Skip to main content
Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging 2/2008

01.02.2008 | Original Article

Wavelet denoising for voxel-based compartmental analysis of peripheral benzodiazepine receptors with 18F-FEDAA1106

verfasst von: Miho Shidahara, Yoko Ikoma, Chie Seki, Yota Fujimura, Mika Naganawa, Hiroshi Ito, Tetsuya Suhara, Iwao Kanno, Yuichi Kimura

Erschienen in: European Journal of Nuclear Medicine and Molecular Imaging | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

Purpose

We evaluated the noise reduction capability of wavelet denoising for estimated binding potential (BP) images (k 3/k 4) of the peripheral benzodiazepine receptor using 18F-FEDAA1106 and nonlinear least-square fitting.

Methods

Wavelet denoising within a three-dimensional discrete dual-tree complex wavelet transform was applied to simulate data and clinical dynamic positron emission tomography images of 18F-FEDAA1106. To eliminate noise components in wavelet coefficients, real and imaginary coefficients for each subband were thresholded individually using NormalShrink. A simulated dynamic brain image of 18F-FEDAA1106 was generated and Gaussian noise was added to mimic PET dynamic scan. The derived BP images were compared with true images using 156 rectangular regions of interest. Wavelet denoising was also applied to data derived from seven young normal volunteers.

Results

In the simulations, estimated BP by denoised image showed better correlation with the true BP values (Y = 0.83X + 0.94, r = 0.80), although no correlation was observed in the estimates between noise-added and true images (Y = 1.2X + 0.78, r = 0.49). For clinical data, there were visual improvements in the signal-to-noise ratio for estimated BP images.

Conclusions

Wavelet denoising improved the bias and reduced the variation of pharmacokinetic parameters for BP.
Literatur
1.
Zurück zum Zitat Turkheimer FE, Brett M, Visvikis D, Cunningham VJ. Multiresolution analysis of emission tomography images in the wavelet domain. J Cereb Blood Flow Metab 1999;19:1189–208.PubMedCrossRef Turkheimer FE, Brett M, Visvikis D, Cunningham VJ. Multiresolution analysis of emission tomography images in the wavelet domain. J Cereb Blood Flow Metab 1999;19:1189–208.PubMedCrossRef
2.
Zurück zum Zitat Turkheimer FE, Brett M, Aston JA, Leff AP, Sargent PA, Wise RJ, et al. Statistical modeling of positron emission tomography images in wavelet space. J Cereb Blood Flow Metab 2000;20:1610–8.PubMedCrossRef Turkheimer FE, Brett M, Aston JA, Leff AP, Sargent PA, Wise RJ, et al. Statistical modeling of positron emission tomography images in wavelet space. J Cereb Blood Flow Metab 2000;20:1610–8.PubMedCrossRef
3.
Zurück zum Zitat Turkheimer FE, Banati RB, Visvikis D, Aston JA, Gunn RN, Cunningham VJ, et al. Modeling dynamic PET-SPECT studies in the wavelet domain. J Cereb Blood Flow Metab 2000;20:879–93.PubMedCrossRef Turkheimer FE, Banati RB, Visvikis D, Aston JA, Gunn RN, Cunningham VJ, et al. Modeling dynamic PET-SPECT studies in the wavelet domain. J Cereb Blood Flow Metab 2000;20:879–93.PubMedCrossRef
4.
Zurück zum Zitat Turkheimer FE, Aston J, Banati RB, Riddell C, Cunningham VJ. A linear wavelet filter for parametric imaging with dynamic PET. IEEE Trans Med Imag 2003;22:289–301.CrossRef Turkheimer FE, Aston J, Banati RB, Riddell C, Cunningham VJ. A linear wavelet filter for parametric imaging with dynamic PET. IEEE Trans Med Imag 2003;22:289–301.CrossRef
5.
Zurück zum Zitat Turkheimer FE, Aston JA, Asselin MC, Hinz R. Multi-resolution Bayesian regression in PET dynamic studies using wavelets. NeuroImage 2006;32:111–21.PubMedCrossRef Turkheimer FE, Aston JA, Asselin MC, Hinz R. Multi-resolution Bayesian regression in PET dynamic studies using wavelets. NeuroImage 2006;32:111–21.PubMedCrossRef
6.
Zurück zum Zitat Anderson AN, Pavese N, Edison P, Tai YF, Hammers A, Gerhard A, et al. A systematic comparison of kinetic modeling methods generating parametric maps for [11C]-(R)-PK11195. NeuroImage 2007;32:28–37.CrossRef Anderson AN, Pavese N, Edison P, Tai YF, Hammers A, Gerhard A, et al. A systematic comparison of kinetic modeling methods generating parametric maps for [11C]-(R)-PK11195. NeuroImage 2007;32:28–37.CrossRef
7.
Zurück zum Zitat Cselenyi Z, Olsson H, Farde L, Gulyas B. Wavelet-aided parametric mapping of cerebral dopamine D2 receptors using the high affinity PET Radioligand [11C]FLB 457. NeuroImage 2000;17:47–60.CrossRef Cselenyi Z, Olsson H, Farde L, Gulyas B. Wavelet-aided parametric mapping of cerebral dopamine D2 receptors using the high affinity PET Radioligand [11C]FLB 457. NeuroImage 2000;17:47–60.CrossRef
8.
Zurück zum Zitat Cselenyi Z, Olsson H, Halldin C, Gulyas B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [11C]FLB and [11C]WAY 100635. NeuroImage 2006;32:1690–708.PubMedCrossRef Cselenyi Z, Olsson H, Halldin C, Gulyas B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [11C]FLB and [11C]WAY 100635. NeuroImage 2006;32:1690–708.PubMedCrossRef
9.
Zurück zum Zitat Millet P, Ibanez V, Delforge J, Pappata S, Guimon J. Wavelet analysis of dynamic PET data: application to the parametric imaging of benzodiazepine receptor concentration. NeuroImage 2000;11:458–72.PubMedCrossRef Millet P, Ibanez V, Delforge J, Pappata S, Guimon J. Wavelet analysis of dynamic PET data: application to the parametric imaging of benzodiazepine receptor concentration. NeuroImage 2000;11:458–72.PubMedCrossRef
10.
Zurück zum Zitat Alpert NM, Reilhac A, Chio TC, Selesnick I. Optimization of dynamic measurement of receptor kinetics by wavelet denoising. NeuroImage 2006;30:444–51.PubMedCrossRef Alpert NM, Reilhac A, Chio TC, Selesnick I. Optimization of dynamic measurement of receptor kinetics by wavelet denoising. NeuroImage 2006;30:444–51.PubMedCrossRef
11.
Zurück zum Zitat Lin JW, Laine AF, Bergmann SR. Improving PET-based physiological quantification through methods of wavelet denoising. IEEE Trans Biomed Eng 2001;48:202–12.PubMedCrossRef Lin JW, Laine AF, Bergmann SR. Improving PET-based physiological quantification through methods of wavelet denoising. IEEE Trans Biomed Eng 2001;48:202–12.PubMedCrossRef
12.
Zurück zum Zitat Shin YY, Chen JC, Liu RS. Development of wavelet de-noising technique for PET images. Comput Med Imaging Graph 2005;29:297–304.CrossRef Shin YY, Chen JC, Liu RS. Development of wavelet de-noising technique for PET images. Comput Med Imaging Graph 2005;29:297–304.CrossRef
13.
Zurück zum Zitat Arjoul L, Bentourkia M. Study of myocardial glucose metabolism in rats with PET using wavelet analysis technique. Comput Med Imaging Graph 2005;25:357–65.CrossRef Arjoul L, Bentourkia M. Study of myocardial glucose metabolism in rats with PET using wavelet analysis technique. Comput Med Imaging Graph 2005;25:357–65.CrossRef
14.
Zurück zum Zitat Donoho D. De-noising by soft-thresholding. IEEE Trans Inform Theory 1995;41:613–27.CrossRef Donoho D. De-noising by soft-thresholding. IEEE Trans Inform Theory 1995;41:613–27.CrossRef
15.
Zurück zum Zitat Kimura Y, Naganawa M, Shidahara M, Ikoma Y, Watabe H. PET kinetic analysis- Pitfalls and a solution for the Logan plot. Ann Nucl Med 2007;21:1–8.PubMedCrossRef Kimura Y, Naganawa M, Shidahara M, Ikoma Y, Watabe H. PET kinetic analysis- Pitfalls and a solution for the Logan plot. Ann Nucl Med 2007;21:1–8.PubMedCrossRef
16.
Zurück zum Zitat Yaqub M, Boellaard R, Kropholler MA, Lammertsma AA. Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys Med Biol 2006;51:4217–32.PubMedCrossRef Yaqub M, Boellaard R, Kropholler MA, Lammertsma AA. Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys Med Biol 2006;51:4217–32.PubMedCrossRef
17.
Zurück zum Zitat Kingsbury NG. Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmon Anal 2001;10:234–53.CrossRef Kingsbury NG. Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmon Anal 2001;10:234–53.CrossRef
18.
Zurück zum Zitat Selesnick I, Li KL. Video denoising using 2D and 3D dual-tree complex wavelet transforms: Wavelet Applications in Signal and Image Processing X. Proc SPIE 2003;5207:607–18.CrossRef Selesnick I, Li KL. Video denoising using 2D and 3D dual-tree complex wavelet transforms: Wavelet Applications in Signal and Image Processing X. Proc SPIE 2003;5207:607–18.CrossRef
19.
Zurück zum Zitat Fujimura Y, Ikoma Y, Yasuno F, Suhara T, Ota M, Matsumoto R, et al. Quantitative analysis of 18F-FEDAA 1106 binding to peripheral benzodiazepine receptor in living human brain. J Nucl Med 2006;47:43–50.PubMed Fujimura Y, Ikoma Y, Yasuno F, Suhara T, Ota M, Matsumoto R, et al. Quantitative analysis of 18F-FEDAA 1106 binding to peripheral benzodiazepine receptor in living human brain. J Nucl Med 2006;47:43–50.PubMed
20.
Zurück zum Zitat Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 1989;11:647–93.CrossRef Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 1989;11:647–93.CrossRef
21.
Zurück zum Zitat Fourati W, Bouhlel MS. A novel approach to improve the performance of JPEG2000. ICGST Inter J Graph Vis Image Process 2005;5:1–9. Fourati W, Bouhlel MS. A novel approach to improve the performance of JPEG2000. ICGST Inter J Graph Vis Image Process 2005;5:1–9.
22.
Zurück zum Zitat Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11:431–41.CrossRef Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11:431–41.CrossRef
23.
Zurück zum Zitat Schmidt K, Mies G, Sokoloff L. Model of kinetic behavior of deoxyglucose in heterogeneous tissue in brain: a reinterpretation of the significance of parameters fitted to homogeneous tissue models. J Cereb Blood Flow Metab 1991;11:10–24.PubMed Schmidt K, Mies G, Sokoloff L. Model of kinetic behavior of deoxyglucose in heterogeneous tissue in brain: a reinterpretation of the significance of parameters fitted to homogeneous tissue models. J Cereb Blood Flow Metab 1991;11:10–24.PubMed
24.
Zurück zum Zitat Schmidt K, Turkheimer FE. Kinetic modeling in positron emission tomography. QJ Nucl Med 2002;46:70–85. Schmidt K, Turkheimer FE. Kinetic modeling in positron emission tomography. QJ Nucl Med 2002;46:70–85.
25.
Zurück zum Zitat Cagnin A, Brooks DJ, Kennedy AM, Gunn R, Tuekheimer FE, Jones T, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001;358:461–7.PubMedCrossRef Cagnin A, Brooks DJ, Kennedy AM, Gunn R, Tuekheimer FE, Jones T, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001;358:461–7.PubMedCrossRef
26.
Zurück zum Zitat Goerres GW, Revesz T, Duncan J, Banati RB. Imaging cerebral vasculitis in refractory epilepsy using [11C](R)-PK11195 positron emission tomography. AJR 2001;176:1016–8.PubMed Goerres GW, Revesz T, Duncan J, Banati RB. Imaging cerebral vasculitis in refractory epilepsy using [11C](R)-PK11195 positron emission tomography. AJR 2001;176:1016–8.PubMed
27.
Zurück zum Zitat Banati RB, Newcombe J, Gunn RN, Caqnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123:2321–37.PubMedCrossRef Banati RB, Newcombe J, Gunn RN, Caqnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123:2321–37.PubMedCrossRef
28.
Zurück zum Zitat Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol 1989;26:752–8.PubMedCrossRef Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol 1989;26:752–8.PubMedCrossRef
29.
Zurück zum Zitat Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK11195. Neurology 2000;55:1052–4.PubMed Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK11195. Neurology 2000;55:1052–4.PubMed
30.
Zurück zum Zitat Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE, et al. PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med 1995;36:2207–10.PubMed Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE, et al. PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med 1995;36:2207–10.PubMed
31.
Zurück zum Zitat Shidahara M, Ikoma Y, Kershaw J, Kimura Y, Naganawa M, Watabe H. PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging. Ann Nucl Med 2007;21:379–86.PubMedCrossRef Shidahara M, Ikoma Y, Kershaw J, Kimura Y, Naganawa M, Watabe H. PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging. Ann Nucl Med 2007;21:379–86.PubMedCrossRef
Metadaten
Titel
Wavelet denoising for voxel-based compartmental analysis of peripheral benzodiazepine receptors with 18F-FEDAA1106
verfasst von
Miho Shidahara
Yoko Ikoma
Chie Seki
Yota Fujimura
Mika Naganawa
Hiroshi Ito
Tetsuya Suhara
Iwao Kanno
Yuichi Kimura
Publikationsdatum
01.02.2008
Verlag
Springer-Verlag
Erschienen in
European Journal of Nuclear Medicine and Molecular Imaging / Ausgabe 2/2008
Print ISSN: 1619-7070
Elektronische ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-007-0623-y

Weitere Artikel der Ausgabe 2/2008

European Journal of Nuclear Medicine and Molecular Imaging 2/2008 Zur Ausgabe

Society communications

Society communications