Skip to main content
Erschienen in: BMC Neurology 1/2014

Open Access 01.12.2014 | Research article

Variations in apolipoprotein D and sigma non-opioid intracellular receptor 1 genes with relation to risk, severity and outcome of ischemic stroke

verfasst von: Håkan Lövkvist, Ann-Cathrin Jönsson, Holger Luthman, Katarina Jood, Christina Jern, Tadeusz Wieloch, Arne Lindgren

Erschienen in: BMC Neurology | Ausgabe 1/2014

Abstract

Background

In experimental studies, the apolipoprotein D (APOD) and the sigma receptor type 1 (SIGMAR1) have been related to processes of brain damage, repair and plasticity.

Methods

We examined blood samples from 3081 ischemic stroke (IS) patients and 1595 control subjects regarding 10 single nucleotide polymorphisms (SNPs) in the APOD (chromosomal location 3q29) and SIGMAR1 (chromosomal location 9p13) genes to find possible associations with IS risk, IS severity (NIHSS-score) and recovery after IS (modified Rankin Scale, mRS, at 90 days). Simple/multiple logistic regression and Spearman’s rho were utilized for the analyses.

Results

Among the SNPs analyzed, rs7659 within the APOD gene showed a possible association with stroke risk (OR = 1.12; 95% CI: 1.01-1.25; P = 0.029) and stroke severity (NIHSS ≥ 16) (OR = 0.70; 95% CI: 0.54-0.92; P = 0.009) when controlling for age, sex and vascular risk factors for stroke. No SNP showed an association with stroke recovery (mRS).

Conclusions

We conclude that the SNP rs7659 within the APOD gene might be related to risk and severity of ischemic stroke in patients.
Hinweise

Competing interests

The authors report no conflict of interest.

Background

Stroke is a major cause of death and the main cause of adult disability. Approximately 20 to 30% of all ischemic stroke patients die in the acute stages of the stroke episode while more than one third of those who survive remain dependent of daily next-of-kin support or community care six months after stroke onset [1],[2]. Still, five years after stroke onset, two thirds of the survivors have some neurologic impairment and disability [3]. Recanalization of occluded vessels after embolic stroke is the only therapeutic intervention available to treat acute ischemic stroke (IS), while no pharmacological treatment that stimulate brain repair or plasticity and that might enhance recovery of lost function is at hand. However, rehabilitative training such as task-oriented practice [4] and long-term progressive resistance training [5], may enhance recovery of lost brain functions.
The multifactorial and complex features of stroke impose a considerable challenge for the understanding of the pathology and for the development of new therapies. Multiple environmental factors including co-morbidities increase the risk of stroke [6]. Likewise, stroke severity is dependent on the type of stroke, density of ischemia and duration of vessel occlusion, and is also influenced by several toxic mechanisms, most identified in experimental animal models of stroke [7]. Finally, brain repair involves mechanisms differentially activated in time and space, and include inflammation, brain remodelling and relearning of activated neural networks [8],[9]. Genetic factors influence the impact of these innate cellular mechanisms and environmental factors, affecting risk for stroke, as well as the severity of brain damage and the subsequent functional outcome [10].
Previous clinical studies have shown that allelic variants within the PDE4D gene, chromosome 9p21 and the AB0 locus may be associated with IS risk [11]-[13]. Also variants in HDAC9, as well as in chromosome 6p21.1 and 9p21, have shown association with large vessel IS [14]-[17], and variants in PITX2 and ZFXH3 may affect cardioembolic stroke risk according to other studies made [18],[19]. In contrast to the situation regarding IS risk, reports on genetic factors contributing to outcome after stroke are scarce. However, a study has reported that the apolipoprotein E (APOE) ε2 polymorphism might contribute to variability in outcomes after hemorrhagic stroke [20]. Likewise, an association was found between polymorphisms of the COX-2 and Glycoprotein IIIa genes on functional outcome 90-days after IS [21]. These studies clearly demonstrate the potential of genetic analysis in identifying mechanisms involved in functional recovery of stroke patients. More recently, genetic variations in the human dopamine system were associated with motor learning after stroke [22]. This indicates the potential of genetic analysis in identifying relevant mechanisms involved in stroke and therapeutic targets.
The apolipoprotein D (APOD) has been suggested to be related to stroke not only by virtue of its ability to influence trafficking of lipids but also by modulating oxidative stress, synaptic plasticity and cell death [23],[24]. Moreover, APOD appears to be associated with several neurological diseases and normal ageing [25], schizophrenia [26], Alzheimer's disease (AD) [27],[28] and Parkinson’s disease (PD) [29]. APOD levels increase with age [30], with higher levels in women than in men [25]. Also, in experimental models of stroke [31] and trauma [32], the levels of APOD are elevated. Polymorphisms of the APOD gene have been associated with increased risk of AD [28],[33]. The general increase of APOD levels in a broad range of disease states suggest that the protein may be induced in response to stress. Indeed, APOD appears to be an anti-oxidant [34] dependent on the integrity of the Met93 of this lipoprotein [35]. In animal models of stroke, increased APOD levels are correlated with better functional recovery, implying a possible function of APOD in the repair processes after stroke [31].
Whilst the apolipoproteins are trafficking lipids among cells [23], the sigma receptor type 1 (SIGMAR1, sometimes also denoted SIG1R or OPRS1) is involved in signalling and trafficking of lipids and proteins within cells [36]. Through these mechanisms the SIGMAR1 may modulate cell death and brain plasticity in experimental models of stroke [37]. The SIGMAR1 appears to play a central role in central nervous system (CNS) diseases since polymorphisms in the SIGMAR1 gene are associated with depression [38], schizophrenia [39] and alcoholism [40] as well as AD [41].
With this background we aimed to investigate whether polymorphisms in the APOD and SIGMAR1 genes influence stroke severity as well as functional outcome in patients suffering from IS. By including a group of control subjects we also assessed these polymorphisms’ possible impact on IS risk.

Methods

Study subjects

The study was approved by the ethical committee at Lund University, Lund (application 543/2008). We included 2241 consecutive first-ever IS patients of all ages from Lund Stroke Register (LSR) and 840 first-ever or recurrent IS patients below 70 years of age from the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS), Gothenburg. Both LSR and SAHLSIS have been described previously [42],[43]. Patients were included if they had clinical symptoms of IS, confirmed by CT or MR or autopsy of the brain, provided DNA for analysis, and if they or their next of kin had given informed consent to participate. Exclusively for the IS risk association assessments we also included control subjects from the same geographical areas with age and gender distribution similar to those in the IS cohort. The 1595 control subjects (929 from LSR, 666 from SAHLSIS) were randomly selected from Swedish population registers from the same areas and matched for age and gender to the patients. The SAHLSIS sample included younger participants (with range 18–69 years) than the LSR sample (with range 17 to 102 years). The proportion of men was thus larger in the SAHLSIS sample (Table 1).
Table 1
Characteristics of control subjects and ischemic stroke (IS) cases
 
LSR
SAHLSIS
Combined
 
Controls (N = 929)
IS cases (N = 2241)
Controls (N = 666)
IS cases (N = 840)
Controls (N = 1595)
IS cases (N = 3081)
Age, Median (min, max)
76 (17, 96)
76 (18, 102)
58 (18, 70)
58 (18, 69)
66 (17, 96)
69 (18, 102)
Male sex, Number (%)
529 (57)
1169 (52)
391 (59)
550 (66)
920 (58)
1719 (56)
Diabetes mellitus, n
925
2139
664
840
1589
2979
Number (%)
69 (8)
550 (26)
33 (5)
153 (18)
102 (6)
703 (24)
Hypertension, n
925
2183
665
829
1590
3012
Number (%)
438 (47)
1479 (68)
230 (35)
485 (58)
668 (42)
1964 (65)
Current smoking, n
927
2193
666
836
1593
3029
Number (%)
92 (10)
423 (19)
131 (20)
323 (39)
223 (14)
746 (25)
NIHSS at stroke onset, n
--
1983
--
581
--
2564
0-7, Number (%)
--
1482 (75)
--
448 (77)
--
1930 (75)
8–15, Number (%)
--
338 (17)
--
92 (16)
--
430 (17)
16- , Number (%)
--
163 (8)
--
41 (7)
--
204 (7)
mRS at 3 months, n
--
1157
--
565
--
1722
0–2, Number (%)
--
625 (54)
--
435 (77)
--
1060 (62)
3, Number (%)
--
196 (17)
--
80 (14)
--
276 (16)
4, Number (%)
--
111 (10)
--
41 (7)
--
152 (9)
5, Number (%)
--
92 (8)
--
2 (<1)
--
94 (5)
Deceased, Number (%)
--
133 (12)
--
7 (1)
--
140 (8)
LSR = Lund Stroke Register, SAHLSIS = the Sahlgenska Academy Study on Ischaemic Stroke, mRS = modified Rankin Scale, NIHSS = NIH stroke scale, N = gross sample size, n = net sample size after removal of missing values. All percentages are based on net sample sizes.

Definition of stroke severity and stroke recovery (outcome)

For LSR patients, initial stroke severity was assessed using the NIH stroke scale (NIHSS) in the acute phase after stroke onset [44]. For SAHLSIS patients, initial stroke severity was assessed using the Scandinavian Stroke Scale (SSS) [45]. These SSS scores were transformed to NIHSS scores through the algorithm NIHSS = 25.68-0.43*SSS [46]. A NIHSS score of 8 or above but below 16 was considered to indicate a moderately severe stroke, and a score of 16 or above was considered to indicate a severe stroke [47].
For SAHLSIS, mRS at 3 months was assessed using the original scale 0–5 at a follow-up visit with a neurologist. For LSR, stroke outcome was assessed using Riksstroke data at 3 months after stroke. We used a translation algorithm to calculate mRS grades from a set of self-reported functional outcome questions available in Riksstroke data [48]. The Riksstroke data do not distinguish between mRS-grades 0, 1 and 2. However, as mRS-grade 2 is regarded as the upper limit for independence of help/support and the patient disability information relevant for this study is provided by mRS-grades 3, 4 and 5, we merged mRS-values 0, 1 and 2 into a value of 1 [49]. In addition to the original mRS grades 0–5, we added mRS grade 6 for individuals who had died at follow up for both samples.

Phenotypes

Definitions of intermediate phenotypes diabetes mellitus, hypertension and current smoking, and IS pathogenetic subtypes (i.e. large vessel disease, LVD; small vessel disease, SVD; and cardioembolic stroke, CE; have been described previously [11],[50],[51].

Selection of genetic variants and genotyping

Seven SNPs in APOD and five SNPs in SIGMAR1 (or in the immediate vicinity of these regions) were selected using two different criteria: (1) SNPs serving as markers were selected based on their low pairwise linkage disequilibrium and a population frequency of 5% or more for the two gene regions (N = 7); (2) SNPs representing non-synonymous genetic variants with low population frequency but still above 0.1% in European populations were chosen based on their probable impact on protein function (N = 6). One of these latter non-synonymous variants, rs1800866 in SIGMAR1, is frequent enough to also be used as a marker. The genotypings were performed at our local lab in Malmö, Sweden using Sequenom technology, except for rs76929107 at the APOD locus and rs1800866 at the SIGMAR1 locus that were genotyped at LGC Genomics (former KBioscience), UK (http://​www.​lgcgenomics.​com), using IPLEX on a MassARRAY platform (Sequenom, San Diego, CA, USA).
We scored the minor allele count of each SNP, i.e. 2, 1 or 0, and used these in additive models. Monomorphic SNPs were excluded from further analyses.

Statistical methods

All included SNPs were tested for possible departure from Hardy-Weinberg equilibrium by chi-square test with one degree of freedom. These tests were performed on the control subjects included solely for the IS risk association analyses.
The possible association of each selected SNP with IS risk (i.e. IS patients versus control subjects) was analyzed by use of simple logistic regression, and multiple logistic regression controlling for age, gender, diabetes mellitus, hypertension and current smoking [11]. For the stroke severity response variable we used Spearman rank correlation as well as simple and logistic multiple regression with dichotomized stroke severity response (with risk category defined by NIHSS ≥ 8 and NIHSS ≥ 16, respectively) [47]. We also assessed functional outcome in a likewise manner (with risk category defined as mRS ≥ 3).
By using non-parametric statistics for the assessments of the possible impact of polymorphisms on the NIHSS and mRS scores, we were able to obtain effect measures and P-values that were not distorted by incorrect assumptions about these non-continuous variables.
SNP rs7659 was significantly associated with stroke severity in a first-step test. We therefore performed subsequent analyses involving subgroups including study group, gender, and age (</≥70 years) [50],[52]. SPSS software (PASW/SPSS, version 18, IBM Corporation, Armonk, NY, USA) was used as a computational tool for these assessments.

Results

Ischemic stroke risk

Table 2 displays (1) the frequencies of all ten non-monomorphic SNPs for LSR and SAHLSIS joined together, and (2) the results of association analyses of these SNP frequencies against IS risk. All SNPs except rs11559048 conformed to the Hardy-Weinberg equilibrium criterion (Table 2). One SNP, rs7659 within the APOD gene region, was associated with IS risk (OR = 1.11; 95% CI: 1.01-1.22; P = 0.038 when tested by univariate analysis, and OR = 1.12; 95% CI: 1.01-1.25; P = 0.029 when using multiple logistic regression analysis controlling for covariates age, gender, diabetes mellitus, hypertension and current smoking). However, none of these P-values were significant when considering Bonferroni correction for multiple testing.
Table 2
Analysis of association between ischemic stroke risk and ten APOD and SIGMAR1 SNPs
SNP*
Allele pair
Control subj. number of genotypes
IS patients number of genotypes
Crude OR (95% CI)
Multiple LR** OR (95% CI)
SIGMAR1:
     
rs11559048
CC
1530
2695
0.51 (0.21-1.26)
0.58 (0.91-1.20)
 
CT
8
9
P = 0.145
P = 0.491
 
TT
1
-
  
rs1800866
TT
1128
2141
1.03 (0.92-1.16)
1.02 (0.90-1.16)
 
TG
401
795
P = 0.615
P = 0.768
 
GG
46
88
  
rs12001648
CC
1393
2420
0.95 (0.79-1.15)
0.85 (0.70-1.04)
 
CT
165
286
P = 0.595
P = 0.120
 
TT
9
8
  
rs7036351
GG
1130
1944
1.03 (0.91-1.16)
1.02 (0.89-1.16)
 
GA
399
693
P = 0.675
P = 0.789
 
AA
40
77
  
rs3808873
GG
833
1475
1.00 (0.89-1.11)
0.98 (0.88-1.10)
 
GA
491
887
P = 0.950
P = 0.779
 
AA
91
153
  
APOD :***
     
rs76929107
CC
1540
2943
1.06 (0.74-1.51)
1.10 (0.75-1.59)
 
CT
44
91
P = 0.761
P = 0.634
 
TT
1
1
  
rs5952
TT
1548
2710
1.90 (0.52-6.92)
2.23 (0.57-8.75)
 
TC
3
10
P = 0.329
P = 0.251
 
CC
-
-
  
rs34697430
GG
435
769
1.00 (0.92-1.09)
1.01 (0.92-1.11)
 
GA
784
1317
P = 0.966
P = 0.895
 
AA
349
623
  
rs7659
AA
803
1306
1.11 (1.01-1.22)
1.12 (1.01-1.25)
 
AG
617
1177
P = 0.038
P = 0.029
 
GG
130
240
  
rs823510
TT
880
1576
0.99 (0.89-1.09)
0.99 (0.89-1.11)
 
TG
590
981
P = 0.805
P = 0.884
 
GG
82
164
  
*)All genotypes were conforming to the Hardy-Weinberg equilibrium criterion (with P = 0.093 or more when using a chi-square test on the control subjects), except for rs11559048 that showed a significant Hardy-Weinberg disequilibrium (P < 0.001).
**)ORs obtained by multiple logistic regression analysis controlling for covariates age, gender, diabetes mellitus, hypertension and current smoking.
***)Two additional APOD encoding SNPs, rs5954 and rs5955, were genotyped but not included in this study due to monomorphic traits.

Stroke severity and functional outcome

The results of the assessments of the ten non-monomorphic SNPs of APOD and SIGMAR1 against stroke severity are presented in Table 3. Analyses using Spearman’s Rho suggested that variations in one SNP, the APOD-encoding rs7659, is associated with NIHSS (Rho = −0.048; P = 0.023), while multiple logistic regression considering a NIHSS cut-off point of 16 provided an OR = 0.70; 95% CI: 0.54-0.92; P = 0.009. Also, an association (OR = 0.65; 95% CI: 0.46-0.91; P = 0.012) between the SIGMAR1 encoding rs12001648 and medium-severe stroke onset risk (NIHSS ≥ 8) was found. When a subgroup of patients aged 70 years or above was tested against the severe IS onset indicator (defined as NIHSS ≥ 16), an association between stroke severity and variants of SNP rs7659 within the APOD region was noticed (OR = 0.63; 95% CI: 0.45-0.88; P = 0.006). These results are shown in Table 4. Still, none of these tests implied any significant association when considering Bonferroni-correction. However, when considering the pathogenetic stroke main subtype CE as a subgroup for assessment we found SNP rs7659 to be significantly associated with stroke severity defined by the NIHSS > 16 cut point (OR = 0.59; 95% CI: 0.40-0.85; P = 0.005; results shown in Table 4).
Table 3
Analysis of association between stroke severity (NIHSS) and ten APOD and SIGMAR1 SNPs
 
NIHSS score
 
NIHSS; dichotomous indicator of medium-severe (vs. mild) ischemic stroke onset (NIHSS ≥ 8)
NIHSS; dichotomous indicator of severe (vs. mild-medium) ischemic stroke onset (NIHSS ≥ 16)
Simple logistic regression
Multiple logistic regression
Simple logistic regression
Multiple logistic regression
SNP
Estimated Spearman’s Rho
P-value
OR (95% CI)
P-value
OR (95% CI)
P-value
OR (95% CI)
P-value
OR (95% CI)
P-value
SIGMAR1:
          
rs11559048
0.023
0.284
1.86 (0.44-7.79)
0.399
1.74 (0.40-7.69)
0.462
--*)
--
--*)
--
rs1800866
-0.012
0.554
1.02 (0.87-1.22)
0.772
0.98 (0.81-1.17)
0.804
0.97 (0.75-1.25)
0.822
0.87 (0.64-1.17)
0.347
rs12001648
-0.044
0.040
0.77 (0.56-1.05)
0.094
0.65 (0.46-0.91)
0.012
1.01 (0.66-1.56)
0.967
0.75 (0.48-1.27)
0.283
rs7036351
0.000
0.984
1.04 (0.87-1.25)
0.670
0.99 (0.81-1.21)
0.922
0.94 (0.71-1.25)
0.664
0.84 (0.61-1.16)
0.290
rs3808873
0.011
0.627
1.04 (0.88-1.23)
0.619
1.07 (0.90-1.27)
0.457
0.79 (0.61-1.03)
0.084
0.77 (0.57-1.03)
0.079
APOD:
          
rs76929107
0.004
0.826
0.85 (0.50-1.46)
0.555
0.74 (0.40-1.36)
0.327
0.97 (0.45-2.12)
0.948
1.17 (0.50-2.73)
0.722
rs5952
0.022
0.309
1.54 (0.38-6.18)
0.542
1.40 (0.34-5.79)
0.641
--*)
--
--*)
--
rs34697430
0.011
0.599
1.07 (0.93-1.23)
0.334
1.08 (0.94-1.25)
0.280
1.16 (0.95-1.42)
0.154
1.20 (0.96-1.50)
0.116
rs7659
-0.048
0.023
0.89 (0.77-1.04)
0.141
0.85 (0.72-1.00)
0.044
0.84 (0.66-1.06)
0.135
0.70 (0.54-0.92)
0.009
rs823510
0.013
0.538
1.03 (0.88-1.21)
0.680
1.00 (0.85-1.19)
0.965
1.06 (0.83-1.34)
0.658
0.96 (0.73-1.25)
0.736
Ischemic stroke patients from Lund Stroke Register and the Sahlgenska Academy Study on Ischaemic Stroke.
NIHSS = NIH stroke scale. *) Cannot be estimated due to monomorphism among patients with NIHSS score of 16 or above.
Table 4
Detailed assessment of possible association between stroke severity (NIHSS) and SNP rs7659 within APOD
 
NIHSS score
 
NIHSS; dichotomous indicator of medium-severe (vs. mild) ischemic stroke onset (NIHSS ≥ 8)
NIHSS; dichotomous indicator of severe (vs. mild-medium) ischemic stroke onset (NIHSS ≥ 16)
Subgroup
Estimated Spearman’s Rho
P-value
Simple logistic regression
Multiple logistic regression
Simple logistic regression
Multiple logistic regression
OR (95% CI)
P-value
OR (95% CI)
P-value
OR (95% CI)
P-value
OR (95% CI)
P-value
Total
-0.048
0.023
0.89 (0.77-1.04)
0.141
0.85 (0.72-1.00)
0.044
0.84 (0.66-1.06)
0.135
0.70 (0.54-0.92)
0.009
(N = 2221)
  
1676 controls
 
1618 controls
 
2023 controls
 
1947 controls
 
   
545 cases
 
495 cases
 
198 cases
 
166 cases
 
Males
-0.055
0.053
0.89 (0.72-1.11)
0.293
0.85 (0.68-1.06)
0.143
0.82 (0.58-1.17)
0.273
0.75 (0.52-1.10)
0.144
(N = 1232)
  
971 controls
 
939 controls
 
1146 controls
 
1105 controls
 
   
261 cases
 
243 cases
 
86 cases
 
77 cases
 
Females
-0.040
0.209
0.90 (0.73-1.11)
0.311
0.85 (0.68-1.07)
0.168
0.85 (0.62-1.16)
0.311
0.66 (0.46-0.96)
0.028
(N = 989)
  
705 controls
 
679 controls
 
877 controls
 
842 controls
 
   
284 cases
 
252 cases
 
112 cases
 
89 cases
 
LSR
-0.054
0.026
0.87 (0.73-1.03)
0.113
0.81 (0.67-0.98)
0.026
0.79 (0.61-1.03)
0.081
0.65 (0.48-0.88)
0.005
(N = 1683)
  
1263 controls
 
1204 controls
 
1523 controls
 
1450 controls
 
   
420 cases
 
377 cases
 
160 cases
 
133 cases
 
SAHLSIS
-0.032
0.454
0.97 (0.71-1.33)
0.858
0.94 (0.68-1.30)
0.702
1.03 (0.62-1.73)
0.902
0.86 (0.48-1.53)
0.605
(N = 538)
  
413 controls
 
412 controls
 
500 controls
 
497 controls
 
   
125 cases
 
118 cases
 
38 cases
 
33 cases
 
Age < 70
-0.066
0.029
0.89 (0.70-1.13)
0.333
0.85 (0.67-1.09)
0.201
0.98 (0.66-1.47)
0.940
0.81 (0.51-1.27)
0.348
(N = 1084)
  
868 controls
 
853 controls
 
1021 controls
 
1001 controls
 
   
216 cases
 
202 cases
 
63 cases
 
54 cases
 
Age ≥ 70
-0.042
0.156
0.88 (0.72-1.08)
0.215
0.82 (0.66-1.02)
0.080
0.76 (0.57-1.01)
0.060
0.63 (0.45-0.88)
0.006
(N = 1137)
  
808 controls
 
750 controls
 
1002 controls
 
946 controls
 
   
329 cases
 
266 cases
 
135 cases
 
112 cases
 
LVD
-0.008
0.918
1.14 (0.70-1.87)
0.597
0.97 (0.57-1.66)
0.924
1.20 (0.54-2.67)
0.651
0.53 (0.17-1.65)
0.272
(N = 185)
  
133 controls
 
128 controls
 
170 controls
 
163 controls
 
   
52 cases
 
45 cases
 
15 cases
 
10 cases
 
SVD
-0.019
0.667
0.77 (0.46-1.30)
0.329
0.81 (0.47-1.38)
0.432
N/A
 
N/A
 
(N = 500)
  
461 controls
 
452 controls
     
   
39 cases
 
38 cases
     
CE
-0.076
0.065
0.89 (0.70-1.15)
0.367
0.78 (0.59-1.03)
0.081
0.72 (0.52-1.00)
0.051
0.59 (0.40-0.85)
0.005
(N = 595)
  
364 controls
 
338 controls
 
484 controls
 
448 controls
 
   
231 cases
 
204 cases
 
111 cases
 
94 cases
 
Ischemic stroke patients from Lund Stroke Register (LSR) and the Sahlgenska Academy Study on Ischemic Stroke (SAHLSIS).
NIHSS = NIH stroke scale. Multiple logistic regression models are controlling for covariates age, gender, diabetes mellitus, hypertension and current smoking when analyzing the entire sample as well as separate study groups and age groups. When analyzing males and females separately the covariate gender is omitted from these multivariable models. Pathogenetic ischemic stroke subtype: LVD = Large vessel disease; SVD = Small vessel disease; CE = Cardioembolic stroke. N/A = not applicable due to absence of sampling units with NIHSS ≥ 16.
None of the ten non-monomorphic SNPs significantly affected functional outcome after stroke (Table 5).
Table 5
Analysis of association between outcome after stroke (shown by modified Rankin Scale, mRS) and ten APOD and SIGMAR1 SNPs
 
Deceased patientsare notincluded in mRS:
Deceased patientsareincluded in mRS:
Ordinal score:
Dichotomous indicator for dependence of support:
Ordinal score:
Dichotomous indicator for dependence of support:
SNP
Estimated Spearman’s Rho
P-value
Simple logistic regression
Multiple logistic regression
Estimated Spearman’s Rho
P-value
Simple logistic regression
Multiple logistic regression
OR (95% CI)
P-value
OR (95% CI)
P-value
OR (95% CI)
P-value
OR (95% CI)
P-value
SIGMAR1:
            
rs11559048
0.045
0.081
3.35 (0.80-14.1)
0.099
2.75 (0.49-15.3)
0.249
0.026
0.286
2.64 (0.63-11.1)
0.185
2.29 (0.38-13.7)
0.364
rs1800866
0.011
0.655
1.13 (0.93-1.37)
0.231
1.10 (0.88-1.36)
0.404
0.004
0.872
1.08 (0.90-1.30)
0.402
1.06 (0.85-1.31)
0.612
rs12001648
-0.012
0.631
0.94 (0.67-1.32)
0.712
0.77 (0.53-1.11)
0.165
-0.001
0.963
0.98 (0.72-1.34)
0.892
0.75 (0.53-1.07)
0.115
rs7036351
0.006
0.817
1.10 (0.89-1.33)
0.390
1.03 (0.83-1.29)
0.781
-0.007
0.772
1.04 (0.86-1.25)
0.722
0.97 (0.79-1.21)
0.810
rs3808873
0.021
0.436
1.08 (0.90-1.29)
0.392
1.11 (0.91-1.35)
0.290
0.012
0.636
1.05 (0.89-1.24)
0.598
1.07 (0.89-1.30)
0.457
APOD:
            
rs76929107
0.002
0.947
0.98 (0.54-1.78)
0.943
0.95 (0.49-1.82)
0.868
-0.013
0.582
0.87 (0.49-1.54)
0.623
0.92 (0.48-1.73)
0.790
rs5952
0.016
0.520
1.98 (0.28-14.1)
0.494
2.90 (0.32-26.7)
0.346
0.025
0.306
2.35 (0.39-14.1)
0.350
3.09 (0.35-27.5)
0.312
rs34697430
-0.019
0.460
0.91 (0.78-1.06)
0.221
0.91 (0.77-1.07)
0.243
0.002
0.946
0.96 (0.83-1.10)
0.514
0.92 (0.79-1.08)
0.295
rs7659
0.002
0.929
1.03 (0.88-1.22)
0.684
0.98 (0.82-1.17)
0.832
-0.005
0.846
1.02 (0.87-1.18)
0.842
0.96 (0.81-1.14)
0.665
rs823510
0.012
0.653
1.01 (0.85-1.21)
0.882
1.02 (0.84-1.23)
0.871
-0.008
0.742
0.97 (0.82-1.14)
0.696
0.97 (0.81-1.17)
0.764
Ischemic stroke patients from Lund Stroke Register and the Sahlgenska Academy Study on Ischemic Stroke.
mRS = modified Rankin Scale. Ordinal score comprises distinguishable categories 0–2, 3, 4, 5 and, if deceased patients are included, also category 6. Correspondingly, dichotomous indicator comprises categories 0–2 as control subjects and category 3 or above as cases.

Discussion

With this large study sample comprising a total of 3081 IS patients we were able to perform analyses aimed to find possible impact of selected polymorphisms encoding for APOD and SIGMAR1 on (1) stroke severity and (2) stroke outcome, respectively. By adding 1595 control subjects not suffering any stroke onset from the same geographical areas and with the same age and gender distribution as the IS patients, we have also been able to examine possible effect of these polymorphisms on IS risk.
The conclusions from the non-parametric Spearman correlation analyses (NIHSS and mRS-scores, respectively, against SNP variations) were based upon P-values obtained by using a “conservative” approach providing high adequacy at the cost of some statistical power loss. The transformation of these numerical variables into dichotomized indicators (coded 1 or 0) also caused information loss. On the other hand this enabled us to focus on possible threshold effects when examining e.g. the genetic effect on IS severity (by using NIHSS cutpoints 0–7 vs. 8 or above, or 0–15 vs. 16 or above).
The SIGMAR1 region on chromosome 9p13 displays two polymorphisms that have a strong influence in CNS disease, namely rs1799729 (GC-241-240TT) and rs1800866 (Gln2Pro) that show LD forming haplotypes GC-Q and TT-P [39]-[41]. The rs1799729 is found in the proximal promoter region while rs1800866 is present in the first exon. Only rs1800866 was analysed in our study but these two SNPs are closely related (nearly in complete LD with r2 = 0.98) and have been reported to be associated with neuroprotection and risk of AD [41], and also risk of depression and alcoholism [38],[40]. The polymorphism Gln2Pro is located in the amino acid sequence motif MQWAVGRR [53] at the N-terminal part of the protein, which is an endoplasmatic binding region. Hence, a mutation could affect trafficking of SIGMAR1 associated processes, which have been implicated in rodent models of stroke [37]. However; we could not find any association between the SIGMAR1 polymorphisms and stroke risk, severity or recovery. The significance of the weak association of rs12001648 needs further investigation.
Although rigorous statistical analysis did not provide clear evidence of an association between the APOD SNPs and stroke risk, severity or outcome, the possible genetic influence of polymorphism rs7659 is interesting and potentially relevant. Rs7659 is located in the 3′UTR of APOD, and a functional variant in this area might influence the transcription of the gene or mRNA splicing. Indeed, this SNP appears to be positioned at a putative binding site for the human splicing factor SR SC35 [54]. Also, it is previously shown that rs7659 may be associated with early onset AD within the subgroup of patients lacking the APOEε4 allele [28] and with long term clinical outcome in schizophrenics [54]. Moreover, the APOD gene is localized on chromosome 3q2.2-qter in close proximity to the 3q25-26 region linked to AD [24]. Hence, taking into consideration the association between rs7659 to other CNS disease and our finding of a possible association of rs7659 with stroke risk and stroke severity, particularly among the elderly, this strongly encourages further studies of rs7659.
Possible occurrence of false positive P-values was supressed by Bonferroni correction. False negative results cannot be detected since we do not know the infinite population behind our predetermined study sample. By performing a post hoc power analysis including stroke severity (from NIHSS case–control calculations) we found rather modest statistical powers (between 5% and 41%), indicating a weak incentive for replicative studies to find an association between the selected SNPs and stroke severity (and even outcome, defined by the mRS nomenclature).

Conclusion

In this first attempt to study if stroke repair mechanisms linked to certain regions within the APOD and SIGMAR1 genes may also affect recovery from stroke and severity of stroke, we performed a candidate gene study including twelve SNPs from these two genetic regions.
Our data suggest that the rs7659 SNP within the APOD gene could be associated with risk for stroke and stroke severity at stroke onset. This mutation may decrease the levels of APOD and thereby diminish its protective cell signalling and antioxidant action. However, these associations showed only modest statistical significance, suggesting that our study may be underpowered despite the large sample size.

Authors’ contributions

Arne Lindgren and Håkan Lövkvist had the overall responsibility for this study, including research design, data analysis, results, discussion, and manuscript preparation. Arne Lindgren, Katarina Jood and Christina were involved in clinical samples and materials collection. Ann-Cathrin Jönsson contributed in data analysis. Holger Luthman selected the SNPs for analysis and discussed the results. Tadeusz Wieloch concieved the idea from experimental studies and discussed the results. All authors were involved in the research design, drafting the manuscript and have read and approved the final manuscript.

Acknowledgements

This study was supported by grants from the Swedish Research Council (K2008-65X-14605-06-03, K2011-65X-14605-09-6, K2010-61X-20378-04-3, 2011-2684, 2011–2652), the Swedish State (ALFGBG-148861), the Swedish Heart and Lung Foundation (20100256), the Yngve Land Foundation, the Crafoord Foundation, the King Gustaf V and Queen Victoria’s Foundation, the Swedish Stroke Association, Lund University, Region Skåne, the EOS Freemason Foundation, the Tore Nilsson Foundation, the Swedish Brain Fund and the Lars Hierta Foundation. Lund University and the Sahlgrenska Academy are members of the International Stroke Genetics Consortium. Biobank services were provided by Region Skåne Competence Centre (RSKC Malmö), and Labmedicin Skåne, University and Regional Laboratories Region Skåne, Sweden. We thank Riksstroke for providing information on 3 month follow-up status for patients in Lund Stroke Register.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​4.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Competing interests

The authors report no conflict of interest.
Literatur
1.
Zurück zum Zitat Luengo-Fernandez R, Paul NL, Gray AM, Pendlebury ST, Bull LM, Welch SJ, Cuthbertson FC, Rothwell PM: Population-based study of disability and institutionalization after transient ischemic attack and stroke: 10-year results of the Oxford Vascular Study. Stroke. 2013, 44 (10): 2854-2861. 10.1161/STROKEAHA.113.001584.CrossRefPubMed Luengo-Fernandez R, Paul NL, Gray AM, Pendlebury ST, Bull LM, Welch SJ, Cuthbertson FC, Rothwell PM: Population-based study of disability and institutionalization after transient ischemic attack and stroke: 10-year results of the Oxford Vascular Study. Stroke. 2013, 44 (10): 2854-2861. 10.1161/STROKEAHA.113.001584.CrossRefPubMed
2.
Zurück zum Zitat McNaughton H, Feigin V, Kerse N, Barber PA, Weatherall M, Bennett D, Carter K, Hackett M, Anderson C: Ethnicity and functional outcome after stroke. Stroke. 2011, 42 (4): 960-964. 10.1161/STROKEAHA.110.605139.CrossRefPubMed McNaughton H, Feigin V, Kerse N, Barber PA, Weatherall M, Bennett D, Carter K, Hackett M, Anderson C: Ethnicity and functional outcome after stroke. Stroke. 2011, 42 (4): 960-964. 10.1161/STROKEAHA.110.605139.CrossRefPubMed
3.
Zurück zum Zitat Feigin VL, Barker-Collo S, Parag V, Senior H, Lawes CM, Ratnasabapathy Y, Glen E: Auckland Stroke Outcomes Study. Part 1: Gender, stroke types, ethnicity, and functional outcomes 5 years poststroke. Neurology. 2010, 75 (18): 1597-1607. 10.1212/WNL.0b013e3181fb44b3.CrossRefPubMed Feigin VL, Barker-Collo S, Parag V, Senior H, Lawes CM, Ratnasabapathy Y, Glen E: Auckland Stroke Outcomes Study. Part 1: Gender, stroke types, ethnicity, and functional outcomes 5 years poststroke. Neurology. 2010, 75 (18): 1597-1607. 10.1212/WNL.0b013e3181fb44b3.CrossRefPubMed
4.
Zurück zum Zitat Rensink M, Schuurmans M, Lindeman E, Hafsteinsdottir T: Task-oriented training in rehabilitation after stroke: systematic review. J Adv Nurs. 2009, 65 (4): 737-754. 10.1111/j.1365-2648.2008.04925.x.CrossRefPubMed Rensink M, Schuurmans M, Lindeman E, Hafsteinsdottir T: Task-oriented training in rehabilitation after stroke: systematic review. J Adv Nurs. 2009, 65 (4): 737-754. 10.1111/j.1365-2648.2008.04925.x.CrossRefPubMed
5.
Zurück zum Zitat Brogårdh C, Lexell J: Effects of cardiorespiratory fitness and muscle-resistance training after stroke. PM R. 2012, 4 (11): 901-907. 10.1016/j.pmrj.2012.09.1157.CrossRefPubMed Brogårdh C, Lexell J: Effects of cardiorespiratory fitness and muscle-resistance training after stroke. PM R. 2012, 4 (11): 901-907. 10.1016/j.pmrj.2012.09.1157.CrossRefPubMed
6.
Zurück zum Zitat Goldstein LB, Bushnell CD, Adams RJ, Appel LJ, Braun LT, Chaturvedi S, Creager MA, Culebras A, Eckel RH, Hart RG, Hinchey JA, Howard VJ, Jauch EC, Levine SR, Meschia JF, Moore WS, Nixon JV, Pearson TA: Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011, 42 (2): 517-584. 10.1161/STR.0b013e3181fcb238.CrossRefPubMed Goldstein LB, Bushnell CD, Adams RJ, Appel LJ, Braun LT, Chaturvedi S, Creager MA, Culebras A, Eckel RH, Hart RG, Hinchey JA, Howard VJ, Jauch EC, Levine SR, Meschia JF, Moore WS, Nixon JV, Pearson TA: Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011, 42 (2): 517-584. 10.1161/STR.0b013e3181fcb238.CrossRefPubMed
7.
Zurück zum Zitat Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, Planas A, Rothwell N, Schwaninger M, Schwab ME, Vivien D, Wieloch T, Dirnagl U: Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis. 2008, 25 (3): 268-278. 10.1159/000118039.CrossRefPubMed Endres M, Engelhardt B, Koistinaho J, Lindvall O, Meairs S, Mohr JP, Planas A, Rothwell N, Schwaninger M, Schwab ME, Vivien D, Wieloch T, Dirnagl U: Improving outcome after stroke: overcoming the translational roadblock. Cerebrovasc Dis. 2008, 25 (3): 268-278. 10.1159/000118039.CrossRefPubMed
9.
Zurück zum Zitat Wieloch T, Nikolich K: Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol. 2006, 16 (3): 258-264. 10.1016/j.conb.2006.05.011.CrossRefPubMed Wieloch T, Nikolich K: Mechanisms of neural plasticity following brain injury. Curr Opin Neurobiol. 2006, 16 (3): 258-264. 10.1016/j.conb.2006.05.011.CrossRefPubMed
10.
Zurück zum Zitat Cramer SC, Procaccio V: Correlation between genetic polymorphisms and stroke recovery: analysis of the GAIN Americas and GAIN International Studies. Eur J Neurol. 2012, 19 (5): 718-724. 10.1111/j.1468-1331.2011.03615.x.CrossRefPubMed Cramer SC, Procaccio V: Correlation between genetic polymorphisms and stroke recovery: analysis of the GAIN Americas and GAIN International Studies. Eur J Neurol. 2012, 19 (5): 718-724. 10.1111/j.1468-1331.2011.03615.x.CrossRefPubMed
11.
Zurück zum Zitat Lövkvist H, Smith JG, Luthman H, Höglund P, Norrving B, Kristoffersson U, Jönsson AC, Lindgren AG: Ischaemic stroke in hypertensive patients is associated with variations in the PDE4D genome region. Eur J Hum Genet. 2008, 16 (9): 1117-1125. 10.1038/ejhg.2008.62.CrossRefPubMed Lövkvist H, Smith JG, Luthman H, Höglund P, Norrving B, Kristoffersson U, Jönsson AC, Lindgren AG: Ischaemic stroke in hypertensive patients is associated with variations in the PDE4D genome region. Eur J Hum Genet. 2008, 16 (9): 1117-1125. 10.1038/ejhg.2008.62.CrossRefPubMed
12.
Zurück zum Zitat Smith JG, Melander O, Lövkvist H, Hedblad B, Engström G, Nilsson P, Carlson J, Berglund G, Norrving B, Lindgren A: Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study. Circ Cardiovasc Genet. 2009, 2 (2): 159-164. 10.1161/CIRCGENETICS.108.835173.CrossRefPubMed Smith JG, Melander O, Lövkvist H, Hedblad B, Engström G, Nilsson P, Carlson J, Berglund G, Norrving B, Lindgren A: Common genetic variants on chromosome 9p21 confers risk of ischemic stroke: a large-scale genetic association study. Circ Cardiovasc Genet. 2009, 2 (2): 159-164. 10.1161/CIRCGENETICS.108.835173.CrossRefPubMed
13.
Zurück zum Zitat Williams FM, Carter AM, Hysi AM, Surdulescu G, Hodgkiss D, Soranzo N, Traylor M, Bevan S, Dichgans M, Rothwell PM: Ischemic stroke is associated with AB0 locus: The Euroclot study. Ann Neurol. 2012, 73 (1): 16-31. 10.1002/ana.23838.CrossRef Williams FM, Carter AM, Hysi AM, Surdulescu G, Hodgkiss D, Soranzo N, Traylor M, Bevan S, Dichgans M, Rothwell PM: Ischemic stroke is associated with AB0 locus: The Euroclot study. Ann Neurol. 2012, 73 (1): 16-31. 10.1002/ana.23838.CrossRef
14.
Zurück zum Zitat Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, Burgess AI, Pirinen M, Jackson CA, Traylor M, Strange A, Su Z, Band G, Syme PD, Malik R, Pera J, Norrving B, Lemmens R, Freeman C, Schanz R, James T, Poole D, Murphy L, Segal H, Cortellini L, Cheng YC, Woo D, Nalls MA, Müller-Myhsok B, Meisinger C, Seedorf U, Ross-Adams H, et al: Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012, 44 (3): 328-333. 10.1038/ng.1081.CrossRefPubMed Bellenguez C, Bevan S, Gschwendtner A, Spencer CC, Burgess AI, Pirinen M, Jackson CA, Traylor M, Strange A, Su Z, Band G, Syme PD, Malik R, Pera J, Norrving B, Lemmens R, Freeman C, Schanz R, James T, Poole D, Murphy L, Segal H, Cortellini L, Cheng YC, Woo D, Nalls MA, Müller-Myhsok B, Meisinger C, Seedorf U, Ross-Adams H, et al: Genome-wide association study identifies a variant in HDAC9 associated with large vessel ischemic stroke. Nat Genet. 2012, 44 (3): 328-333. 10.1038/ng.1081.CrossRefPubMed
15.
Zurück zum Zitat Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams H, Meitinger T, Wichmann E, Mitchell BD, Furie K, Slowik A, Rich SS, Syme PD, MacLeod MJ, Meschia JF, Rosand J, Kittner SJ, Markus HS, Müller-Myhsok B, Dichgans M: Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol. 2009, 65 (5): 531-539. 10.1002/ana.21590.CrossRefPubMedPubMedCentral Gschwendtner A, Bevan S, Cole JW, Plourde A, Matarin M, Ross-Adams H, Meitinger T, Wichmann E, Mitchell BD, Furie K, Slowik A, Rich SS, Syme PD, MacLeod MJ, Meschia JF, Rosand J, Kittner SJ, Markus HS, Müller-Myhsok B, Dichgans M: Sequence variants on chromosome 9p21.3 confer risk for atherosclerotic stroke. Ann Neurol. 2009, 65 (5): 531-539. 10.1002/ana.21590.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Holliday EG, Maguire JM, Evans TJ, Koblar SA, Jannes J, Sturm JW, Hankey GJ, Baker R, Golledge J, Parsons MW, Malik R, McEvoy M, Biros E, Lewis MD, Lincz LF, Peel R, Oldmeadow C, Smith W, Moscato P, Barlera S, Bevan S, Bis JC, Boerwinkle E, Boncoraglio GB, Brott TG, Brown RD, Cheng YC, Cole JW, Cotlarciuc I, Devan WJ, et al: Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nat Genet. 2012, 44 (10): 1147-1151. 10.1038/ng.2397.CrossRefPubMed Holliday EG, Maguire JM, Evans TJ, Koblar SA, Jannes J, Sturm JW, Hankey GJ, Baker R, Golledge J, Parsons MW, Malik R, McEvoy M, Biros E, Lewis MD, Lincz LF, Peel R, Oldmeadow C, Smith W, Moscato P, Barlera S, Bevan S, Bis JC, Boerwinkle E, Boncoraglio GB, Brott TG, Brown RD, Cheng YC, Cole JW, Cotlarciuc I, Devan WJ, et al: Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nat Genet. 2012, 44 (10): 1147-1151. 10.1038/ng.2397.CrossRefPubMed
17.
Zurück zum Zitat Traylor M, Farrall M, Holliday EG, Sudlow C, Hopewell JC, Cheng YC, Fornage M, Ikram MA, Malik R, Bevan S, Thorsteinsdottir U, Nalls MA, Longstreth W, Wiggins KL, Yadav S, Parati EA, Destefano AL, Worrall BB, Kittner SJ, Khan MS, Reiner AP, Helgadottir A, Achterberg S, Fernandez-Cadenas I, Abboud S, Schmidt R, Walters M, Chen WM, Ringelstein EB, O'Donnell M, et al: Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 2012, 11 (11): 951-962. 10.1016/S1474-4422(12)70234-X.CrossRefPubMedPubMedCentral Traylor M, Farrall M, Holliday EG, Sudlow C, Hopewell JC, Cheng YC, Fornage M, Ikram MA, Malik R, Bevan S, Thorsteinsdottir U, Nalls MA, Longstreth W, Wiggins KL, Yadav S, Parati EA, Destefano AL, Worrall BB, Kittner SJ, Khan MS, Reiner AP, Helgadottir A, Achterberg S, Fernandez-Cadenas I, Abboud S, Schmidt R, Walters M, Chen WM, Ringelstein EB, O'Donnell M, et al: Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 2012, 11 (11): 951-962. 10.1016/S1474-4422(12)70234-X.CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat Gretarsdottir S, Thorleifsson G, Manolescu A, Styrkarsdottir U, Helgadottir A, Gschwendtner A, Kostulas K, Kuhlenbäumer G, Bevan S, Jonsdottir T, Bjarnason H, Saemundsdottir J, Palsson S, Arnar DO, Holm H, Thorgeirsson G, Valdimarsson EM, Sveinbjörnsdottir S, Gieger C, Berger K, Wichmann HE, Hillert J, Markus H, Gulcher JR, Ringelstein EB, Kong A, Dichgans M, Gudbjartsson DF, Thorsteinsdottir U, Stefansson K: Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008, 64 (4): 402-409. 10.1002/ana.21480.CrossRefPubMed Gretarsdottir S, Thorleifsson G, Manolescu A, Styrkarsdottir U, Helgadottir A, Gschwendtner A, Kostulas K, Kuhlenbäumer G, Bevan S, Jonsdottir T, Bjarnason H, Saemundsdottir J, Palsson S, Arnar DO, Holm H, Thorgeirsson G, Valdimarsson EM, Sveinbjörnsdottir S, Gieger C, Berger K, Wichmann HE, Hillert J, Markus H, Gulcher JR, Ringelstein EB, Kong A, Dichgans M, Gudbjartsson DF, Thorsteinsdottir U, Stefansson K: Risk variants for atrial fibrillation on chromosome 4q25 associate with ischemic stroke. Ann Neurol. 2008, 64 (4): 402-409. 10.1002/ana.21480.CrossRefPubMed
19.
Zurück zum Zitat Gudbjartsson DF, Holm H, Gretarsdottir S, Thorleifsson G, Walters GB, Thorgeirsson G, Gulcher J, Mathiesen EB, Njølstad I, Nyrnes A, Wilsgaard T, Hald EM, Hveem K, Stoltenberg C, Kucera G, Stubblefield T, Carter S, Roden D, Ng MC, Baum L, So WY, Wong KS, Chan JC, Gieger C, Wichmann HE, Gschwendtner A, Dichgans M, Kuhlenbäumer G, Berger K, Ringelstein EB, et al: A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009, 41 (8): 876-878. 10.1038/ng.417.CrossRefPubMedPubMedCentral Gudbjartsson DF, Holm H, Gretarsdottir S, Thorleifsson G, Walters GB, Thorgeirsson G, Gulcher J, Mathiesen EB, Njølstad I, Nyrnes A, Wilsgaard T, Hald EM, Hveem K, Stoltenberg C, Kucera G, Stubblefield T, Carter S, Roden D, Ng MC, Baum L, So WY, Wong KS, Chan JC, Gieger C, Wichmann HE, Gschwendtner A, Dichgans M, Kuhlenbäumer G, Berger K, Ringelstein EB, et al: A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nat Genet. 2009, 41 (8): 876-878. 10.1038/ng.417.CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Biffi A, Anderson CD, Jagiella JM, Schmidt H, Kissela B, Hansen BM, Jimenez-Conde J, Pires CR, Ayres AM, Schwab K, Cortellini L, Pera J, Urbanik A, Romero JM, Rost NS, Goldstein JN, Viswanathan A, Pichler A, Enzinger C, Rabionet R, Norrving B, Tirschwell DL, Selim M, Brown DL, Silliman SL, Worrall BB, Meschia JF, Kidwell CS, Broderick JP, Greenberg SM, et al: APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol. 2011, 10 (8): 702-709. 10.1016/S1474-4422(11)70148-X.CrossRefPubMedPubMedCentral Biffi A, Anderson CD, Jagiella JM, Schmidt H, Kissela B, Hansen BM, Jimenez-Conde J, Pires CR, Ayres AM, Schwab K, Cortellini L, Pera J, Urbanik A, Romero JM, Rost NS, Goldstein JN, Viswanathan A, Pichler A, Enzinger C, Rabionet R, Norrving B, Tirschwell DL, Selim M, Brown DL, Silliman SL, Worrall BB, Meschia JF, Kidwell CS, Broderick JP, Greenberg SM, et al: APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol. 2011, 10 (8): 702-709. 10.1016/S1474-4422(11)70148-X.CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Maguire J, Thakkinstian A, Levi C, Lincz L, Bisset L, Sturm J, Scott R, Whyte S, Attia J: Impact of COX-2 rs5275 and rs20417 and GPIIIa rs5918 polymorphisms on 90-day ischemic stroke functional outcome: a novel finding. J Stroke Cerebrovasc Dis. 2011, 20 (2): 134-144. 10.1016/j.jstrokecerebrovasdis.2009.10.011.CrossRefPubMed Maguire J, Thakkinstian A, Levi C, Lincz L, Bisset L, Sturm J, Scott R, Whyte S, Attia J: Impact of COX-2 rs5275 and rs20417 and GPIIIa rs5918 polymorphisms on 90-day ischemic stroke functional outcome: a novel finding. J Stroke Cerebrovasc Dis. 2011, 20 (2): 134-144. 10.1016/j.jstrokecerebrovasdis.2009.10.011.CrossRefPubMed
22.
Zurück zum Zitat Pearson-Fuhrhop KM, Minton B, Acevedo D, Shahbaba B, Cramer SC: Genetic variation in the human brain dopamine system influences motor learning and its modulation by L-Dopa. PLoS One. 2013, 8 (4): e61197-10.1371/journal.pone.0061197.CrossRefPubMedPubMedCentral Pearson-Fuhrhop KM, Minton B, Acevedo D, Shahbaba B, Cramer SC: Genetic variation in the human brain dopamine system influences motor learning and its modulation by L-Dopa. PLoS One. 2013, 8 (4): e61197-10.1371/journal.pone.0061197.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Elliott DA, Weickert CS, Garner B: Apolipoproteins in the brain: implications for neurological and psychiatric disorders. Clin Lipidol. 2010, 51 (4): 555-573. 10.2217/clp.10.37.CrossRefPubMedPubMedCentral Elliott DA, Weickert CS, Garner B: Apolipoproteins in the brain: implications for neurological and psychiatric disorders. Clin Lipidol. 2010, 51 (4): 555-573. 10.2217/clp.10.37.CrossRefPubMedPubMedCentral
24.
Zurück zum Zitat Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L, Milne R: Apolipoprotein D. Biochim Biophys Acta. 2000, 1482 (1–2): 185-198. 10.1016/S0167-4838(00)00162-X.CrossRefPubMed Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L, Milne R: Apolipoprotein D. Biochim Biophys Acta. 2000, 1482 (1–2): 185-198. 10.1016/S0167-4838(00)00162-X.CrossRefPubMed
25.
Zurück zum Zitat Ordonez C, Navarro A, Perez C, Martinez E, del Valle E, Tolivia J: Gender differences in apolipoprotein D expression during aging and in Alzheimer disease. Neurobiol Aging. 2012, 33 (2): 433 e411-420-CrossRef Ordonez C, Navarro A, Perez C, Martinez E, del Valle E, Tolivia J: Gender differences in apolipoprotein D expression during aging and in Alzheimer disease. Neurobiol Aging. 2012, 33 (2): 433 e411-420-CrossRef
26.
Zurück zum Zitat Thomas EA, Dean B, Pavey G, Sutcliffe JG: Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: implications for the pathophysiology of psychiatric disorders. Proc Natl Acad Sci U S A. 2001, 98 (7): 4066-4071. 10.1073/pnas.071056198.CrossRefPubMedPubMedCentral Thomas EA, Dean B, Pavey G, Sutcliffe JG: Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: implications for the pathophysiology of psychiatric disorders. Proc Natl Acad Sci U S A. 2001, 98 (7): 4066-4071. 10.1073/pnas.071056198.CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Belloir B, Kovari E, Surini-Demiri M, Savioz A: Altered apolipoprotein D expression in the brain of patients with Alzheimer disease. J Neurosci Res. 2001, 64 (1): 61-69. 10.1002/jnr.1054.CrossRefPubMed Belloir B, Kovari E, Surini-Demiri M, Savioz A: Altered apolipoprotein D expression in the brain of patients with Alzheimer disease. J Neurosci Res. 2001, 64 (1): 61-69. 10.1002/jnr.1054.CrossRefPubMed
28.
Zurück zum Zitat Shibata N, Nagata T, Shinagawa S, Ohnuma T, Shimazaki H, Komatsu M, Kuerban B, Tomson K, Nakayama K, Yamada H, Arai H: Genetic association between APOA1 and APOD polymorphisms and Alzheimer's disease in a Japanese population. J Neural Transm. 2013, 120 (11): 1599-1603. 10.1007/s00702-013-1036-7.CrossRefPubMed Shibata N, Nagata T, Shinagawa S, Ohnuma T, Shimazaki H, Komatsu M, Kuerban B, Tomson K, Nakayama K, Yamada H, Arai H: Genetic association between APOA1 and APOD polymorphisms and Alzheimer's disease in a Japanese population. J Neural Transm. 2013, 120 (11): 1599-1603. 10.1007/s00702-013-1036-7.CrossRefPubMed
29.
Zurück zum Zitat Ordonez C, Navarro A, Perez C, Astudillo A, Martinez E, Tolivia J: Apolipoprotein D expression in substantia nigra of Parkinson disease. Histol Histopathol. 2006, 21 (4): 361-366.PubMed Ordonez C, Navarro A, Perez C, Astudillo A, Martinez E, Tolivia J: Apolipoprotein D expression in substantia nigra of Parkinson disease. Histol Histopathol. 2006, 21 (4): 361-366.PubMed
30.
Zurück zum Zitat Navarro A, Alonso A, Garrido P, Gonzalez C, Gonzalez Del Rey C, Ordonez C, Tolivia J: Increase in placental apolipoprotein D as an adaptation to human gestational diabetes. Placenta. 2010, 31 (1): 25-31. 10.1016/j.placenta.2009.11.002.CrossRefPubMed Navarro A, Alonso A, Garrido P, Gonzalez C, Gonzalez Del Rey C, Ordonez C, Tolivia J: Increase in placental apolipoprotein D as an adaptation to human gestational diabetes. Placenta. 2010, 31 (1): 25-31. 10.1016/j.placenta.2009.11.002.CrossRefPubMed
31.
Zurück zum Zitat Rickhag M, Deierborg T, Patel S, Ruscher K, Wieloch T: Apolipoprotein D is elevated in oligodendrocytes in the peri-infarct region after experimental stroke: influence of enriched environment. J Cereb Blood Flow Metab. 2008, 28 (3): 551-562. 10.1038/sj.jcbfm.9600552.CrossRefPubMed Rickhag M, Deierborg T, Patel S, Ruscher K, Wieloch T: Apolipoprotein D is elevated in oligodendrocytes in the peri-infarct region after experimental stroke: influence of enriched environment. J Cereb Blood Flow Metab. 2008, 28 (3): 551-562. 10.1038/sj.jcbfm.9600552.CrossRefPubMed
32.
Zurück zum Zitat Franz G, Reindl M, Patel SC, Beer R, Unterrichter I, Berger T, Schmutzhard E, Poewe W, Kampfl A: Increased expression of apolipoprotein D following experimental traumatic brain injury. J Neurochem. 1999, 73 (4): 1615-1625. 10.1046/j.1471-4159.1999.0731615.x.CrossRefPubMed Franz G, Reindl M, Patel SC, Beer R, Unterrichter I, Berger T, Schmutzhard E, Poewe W, Kampfl A: Increased expression of apolipoprotein D following experimental traumatic brain injury. J Neurochem. 1999, 73 (4): 1615-1625. 10.1046/j.1471-4159.1999.0731615.x.CrossRefPubMed
33.
Zurück zum Zitat Chen Y, Jia L, Wei C, Wang F, Lv H, Jia J: Association between polymorphisms in the apolipoprotein D gene and sporadic Alzheimer's disease. Brain Res. 2008, 1233: 196-202. 10.1016/j.brainres.2008.07.018.CrossRefPubMed Chen Y, Jia L, Wei C, Wang F, Lv H, Jia J: Association between polymorphisms in the apolipoprotein D gene and sporadic Alzheimer's disease. Brain Res. 2008, 1233: 196-202. 10.1016/j.brainres.2008.07.018.CrossRefPubMed
34.
Zurück zum Zitat Ganfornina MD, Do Carmo S, Lora JM, Torres-Schumann S, Vogel M, Allhorn M, Gonzalez C, Bastiani MJ, Rassart E, Sanchez D: Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell. 2008, 7 (4): 506-515. 10.1111/j.1474-9726.2008.00395.x.CrossRefPubMedPubMedCentral Ganfornina MD, Do Carmo S, Lora JM, Torres-Schumann S, Vogel M, Allhorn M, Gonzalez C, Bastiani MJ, Rassart E, Sanchez D: Apolipoprotein D is involved in the mechanisms regulating protection from oxidative stress. Aging Cell. 2008, 7 (4): 506-515. 10.1111/j.1474-9726.2008.00395.x.CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Bhatia S, Knoch B, Wong J, Kim WS, Else PL, Oakley AJ, Garner B: Selective reduction of hydroperoxyeicosatetraenoic acids to their hydroxy derivatives by apolipoprotein D: implications for lipid antioxidant activity and Alzheimer's disease. Biochemical J. 2012, 442 (3): 713-721. 10.1042/BJ20111166.CrossRef Bhatia S, Knoch B, Wong J, Kim WS, Else PL, Oakley AJ, Garner B: Selective reduction of hydroperoxyeicosatetraenoic acids to their hydroxy derivatives by apolipoprotein D: implications for lipid antioxidant activity and Alzheimer's disease. Biochemical J. 2012, 442 (3): 713-721. 10.1042/BJ20111166.CrossRef
36.
Zurück zum Zitat Kourrich S, Su TP, Fujimoto M, Bonci A: The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci. 2012, 35 (12): 762-771. 10.1016/j.tins.2012.09.007.CrossRefPubMedPubMedCentral Kourrich S, Su TP, Fujimoto M, Bonci A: The sigma-1 receptor: roles in neuronal plasticity and disease. Trends Neurosci. 2012, 35 (12): 762-771. 10.1016/j.tins.2012.09.007.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Ruscher K, Shamloo M, Rickhag M, Ladunga I, Soriano L, Gisselsson L, Toresson H, Ruslim-Litrus L, Oksenberg D, Urfer R, Johansson BB, Nikolich K, Wieloch T: The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain. 2011, 134 (3): 732-746. 10.1093/brain/awq367.CrossRefPubMed Ruscher K, Shamloo M, Rickhag M, Ladunga I, Soriano L, Gisselsson L, Toresson H, Ruslim-Litrus L, Oksenberg D, Urfer R, Johansson BB, Nikolich K, Wieloch T: The sigma-1 receptor enhances brain plasticity and functional recovery after experimental stroke. Brain. 2011, 134 (3): 732-746. 10.1093/brain/awq367.CrossRefPubMed
38.
Zurück zum Zitat Kishi T, Yoshimura R, Okochi T, Fukuo Y, Kitajima T, Okumura T, Tsunoka T, Kawashima K, Yamanouchi Y, Kinoshita Y, Umene-Nakano W, Naitoh H, Nakamura J, Ozaki N, Iwata N: Association analysis of SIGMAR1 with major depressive disorder and SSRI response. Neuropharmacology. 2010, 58 (7): 1168-1173. 10.1016/j.neuropharm.2010.02.013.CrossRefPubMed Kishi T, Yoshimura R, Okochi T, Fukuo Y, Kitajima T, Okumura T, Tsunoka T, Kawashima K, Yamanouchi Y, Kinoshita Y, Umene-Nakano W, Naitoh H, Nakamura J, Ozaki N, Iwata N: Association analysis of SIGMAR1 with major depressive disorder and SSRI response. Neuropharmacology. 2010, 58 (7): 1168-1173. 10.1016/j.neuropharm.2010.02.013.CrossRefPubMed
39.
Zurück zum Zitat Ishiguro H, Ohtsuki T, Toru M, Itokawa M, Aoki J, Shibuya H, Kurumaji A, Okubo Y, Iwawaki A, Ota K, Shimizu H, Hamaguchi H, Arinami T: Association between polymorphisms in the type 1 sigma receptor gene and schizophrenia. Neurosci Lett. 1998, 257 (1): 45-48. 10.1016/S0304-3940(98)00797-6.CrossRefPubMed Ishiguro H, Ohtsuki T, Toru M, Itokawa M, Aoki J, Shibuya H, Kurumaji A, Okubo Y, Iwawaki A, Ota K, Shimizu H, Hamaguchi H, Arinami T: Association between polymorphisms in the type 1 sigma receptor gene and schizophrenia. Neurosci Lett. 1998, 257 (1): 45-48. 10.1016/S0304-3940(98)00797-6.CrossRefPubMed
40.
Zurück zum Zitat Miyatake R, Furukawa A, Matsushita S, Higuchi S, Suwaki H: Functional polymorphisms in the sigma1 receptor gene associated with alcoholism. Biol Psychiatry. 2004, 55 (1): 85-90. 10.1016/j.biopsych.2003.07.008.CrossRefPubMed Miyatake R, Furukawa A, Matsushita S, Higuchi S, Suwaki H: Functional polymorphisms in the sigma1 receptor gene associated with alcoholism. Biol Psychiatry. 2004, 55 (1): 85-90. 10.1016/j.biopsych.2003.07.008.CrossRefPubMed
41.
Zurück zum Zitat Feher A, Juhasz A, Laszlo A, Kalman J, Pakaski M, Kalman J, Janka Z: Association between a variant of the sigma-1 receptor gene and Alzheimer's disease. Neurosci Lett. 2012, 517 (2): 136-139. 10.1016/j.neulet.2012.04.046.CrossRefPubMed Feher A, Juhasz A, Laszlo A, Kalman J, Pakaski M, Kalman J, Janka Z: Association between a variant of the sigma-1 receptor gene and Alzheimer's disease. Neurosci Lett. 2012, 517 (2): 136-139. 10.1016/j.neulet.2012.04.046.CrossRefPubMed
42.
Zurück zum Zitat Hallström B, Jönsson AC, Nerbrand C, Petersen B, Norrving B, Lindgren A: Lund Stroke Register: hospitalization pattern and yield of different screening methods for first-ever stroke. Acta Neurol Scand. 2007, 115 (1): 49-54. 10.1111/j.1600-0404.2006.00738.x.CrossRefPubMed Hallström B, Jönsson AC, Nerbrand C, Petersen B, Norrving B, Lindgren A: Lund Stroke Register: hospitalization pattern and yield of different screening methods for first-ever stroke. Acta Neurol Scand. 2007, 115 (1): 49-54. 10.1111/j.1600-0404.2006.00738.x.CrossRefPubMed
43.
Zurück zum Zitat Jood K, Ladenvall C, Rosengren A, Blomstrand C, Jern C: Family history in ischemic stroke before 70 years of age: the Sahlgrenska Academy Study on Ischemic Stroke. Stroke. 2005, 36 (7): 1383-1387. 10.1161/01.STR.0000169944.46025.09.CrossRefPubMed Jood K, Ladenvall C, Rosengren A, Blomstrand C, Jern C: Family history in ischemic stroke before 70 years of age: the Sahlgrenska Academy Study on Ischemic Stroke. Stroke. 2005, 36 (7): 1383-1387. 10.1161/01.STR.0000169944.46025.09.CrossRefPubMed
44.
Zurück zum Zitat Goldstein LB, Bertels C, Davis JN: Interrater reliability of the NIH stroke scale. Arch Neurol. 1989, 46 (6): 660-662. 10.1001/archneur.1989.00520420080026.CrossRefPubMed Goldstein LB, Bertels C, Davis JN: Interrater reliability of the NIH stroke scale. Arch Neurol. 1989, 46 (6): 660-662. 10.1001/archneur.1989.00520420080026.CrossRefPubMed
45.
Zurück zum Zitat Multicenter trial of hemodilution in ischemic stroke--background and study protocol. Scandinavian Stroke Study Group.Stroke 1985, 16(5):885–890., Multicenter trial of hemodilution in ischemic stroke--background and study protocol. Scandinavian Stroke Study Group.Stroke 1985, 16(5):885–890.,
46.
Zurück zum Zitat Gray LJ, Ali M, Lyden PD, Bath PM: Interconversion of the National Institutes of Health Stroke Scale and Scandinavian Stroke Scale in acute stroke. J Stroke Cerebrovasc Dis. 2009, 18 (6): 466-468. 10.1016/j.jstrokecerebrovasdis.2009.02.003.CrossRefPubMed Gray LJ, Ali M, Lyden PD, Bath PM: Interconversion of the National Institutes of Health Stroke Scale and Scandinavian Stroke Scale in acute stroke. J Stroke Cerebrovasc Dis. 2009, 18 (6): 466-468. 10.1016/j.jstrokecerebrovasdis.2009.02.003.CrossRefPubMed
47.
Zurück zum Zitat Adams HP, Bendixen BH, Leira E, Chang KC, Davis PH, Woolson RF, Clarke WR, Hansen MD: Antithrombotic treatment of ischemic stroke among patients with occlusion or severe stenosis of the internal carotid artery: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology. 1999, 53 (1): 122-125. 10.1212/WNL.53.1.122.CrossRefPubMed Adams HP, Bendixen BH, Leira E, Chang KC, Davis PH, Woolson RF, Clarke WR, Hansen MD: Antithrombotic treatment of ischemic stroke among patients with occlusion or severe stenosis of the internal carotid artery: A report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology. 1999, 53 (1): 122-125. 10.1212/WNL.53.1.122.CrossRefPubMed
48.
Zurück zum Zitat Eriksson M, Appelros P, Norrving B, Terent A, Stegmayr B: Assessment of functional outcome in a national quality register for acute stroke: can simple self-reported items be transformed into the modified Rankin Scale?. Stroke. 2007, 38 (4): 1384-1386. 10.1161/01.STR.0000260102.97954.9c.CrossRefPubMed Eriksson M, Appelros P, Norrving B, Terent A, Stegmayr B: Assessment of functional outcome in a national quality register for acute stroke: can simple self-reported items be transformed into the modified Rankin Scale?. Stroke. 2007, 38 (4): 1384-1386. 10.1161/01.STR.0000260102.97954.9c.CrossRefPubMed
49.
Zurück zum Zitat van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J: Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988, 19 (5): 604-607. 10.1161/01.STR.19.5.604.CrossRefPubMed van Swieten JC, Koudstaal PJ, Visser MC, Schouten HJ, van Gijn J: Interobserver agreement for the assessment of handicap in stroke patients. Stroke. 1988, 19 (5): 604-607. 10.1161/01.STR.19.5.604.CrossRefPubMed
50.
Zurück zum Zitat Olsson S, Jood K, Blomstrand C, Jern C: Genetic variation on chromosome 9p21 shows association with the ischaemic stroke subtype large-vessel disease in a Swedish sample aged </=70. Eur J Neurol. 2011, 18 (2): 365-367. 10.1111/j.1468-1331.2010.03096.x.CrossRefPubMed Olsson S, Jood K, Blomstrand C, Jern C: Genetic variation on chromosome 9p21 shows association with the ischaemic stroke subtype large-vessel disease in a Swedish sample aged </=70. Eur J Neurol. 2011, 18 (2): 365-367. 10.1111/j.1468-1331.2010.03096.x.CrossRefPubMed
51.
Zurück zum Zitat Starby H, Delavaran H, Andsberg G, Lövkvist H, Norrving B, Lindgren A: Multiplicity of risk factors in ischemic stroke patients: relations to age, sex, and subtype - a study of 2,505 patients from the Lund Stroke Register. Neuroepidemiology. 2014, 42 (3): 161-168. 10.1159/000357150.CrossRefPubMed Starby H, Delavaran H, Andsberg G, Lövkvist H, Norrving B, Lindgren A: Multiplicity of risk factors in ischemic stroke patients: relations to age, sex, and subtype - a study of 2,505 patients from the Lund Stroke Register. Neuroepidemiology. 2014, 42 (3): 161-168. 10.1159/000357150.CrossRefPubMed
52.
Zurück zum Zitat Flossmann E, Schulz UG, Rothwell PM: Systematic review of methods and results of studies of the genetic epidemiology of ischemic stroke. Stroke. 2004, 35 (1): 212-227. 10.1161/01.STR.0000107187.84390.AA.CrossRefPubMed Flossmann E, Schulz UG, Rothwell PM: Systematic review of methods and results of studies of the genetic epidemiology of ischemic stroke. Stroke. 2004, 35 (1): 212-227. 10.1161/01.STR.0000107187.84390.AA.CrossRefPubMed
53.
Zurück zum Zitat Schutze MP, Peterson PA, Jackson MR: An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J. 1994, 13 (7): 1696-1705.PubMedPubMedCentral Schutze MP, Peterson PA, Jackson MR: An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. EMBO J. 1994, 13 (7): 1696-1705.PubMedPubMedCentral
54.
Zurück zum Zitat Hansen T, Hemmingsen RP, Wang AG, Olsen L, Timm S, Soeby K, Jakobsen KD, Fenger M, Parnas J, Rasmussen HB, Werge T: Apolipoprotein D is associated with long-term outcome in patients with schizophrenia. Pharmacogenomics J. 2006, 6 (2): 120-125. 10.1038/sj.tpj.6500350.CrossRefPubMed Hansen T, Hemmingsen RP, Wang AG, Olsen L, Timm S, Soeby K, Jakobsen KD, Fenger M, Parnas J, Rasmussen HB, Werge T: Apolipoprotein D is associated with long-term outcome in patients with schizophrenia. Pharmacogenomics J. 2006, 6 (2): 120-125. 10.1038/sj.tpj.6500350.CrossRefPubMed
Metadaten
Titel
Variations in apolipoprotein D and sigma non-opioid intracellular receptor 1 genes with relation to risk, severity and outcome of ischemic stroke
verfasst von
Håkan Lövkvist
Ann-Cathrin Jönsson
Holger Luthman
Katarina Jood
Christina Jern
Tadeusz Wieloch
Arne Lindgren
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
BMC Neurology / Ausgabe 1/2014
Elektronische ISSN: 1471-2377
DOI
https://doi.org/10.1186/s12883-014-0191-2

Weitere Artikel der Ausgabe 1/2014

BMC Neurology 1/2014 Zur Ausgabe

Neu in den Fachgebieten Neurologie und Psychiatrie

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.