ali A, Rafique S, Waqar M, Wasim M, Wahid K, Idrees M. An overview of cancer immunotherapeutic strategies. Immunotherapy. 2018;10(11):999–1010.PubMedCrossRef Wahid B, Ali A, Rafique S, Waqar M, Wasim M, Wahid K, Idrees M. An overview of cancer immunotherapeutic strategies. Immunotherapy. 2018;10(11):999–1010.PubMedCrossRef
216.
Zurück zum Zitat Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52.PubMedCrossRef Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Annu Rev Med. 2017;68:139–52.PubMedCrossRef
217.
Zurück zum Zitat Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38(4):473–88.PubMedCrossRef Hong M, Clubb JD, Chen YY. Engineering CAR-T cells for next-generation cancer therapy. Cancer Cell. 2020;38(4):473–88.PubMedCrossRef
218.
Zurück zum Zitat Wang L, Yang R, Zhao L, Zhang X, Xu T, Cui M. Basing on uPAR-binding fragment to design chimeric antigen receptors triggers antitumor efficacy against uPAR expressing ovarian cancer cells. Biomed Pharmacother. 2019;117: 109173.PubMedCrossRef Wang L, Yang R, Zhao L, Zhang X, Xu T, Cui M. Basing on uPAR-binding fragment to design chimeric antigen receptors triggers antitumor efficacy against uPAR expressing ovarian cancer cells. Biomed Pharmacother. 2019;117: 109173.PubMedCrossRef
219.
Zurück zum Zitat Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, Mansilla-Soto J, Boyer JA, Li X, Giavridis T, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583(7814):127–32.PubMedPubMedCentralCrossRef Amor C, Feucht J, Leibold J, Ho YJ, Zhu C, Alonso-Curbelo D, Mansilla-Soto J, Boyer JA, Li X, Giavridis T, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020;583(7814):127–32.PubMedPubMedCentralCrossRef
220.
Zurück zum Zitat Uvyn A, De Geest BG. Multivalent antibody-recruiting macromolecules: linking increased binding affinity with enhanced innate immune killing. ChemBioChem. 2020;21(21):3036–43.PubMedPubMedCentralCrossRef Uvyn A, De Geest BG. Multivalent antibody-recruiting macromolecules: linking increased binding affinity with enhanced innate immune killing. ChemBioChem. 2020;21(21):3036–43.PubMedPubMedCentralCrossRef
221.
Zurück zum Zitat Jakobsche CE, McEnaney PJ, Zhang AX, Spiegel DA. Reprogramming urokinase into an antibody-recruiting anticancer agent. Acs Chem Biol. 2012;7(2):316–21.PubMedCrossRef Jakobsche CE, McEnaney PJ, Zhang AX, Spiegel DA. Reprogramming urokinase into an antibody-recruiting anticancer agent. Acs Chem Biol. 2012;7(2):316–21.PubMedCrossRef
222.
Zurück zum Zitat Rullo AF, Fitzgerald KJ, Muthusamy V, Liu M, Yuan C, Huang M, Kim M, Cho AE, Spiegel DA. Re-engineering the immune response to metastatic cancer: antibody-recruiting small molecules targeting the urokinase receptor. Angew Chem Int Ed Engl. 2016;55(11):3642–6.PubMedPubMedCentralCrossRef Rullo AF, Fitzgerald KJ, Muthusamy V, Liu M, Yuan C, Huang M, Kim M, Cho AE, Spiegel DA. Re-engineering the immune response to metastatic cancer: antibody-recruiting small molecules targeting the urokinase receptor. Angew Chem Int Ed Engl. 2016;55(11):3642–6.PubMedPubMedCentralCrossRef
223.
Zurück zum Zitat Hu XW, Duan HF, Gao LH, Pan SY, Li YM, Xi Y, Zhao SR, Yin L, Li JF, Chen HP, et al. Inhibition of tumor growth and metastasis by ATF-Fc, an engineered antibody targeting urokinase receptor. Cancer Biol Ther. 2008;7(5):651–9.PubMedCrossRef Hu XW, Duan HF, Gao LH, Pan SY, Li YM, Xi Y, Zhao SR, Yin L, Li JF, Chen HP, et al. Inhibition of tumor growth and metastasis by ATF-Fc, an engineered antibody targeting urokinase receptor. Cancer Biol Ther. 2008;7(5):651–9.PubMedCrossRef
224.
Zurück zum Zitat Zhou H, Wang H, Yu G, Wang Z, Zheng X, Duan H, Sun J. Synergistic inhibitory effects of an engineered antibody-like molecule ATF-Fc and trastuzumab on tumor growth and invasion in a human breast cancer xenograft mouse model. Oncol Lett. 2017;14(5):5189–96.PubMedPubMedCentral Zhou H, Wang H, Yu G, Wang Z, Zheng X, Duan H, Sun J. Synergistic inhibitory effects of an engineered antibody-like molecule ATF-Fc and trastuzumab on tumor growth and invasion in a human breast cancer xenograft mouse model. Oncol Lett. 2017;14(5):5189–96.PubMedPubMedCentral
Metadaten
Titel
Urokinase-type plasminogen activator receptor (uPAR) as a therapeutic target in cancer
verfasst von
Bing-Tao Zhai
Huan Tian
Jing Sun
Jun-Bo Zou
Xiao-Fei Zhang
Jiang-Xue Cheng
Ya-Jun Shi
Yu Fan
Dong-Yan Guo
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2022
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-022-03329-3

Weitere Artikel der Ausgabe 1/2022

Journal of Translational Medicine 1/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.