Skip to main content
Erschienen in: BMC Musculoskeletal Disorders 1/2019

Open Access 01.12.2019 | Research article

Vertebral bone marrow fat fraction changes in postmenopausal women with breast cancer receiving combined aromatase inhibitor and bisphosphonate therapy

verfasst von: Michael Dieckmeyer, Stefan Ruschke, Alexander Rohrmeier, Jan Syväri, Ingo Einspieler, Vanadin Seifert-Klauss, Monika Schmidmayr, Stephan Metz, Jan S. Kirschke, Ernst J. Rummeny, Claus Zimmer, Dimitrios C. Karampinos, Thomas Baum

Erschienen in: BMC Musculoskeletal Disorders | Ausgabe 1/2019

Abstract

Background

Quantification of vertebral bone marrow (VBM) water–fat composition has been proposed as advanced imaging biomarker for osteoporosis. Estrogen deficiency is the primary reason for trabecular bone loss in postmenopausal women. By reducing estrogen levels aromatase inhibitors (AI) as part of breast cancer therapy promote bone loss. Bisphosphonates (BP) are recommended to counteract this adverse drug effect. The purpose of our study was to quantify VBM proton density fat fraction (PDFF) changes at the lumbar spine using chemical shift encoding-based water-fat MRI (CSE-MRI) and bone mineral density (BMD) changes using dual energy X-ray absorptiometry (DXA) related to AI and BP treatment over a 12-month period.

Methods

Twenty seven postmenopausal breast cancer patients receiving AI therapy were recruited for this study. 22 subjects completed the 12-month study. 14 subjects received AI and BP (AI+BP), 8 subjects received AI without BP (AI-BP).
All subjects underwent 3 T MRI. An eight-echo 3D spoiled gradient-echo sequence was used for CSE-based water-fat separation at the lumbar spine to generate PDFF maps. After manual segmentation of the vertebral bodies L1-L5 PDFF values were extracted for each vertebra and averaged for each subject.
All subjects underwent DXA of the lumbar spine measuring the average BMD of L1-L4.

Results

Baseline age, PDFF and BMD showed no significant difference between the two groups (p > 0.05). There was a relative longitudinal increase in mean PDFF (∆relPDFF) in both groups (AI+BP: 5.93%; AI-BP: 3.11%) which was only significant (p = 0.006) in the AI+BP group. ∆relPDFF showed no significant difference between the two groups (p > 0.05). There was no significant longitudinal change in BMD (p > 0.05).

Conclusions

Over a 12-month period, VBM PDFF assessed with CSE-MRI significantly increased in subjects receiving AI and BP. The present results contradict previous results regarding the effect of only BP therapy on bone marrow fat content quantified by magnetic resonance spectroscopy and bone biopsies. Future longer-term follow-up studies are needed to further characterize the effects of combined AI and BP therapy.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
∆rel BMD
Relative longitudinal change in BMD
∆rel PDFF
Relative longitudinal change in PDFF
∆rel
Relative longitudinal change
A/P
Anterior/posterior
AI
Aromatase inhibitor
BMD
Bone mineral density
BMDbaseline
Bone mineral density at baseline measurement
BMDfollow-up
Bone mineral density at follow-up measurement
BMFF
Bone marrow fat fraction
BMI
Body mass index
BP
Bisphosphonates
CSE
Chemical shift encoding
CSE-MRI
Chemical shift encoding-based water-fat MRI
DXA
Dual energy X-ray absorptiometry
FOV
Field of view
MITK
Medical Imaging Interaction Toolkit
MRI
Magnetic resonance imaging
MRS
Magnetic resonance spectroscopy
PDFF
Proton density fat fraction
PDFFbaseline
Proton density fat fraction at baseline measurement
PDFFfollow-up
Proton density fat fraction at follow-up measurement
ROI
Region of interest
T
Tesla
TE
Echo time
TR
Time of repetition
VBM
Vertebral bone marrow

Background

Vertebral bone marrow fat fraction (BMFF) has been shown to be related to age, anatomical location, hormone levels as well as a variety of medical conditions or treatments, such as osteoporosis [16], diabetes [4, 7, 8], radiation therapy and chemotherapy [9, 10]. In the context of osteoporosis, it has been established that bone loss is associated with an increase in vertebral BMFF [1113]. The altered differentiation of mesenchymal progenitor cells is one of several mechanisms on the cellular level causing this increase. These cells can differentiate into osteoblasts and osteocytes or into adipocytes. It was shown that with aging there is a shift to a more adipogenic fate [14].
Chemical shift encoded magnetic resonance imaging (CSE-MRI) and magnetic resonance spectroscopy (MRS) constitute two techniques that enable non-invasive in-vivo measurement of vertebral BMFF [15]. Previous studies have shown that proton density fat fraction (PDFF) is the parameter of choice when it comes to the assessment of vertebral bone marrow water-fat composition [16, 17].
Aromatase inhibitor (AI) therapy is a standard treatment component for estrogen receptor positive breast cancer in postmenopausal women [1820]. By reducing estrogen levels, it inhibits tumor cell growth. However, reduced estrogen levels also promote bone loss and the development of osteoporosis. To counteract this adverse drug effect, bisphosphonates (BP) can be administered which are recommended as first line antiosteoporotic therapy [21, 22] and have been shown to increase bone mineral density (BMD) [23], reduce fracture risk [24] and reduce BMFF [25] in postmenopausal osteoporotic women. The current clinical gold standard to assess osteoporosis-associated fracture risk in these patients is the determination of BMD using dual-energy X-ray absorptiometry (DXA). However, DXA-based BMD values of subjects with and without osteoporotic fractures overlap [26]. Therefore, advanced imaging biomarkers are needed to improve the prediction of fracture risk beyond BMD.
The purpose of the present study was to quantify changes in vertebral BMFF and BMD over one year in postmenopausal breast cancer patients receiving AI therapy with and without additional BP therapy, respectively. We hypothesized that vertebral BMFF measurements are more sensitive to medication induced changes than DXA-based BMD measurements.

Methods

Subjects

For this study 27 postmenopausal female breast cancer patients receiving AI therapy were recruited at the Department of Gynecology, Klinikum rechts der Isar, Technical University of Munich, Germany. The time between breast cancer diagnosis and start of AI therapy ranged between three and five months. Exclusion criteria were past or current chemotherapy, history of bone metastasis or vertebral fractures, past or current intake of medication affecting bone metabolism (other than calcium and vitamin D), history of hemato-oncological disease, impaired renal function as well as general MRI contraindications. Five subjects dropped out due to disease progression during follow-up resulting in a total of 22 subjects completing the 12-month follow-up study (baseline: age = 62.3 ± 6.5 years, BMI = 25.4 ± 4.2 kg/m2; follow-up: age = 63.3 ± 7.2 years, BMI = 25.6 ± 4.2 kg/m2). Based on the multidisciplinary tumor board recommendations, 14 subjects received AI and BP (zoledronic acid) therapy (AI+BP) and 8 subjects received AI without BP therapy (AI-BP).

Magnetic resonance imaging

All subjects underwent 3 T MRI (Ingenia, Philips Healthcare, Best, Netherlands). An eight-echo 3D spoiled gradient-echo sequence was used for CSE-based water-fat separation at the lumbar spine using the built-in-the-table posterior coil elements (12-channel array). 8 echoes were acquired in a single TR using non-flyback (bipolar) read-out gradients and the following imaging parameters: TR/TE1/ΔTE = 11/1.4/1.1 ms, FOV = 220 × 220 × 80 mm3, acquisition matrix = 124 × 121, voxel size = 1.8 × 1.8 × 4.0 mm3, receiver bandwidth = 1527 Hz/pixel, frequency direction = A/P (to minimize breathing artifacts), 1 average, scan time = 1 min 17 s. A flip angle of 3° was used to minimize T1-bias effects.
The gradient echo imaging data was processed online using the fat quantification routine of the vendor. The routine first performs a phase error correction and then a complex-based water–fat decomposition using a pre-calibrated seven-peak fat spectrum and a single T2* to model the signal variation with echo time and compute PDFF maps. Segmentation of the vertebral bodies L1 to L5 was performed manually by a radiologist on the PDFF maps using the open-source software Medical Imaging Interaction Toolkit (MITK) (Fig. 1). Vertebrae with degenerative changes, e.g. Modic changes, and benign lesions, e.g. hemangiomas, were excluded. PDFF values were extracted at each vertebral level from L1 to L5 and averaged for each subject. Reproducibility error values of vertebral PDFF measurements at the lumbar spine were reported previously [27] and amounted to 1.7% (absolute unit) over C3 to L5. The relative longitudinal change in PDFF (∆rel PDFF) was defined as.
$$ {\Delta \mathrm{rel}}_{\mathrm{PDFF}}=\left({\mathrm{PDFF}}_{\mathrm{follow}-\mathrm{up}}-{\mathrm{PDFF}}_{\mathrm{baseline}}\right)/{\mathrm{PDFF}}_{\mathrm{baseline}} $$

BMD measurements

All subjects underwent a medically indicated DXA scan (Lunar Prodigy, GE Healthcare) of the lumbar spine measuring the average areal BMD of L1 to L4. The relative longitudinal change in BMD (∆rel BMD) was defined as.
$$ {\Delta \mathrm{rel}}_{\mathrm{BMD}}=\left({\mathrm{BMD}}_{\mathrm{follow}-\mathrm{up}}-{\mathrm{BMD}}_{\mathrm{baseline}}\right)/{\mathrm{BMD}}_{\mathrm{baseline}} $$

Statistical analysis

All statistical analyses were performed using MATLAB (The MathWorks Inc., Natick, MA, USA) and SPSS (SPSS Inc., Chicago, IL, USA). The Kolmogorov–Smirnov test indicated normally distributed data for the majority of parameters. Differences in the measured variables and relative longitudinal changes between the two treatment groups (AI+BP vs. AI-BP) were tested for significance using unpaired t-tests. Differences in the measured variables between baseline and follow-up measurements in each group were tested for significance using paired t-tests. Statistical tests were performed using a two-sided level of significance α = 0.05.

Results

Baseline age, BMI, BMD, and PDFF showed no significant (p > 0.05) difference between the AI+BP and AI-BP group. Similarly, these parameters were not significantly different between the two treatment groups at 12-month follow-up (Tab. 1 and 2, p > 0.05).
Table 1
Anthropometric data (mean ± standard deviation) and p-values for unpaired t-tests between the two treatment groups
 
Baseline
Follow-up
 
AI+BP (n = 14)
AI-BP (n = 8)
p-value
AI+BP (n = 14)
AI-BP (n = 8)
p-value
Age [y]
61.2 ± 5.5
64.2 ± 8.2
0.314
62.2 ± 5.3
65.2 ± 8.2
0.303
BMI [kg/m2]
25.1 ± 4.3
25.9 ± 4.1
0.657
25.5 ± 4.3
25.9 ± 4.1
0.842
Table 2
Measured data (mean ± standard deviation) and p-values for unpaired t-tests between the two treatment groups
 
Baseline
Follow-up
 
AI+BP (n = 14)
AI-BP (n = 8)
p-value
AI+BP (n = 14)
AI-BP (n = 8)
p-value
PDFF [%]
45.66 ± 9.72
45.88 ± 6.95
0.956
48.40 ± 10.69
47.03 ± 7.25
0.750
BMD [g/cm2]
1.247 ± 0.252
1.186 ± 0.179
0.554
1.270 ± 0.270
1.177 ± 0.171
0.390
There was a positive ∆relPDFF averaged over L1 to L5 in both groups (AI+BP: 5.93%; AI-BP: 3.11%), however it was only significant (p = 0.006) in the AI+BP group. ∆relPDFF showed no significant difference between the two groups. There was no significant longitudinal change in BMD (Tab. 3). There was no significant (p > 0.05) correlation between PDFF and BMD for the entire patient group or any of the two treatment groups at baseline or follow-up.
Table 3
Relative longitudinal change in measured data (mean). p-values refer to (un-)paired t-tests
Longitudinal change
All subjects (n = 22)
AI+BP (n = 14)
AI-BP (n = 8)
p-value
(AI+BP vs. AI-BP)
∆relPDFF [%]
4.90 (p = 0.022)
5.93 (p = 0.006)
3.11 (p = 0.52)
0.510
∆relBMD [%]
0.96 (p = 0.288)
1.81 (p = 0.056)
−0.51 (p = 0.792)
0.214
Figure 2 demonstrates exemplary baseline and follow-up PDFF maps of representative subjects of both treatment groups.

Discussion

The present study performed BMFF measurements at the lumbar spine of postmenopausal breast cancer patients over a 12-month period using CSE-MRI. In contrast to subjects receiving AI only, the vertebral bone marrow PDFF significantly increased in subjects receiving combined AI and BP therapy.
Vertebral bone marrow water-fat composition has been shown to be significantly altered in osteoporosis and therefore been proposed as advanced imaging biomarker for fracture risk prediction [28, 29]. The loss of trabecular bone in postmenopausal women is primarily caused by estrogen deficiency. Therefore, one important side effect of AI therapy is the promotion of bone loss which can be counteracted by the administration of BP. The present study found that vertebral bone marrow PDFF significantly increased from 45.66 to 48.40% in subjects receiving combined AI and BP therapy based on CSE-MRI measurements. This absolute change of 2.74% is higher than the previously reported reproducibility error of vertebral BMFF measurements of 1.7% [27]. Our findings are at odds with results from previous studies investigating the effect of BP therapy on BMFF quantified by MRS [25] as well as bone biopsies [30]. Those studies reported a significant reduction of BMFF in postmenopausal women receiving BP therapy. However, the two mentioned studies only investigated the effect of BP treatment on bone marrow adiposity in postmenopausal women not receiving any additional medication. In the literature, there is no previous study investigating the effect of BP therapy on postmenopausal women simultaneously receiving AI therapy. Although the detailed physiological and biochemical pathways are still not completely understood it is well established that estrogen is important for maintaining BMD. The protective effects of estrogen on bone health can be explained by several mechanisms. It stimulates osteoclast apoptosis and suppresses osteoblast and osteocyte apoptosis and thereby increases the lifespan of bone building cells and decreases the lifespan of bone resorbing cells. Furthermore, estrogen represses pro-osteoclastic cytokines, such as TNFα, IL-1, IL-6 and IL-7 and down-regulates osteoclastogenesis via the RANKL pathway [31, 32]. It has been shown that the effects of estrogen on bone cells are mediated via estrogen receptors ERα and ER​β. Interestingly, ERα is expressed at a higher level in cortical bone and ERβ is expressed at a higher level in trabecular bone [32]. Estrogen has also been shown to have effects on adipogenesis through regulation of adipocyte precursor proliferation and expression of adipocyte differentiation factors [3336].
It becomes clear that by reducing estrogen synthesis AI therapy decreases BMD resulting in impaired bone health. BP have been shown to enhance osteoclast apoptosis and thus decrease their lifespan [37, 38] as well as increase osteoblast lifespan [39]. Thus, the cellular and molecular pathways through which AI and BP affect bone turnover as well as bone marrow composition overlap to some extent, but are not completely identical. This could be a potential explanation why BP therapy has a different effect on patients receiving AI therapy than on patients not receiving any estrogen suppressing therapy.
We observed a significant longitudinal difference in vertebral bone marrow PDFF without corresponding changes in BMD. This could be attributed to the fact that vertebral bone marrow fat content not only depends on osseous changes, but also changes in bone marrow composition itself. A second concomitant explanation might be that bone marrow changes start to occur earlier than bone mass related changes. Our findings suggest a higher sensitivity of PDFF measurements to medication induced changes than DXA-based BMD. The fact that there was a close to significant BMD increase in the patient group receiving AI and BP therapy potentially implicates that the effect of BP on BMD is stronger than on PDFF. This can be considered additional evidence that osteoporosis related BMFF changes are not exclusively a result of the replacement of bone by adipose tissue.
The present study is not without limitations. There was no group of age-matched healthy controls. Since aging itself is a contributing factor for bone loss and increased bone marrow adiposity, in particular in postmenopausal women, such a control group would be beneficial in order to better assess the effects of AI und BP therapy. However, in [40] mean and standard deviation of lumbar VBM PDFF values of healthy female subjects of different age groups were analyzed. There was an increase in PDFF from 48.8 ± 7.7% to 50.5 ± 8.2% between the sixties and seventies age group, amounting to a relative PDFF increase of 3.5%, over a 10-year period of time. Admittedly, considering this data as a reference is not equivalent to a dedicated age-matched healthy control group. However, it should provide sufficient confidence that, firstly, the baseline PDFF values of the present study are within the range of healthy controls and, secondly, the 12-month longitudinal effects on marrow adiposity observed in the present study are not only the result of aging.
Another limitation of the present study is the relatively small sample size as well as the relatively short observation period. Performing future follow-up measurements will improve the assessment of treatment associated changes over a longer period of time. This could help to better characterize effects of combined AI and BP therapy on vertebral PDFF and reveal longer-term longitudinal effects.

Conclusions

Over a 12-month period vertebral PDFF assessed with CSE-MRI significantly increased in subjects receiving combined AI and BP therapy. The present results are not in line with previous results regarding the effect of only BP therapy on BMFF. However, there is no previous study on the combined effect of AI and BP therapy on BMFF. Performing additional follow-up measurements to assess longitudinal effects over a longer time period might help to further characterize the longer-term effects of combined AI and BP therapy on vertebral PDFF.

Acknowledgements

Not applicable.
The study was approved by the local institutional committee for human research (Ethikkommission der Technischen Universität München) and in accordance with the 1964 Helsinki declaration and its later amendments. All individuals gave written informed consent before participation in the study.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Kuhn JP, et al. Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis. Eur Radiol. 2013;23(12):3432–9.CrossRef Kuhn JP, et al. Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis. Eur Radiol. 2013;23(12):3432–9.CrossRef
2.
Zurück zum Zitat Ergen FB, et al. Fat fraction estimation of the vertebrae in females using the T2*-IDEAL technique in detection of reduced bone mineralization level: comparison with bone mineral densitometry. J Comput Assist Tomogr. 2014;38(2):320–4.CrossRef Ergen FB, et al. Fat fraction estimation of the vertebrae in females using the T2*-IDEAL technique in detection of reduced bone mineralization level: comparison with bone mineral densitometry. J Comput Assist Tomogr. 2014;38(2):320–4.CrossRef
3.
Zurück zum Zitat Li GW, et al. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water-fat separation. Clin Radiol. 2014;69(3):254–62.CrossRef Li GW, et al. Quantitative evaluation of vertebral marrow adipose tissue in postmenopausal female using MRI chemical shift-based water-fat separation. Clin Radiol. 2014;69(3):254–62.CrossRef
4.
Zurück zum Zitat Cordes C, et al. MR-based assessment of bone marrow fat in osteoporosis, diabetes, and obesity. Front Endocrinol (Lausanne). 2016;7:74.CrossRef Cordes C, et al. MR-based assessment of bone marrow fat in osteoporosis, diabetes, and obesity. Front Endocrinol (Lausanne). 2016;7:74.CrossRef
5.
Zurück zum Zitat Paccou J, et al. The role of bone marrow fat in skeletal health: usefulness and perspectives for clinicians. J Clin Endocrinol Metab. 2015;100(10):3613–21.CrossRef Paccou J, et al. The role of bone marrow fat in skeletal health: usefulness and perspectives for clinicians. J Clin Endocrinol Metab. 2015;100(10):3613–21.CrossRef
6.
Zurück zum Zitat Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35–43.CrossRef Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35–43.CrossRef
7.
Zurück zum Zitat Patsch JM, et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res. 2013;28(8):1721–8.CrossRef Patsch JM, et al. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res. 2013;28(8):1721–8.CrossRef
8.
Zurück zum Zitat Baum T, et al. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging. 2012;35(1):117–24.CrossRef Baum T, et al. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging. 2012;35(1):117–24.CrossRef
9.
Zurück zum Zitat Carmona R, et al. Fat composition changes in bone marrow during chemotherapy and radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(1):155–63.CrossRef Carmona R, et al. Fat composition changes in bone marrow during chemotherapy and radiation therapy. Int J Radiat Oncol Biol Phys. 2014;90(1):155–63.CrossRef
10.
Zurück zum Zitat Bolan PJ, et al. Water-fat MRI for assessing changes in bone marrow composition due to radiation and chemotherapy in gynecologic cancer patients. J Magn Reson Imaging. 2013;38(6):1578–84.CrossRef Bolan PJ, et al. Water-fat MRI for assessing changes in bone marrow composition due to radiation and chemotherapy in gynecologic cancer patients. J Magn Reson Imaging. 2013;38(6):1578–84.CrossRef
11.
Zurück zum Zitat Yeung DK, et al. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging. 2005;22(2):279–85.CrossRef Yeung DK, et al. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging. 2005;22(2):279–85.CrossRef
12.
Zurück zum Zitat Griffith JF, et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology. 2005;236(3):945–51.CrossRef Griffith JF, et al. Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology. 2005;236(3):945–51.CrossRef
13.
Zurück zum Zitat Griffith JF, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241(3):831–8.CrossRef Griffith JF, et al. Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology. 2006;241(3):831–8.CrossRef
14.
Zurück zum Zitat Singh L, et al. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. Bone. 2016;85:29–36.CrossRef Singh L, et al. Aging alters bone-fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. Bone. 2016;85:29–36.CrossRef
15.
Zurück zum Zitat Karampinos DC, et al. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging. 2018;47(2):332–53.CrossRef Karampinos DC, et al. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging. 2018;47(2):332–53.CrossRef
16.
Zurück zum Zitat Dieckmeyer M, et al. The need for T(2) correction on MRS-based vertebral bone marrow fat quantification: implications for bone marrow fat fraction age dependence. NMR Biomed. 2015;28(4):432–9.CrossRef Dieckmeyer M, et al. The need for T(2) correction on MRS-based vertebral bone marrow fat quantification: implications for bone marrow fat fraction age dependence. NMR Biomed. 2015;28(4):432–9.CrossRef
17.
Zurück zum Zitat Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging. 2012;36(5):1011–4.CrossRef Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging. 2012;36(5):1011–4.CrossRef
18.
Zurück zum Zitat Early Breast Cancer Trialists' Collaborative, G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.CrossRef Early Breast Cancer Trialists' Collaborative, G. Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet. 2005;365(9472):1687–717.CrossRef
19.
Zurück zum Zitat Chumsri S, et al. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol. 2011;125(1–2):13–22.CrossRef Chumsri S, et al. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol. 2011;125(1–2):13–22.CrossRef
20.
Zurück zum Zitat Eisen A, et al. Optimal systemic therapy for early breast cancer in women: a clinical practice guideline. Curr Oncol. 2015;22(Suppl 1):S67–81.PubMedPubMedCentral Eisen A, et al. Optimal systemic therapy for early breast cancer in women: a clinical practice guideline. Curr Oncol. 2015;22(Suppl 1):S67–81.PubMedPubMedCentral
21.
Zurück zum Zitat Watts NB, et al. American Association of Clinical Endocrinologists Medical Guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract. 2010;16(Suppl 3):1–37.CrossRef Watts NB, et al. American Association of Clinical Endocrinologists Medical Guidelines for clinical practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocr Pract. 2010;16(Suppl 3):1–37.CrossRef
22.
Zurück zum Zitat Compston J, et al. Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National Osteoporosis Guideline Group (NOGG) update 2013. Maturitas. 2013;75(4):392–6.CrossRef Compston J, et al. Diagnosis and management of osteoporosis in postmenopausal women and older men in the UK: National Osteoporosis Guideline Group (NOGG) update 2013. Maturitas. 2013;75(4):392–6.CrossRef
23.
Zurück zum Zitat Cummings SR, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the fracture intervention trial. JAMA. 1998;280(24):2077–82.CrossRef Cummings SR, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the fracture intervention trial. JAMA. 1998;280(24):2077–82.CrossRef
24.
Zurück zum Zitat Liberman UA, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The alendronate phase III osteoporosis treatment study group. N Engl J Med. 1995;333(22):1437–43.CrossRef Liberman UA, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis. The alendronate phase III osteoporosis treatment study group. N Engl J Med. 1995;333(22):1437–43.CrossRef
25.
Zurück zum Zitat Yang Y, et al. Effect of zoledronic acid on vertebral marrow adiposity in postmenopausal osteoporosis assessed by MR spectroscopy. Skelet Radiol. 2015;44(10):1499–505.CrossRef Yang Y, et al. Effect of zoledronic acid on vertebral marrow adiposity in postmenopausal osteoporosis assessed by MR spectroscopy. Skelet Radiol. 2015;44(10):1499–505.CrossRef
26.
Zurück zum Zitat Schuit SC, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34(1):195–202.CrossRef Schuit SC, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone. 2004;34(1):195–202.CrossRef
27.
Zurück zum Zitat Baum T, et al. Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI. J Magn Reson Imaging. 2015;42(4):1018–23.CrossRef Baum T, et al. Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI. J Magn Reson Imaging. 2015;42(4):1018–23.CrossRef
28.
Zurück zum Zitat Schwartz AV, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98(6):2294–300.CrossRef Schwartz AV, et al. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98(6):2294–300.CrossRef
29.
Zurück zum Zitat Karampinos DC, et al. Association of MRS-based vertebral bone marrow fat fraction with bone strength in a human in vitro model. J Osteoporos. 2015;2015:152349.CrossRef Karampinos DC, et al. Association of MRS-based vertebral bone marrow fat fraction with bone strength in a human in vitro model. J Osteoporos. 2015;2015:152349.CrossRef
30.
Zurück zum Zitat Duque G, et al. Effects of risedronate on bone marrow adipocytes in postmenopausal women. Osteoporos Int. 2011;22(5):1547–53.CrossRef Duque G, et al. Effects of risedronate on bone marrow adipocytes in postmenopausal women. Osteoporos Int. 2011;22(5):1547–53.CrossRef
31.
Zurück zum Zitat Khosla S. Update on estrogens and the skeleton. J Clin Endocrinol Metab. 2010;95(8):3569–77.CrossRef Khosla S. Update on estrogens and the skeleton. J Clin Endocrinol Metab. 2010;95(8):3569–77.CrossRef
32.
Zurück zum Zitat Khalid AB, Krum SA. Estrogen receptors alpha and beta in bone. Bone. 2016;87:130–5.CrossRef Khalid AB, Krum SA. Estrogen receptors alpha and beta in bone. Bone. 2016;87:130–5.CrossRef
33.
Zurück zum Zitat Heim M, et al. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology. 2004;145(2):848–59.CrossRef Heim M, et al. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology. 2004;145(2):848–59.CrossRef
34.
Zurück zum Zitat Lea-Currie YR, Monroe D, McIntosh MK. Dehydroepiandrosterone and related steroids alter 3T3-L1 preadipocyte proliferation and differentiation. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1999;123(1):17–25.CrossRef Lea-Currie YR, Monroe D, McIntosh MK. Dehydroepiandrosterone and related steroids alter 3T3-L1 preadipocyte proliferation and differentiation. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1999;123(1):17–25.CrossRef
35.
Zurück zum Zitat Okazaki R, et al. Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology. 2002;143(6):2349–56.CrossRef Okazaki R, et al. Estrogen promotes early osteoblast differentiation and inhibits adipocyte differentiation in mouse bone marrow stromal cell lines that express estrogen receptor (ER) alpha or beta. Endocrinology. 2002;143(6):2349–56.CrossRef
36.
Zurück zum Zitat Dang ZC, et al. Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J Bone Miner Res. 2002;17(3):394–405.CrossRef Dang ZC, et al. Exposure of KS483 cells to estrogen enhances osteogenesis and inhibits adipogenesis. J Bone Miner Res. 2002;17(3):394–405.CrossRef
37.
Zurück zum Zitat Russell RG, et al. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733–59.CrossRef Russell RG, et al. Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int. 2008;19(6):733–59.CrossRef
38.
Zurück zum Zitat Hughes DE, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995;10(10):1478–87.CrossRef Hughes DE, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995;10(10):1478–87.CrossRef
39.
Zurück zum Zitat Sahni M, et al. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest. 1993;91(5):2004–11.CrossRef Sahni M, et al. Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest. 1993;91(5):2004–11.CrossRef
40.
Zurück zum Zitat Baum T, et al. Anatomical variation of age-related changes in vertebral bone marrow composition using chemical shift encoding-based water-fat magnetic resonance imaging. Front Endocrinol (Lausanne). 2018;9:141.CrossRef Baum T, et al. Anatomical variation of age-related changes in vertebral bone marrow composition using chemical shift encoding-based water-fat magnetic resonance imaging. Front Endocrinol (Lausanne). 2018;9:141.CrossRef
Metadaten
Titel
Vertebral bone marrow fat fraction changes in postmenopausal women with breast cancer receiving combined aromatase inhibitor and bisphosphonate therapy
verfasst von
Michael Dieckmeyer
Stefan Ruschke
Alexander Rohrmeier
Jan Syväri
Ingo Einspieler
Vanadin Seifert-Klauss
Monika Schmidmayr
Stephan Metz
Jan S. Kirschke
Ernst J. Rummeny
Claus Zimmer
Dimitrios C. Karampinos
Thomas Baum
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Musculoskeletal Disorders / Ausgabe 1/2019
Elektronische ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-019-2916-2

Weitere Artikel der Ausgabe 1/2019

BMC Musculoskeletal Disorders 1/2019 Zur Ausgabe

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, Videos und Abbildungen. 
» Jetzt entdecken

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Arthroskopie kann Knieprothese nicht hinauszögern

25.04.2024 Gonarthrose Nachrichten

Ein arthroskopischer Eingriff bei Kniearthrose macht im Hinblick darauf, ob und wann ein Gelenkersatz fällig wird, offenbar keinen Unterschied.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Ärztliche Empathie hilft gegen Rückenschmerzen

23.04.2024 Leitsymptom Rückenschmerzen Nachrichten

Personen mit chronischen Rückenschmerzen, die von einfühlsamen Ärzten und Ärztinnen betreut werden, berichten über weniger Beschwerden und eine bessere Lebensqualität.

Update Orthopädie und Unfallchirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.