Skip to main content
Erschienen in: Lung 4/2011

01.08.2011

3D Airway Tree Reconstruction in Healthy Subjects and Emphysema

verfasst von: Caterina Salito, Livia Barazzetti, Jason C. Woods, Andrea Aliverti

Erschienen in: Lung | Ausgabe 4/2011

Einloggen, um Zugang zu erhalten

Abstract

Several algorithms for the segmentation of the 3D human airway tree from computed tomography (CT) images have recently been proposed, but the effects of lung volume and the presence of emphysema on segmentation accuracy has not been investigated. Two different sets of CT images taken on nine healthy subjects and nine patients with severe emphysema (FEV1 = 19 ± 4.1 SD % pred) were used to reconstruct the trachea-bronchial tree by a region-growing algorithm at two different lung volumes: total lung capacity (TLC) and residual volume (RV). The sixth generation was reached in 67% of the healthy subjects and 22% of the emphysematous patients at TLC. At RV, fifth generation was reached in 33 and 11% of healthy subjects and emphysematous patients. At TLC, 67 ± 2 and 39 ± 2% of airways belonging to the fourth generation were successfully reconstructed, respectively in healthy and emphysematous subjects. At RV, the percentage of successful reconstruction was 33 ± 2 and 16 ± 2%, respectively. Segmentation was significantly influenced by the presence of disease (P < 0.001) and lung volume (P < 0.001) at which the CT scans were acquired. Airway tree reconstruction performed by means of a region-growing algorithm depends on lung volume and presence of emphysema, both of which have significant effect, even at the level of lobar and segmental bronchi.
Literatur
1.
Zurück zum Zitat Tschirren J, Hoffman EA, McLennan G, Sonka M (2005) Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans Med Imaging 24(12):1529–1539PubMedCrossRef Tschirren J, Hoffman EA, McLennan G, Sonka M (2005) Intrathoracic airway trees: segmentation and airway morphology analysis from low-dose CT scans. IEEE Trans Med Imaging 24(12):1529–1539PubMedCrossRef
2.
Zurück zum Zitat Kiraly A, Higgins W, McLennan G, Hoffman E, Reinhardt J (2002) Three-dimensional human airway segmentation methods for clinical virtual bronchoscopy. Acad Radiol 9:1153–1168PubMedCrossRef Kiraly A, Higgins W, McLennan G, Hoffman E, Reinhardt J (2002) Three-dimensional human airway segmentation methods for clinical virtual bronchoscopy. Acad Radiol 9:1153–1168PubMedCrossRef
3.
Zurück zum Zitat Zhou X, Hayashi T, Hara T, Fujita H, Yokoyama R, Kiryu T, Hoshi H (2006) Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images. Comput Med Imaging Graph 30(5):299–313PubMedCrossRef Zhou X, Hayashi T, Hara T, Fujita H, Yokoyama R, Kiryu T, Hoshi H (2006) Automatic segmentation and recognition of anatomical lung structures from high-resolution chest CT images. Comput Med Imaging Graph 30(5):299–313PubMedCrossRef
4.
Zurück zum Zitat Mori K, Ota S, Deguchi D, Kitasaka T, Suenaga Y, Iwano S, Hasegawa Y, Takabatake H, Mori M, Natori H (2009) Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance. Med Image Comput Comput Assist Interv 12(Pt 2):707–714PubMed Mori K, Ota S, Deguchi D, Kitasaka T, Suenaga Y, Iwano S, Hasegawa Y, Takabatake H, Mori M, Natori H (2009) Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance. Med Image Comput Comput Assist Interv 12(Pt 2):707–714PubMed
5.
Zurück zum Zitat Mayer D, Bartz D, Fischer J, Ley S, del Río A, Thust S, Kauczor HU, Heussel CP (2004) Hybrid segmentation and virtual bronchoscopy based on CT images. Acad Radiol 11(5):551–565PubMedCrossRef Mayer D, Bartz D, Fischer J, Ley S, del Río A, Thust S, Kauczor HU, Heussel CP (2004) Hybrid segmentation and virtual bronchoscopy based on CT images. Acad Radiol 11(5):551–565PubMedCrossRef
6.
Zurück zum Zitat Williamson JP, James AL, Phillips MJ, Sampson DD, Hillman DR, Eastwood PR (2009) Quantifying tracheobronchial tree dimensions: methods, limitations and emerging techniques. Eur Respir J 34(1):42–55PubMedCrossRef Williamson JP, James AL, Phillips MJ, Sampson DD, Hillman DR, Eastwood PR (2009) Quantifying tracheobronchial tree dimensions: methods, limitations and emerging techniques. Eur Respir J 34(1):42–55PubMedCrossRef
7.
Zurück zum Zitat Park W, Hoffman EA, Sonka M (1998) Segmentation of intrathoracic airway trees: a fuzzy logic approach. IEEE Trans Med Imaging 17(4):489–497PubMedCrossRef Park W, Hoffman EA, Sonka M (1998) Segmentation of intrathoracic airway trees: a fuzzy logic approach. IEEE Trans Med Imaging 17(4):489–497PubMedCrossRef
8.
Zurück zum Zitat Wood SA, Zerhouni EA, Hoford JD, Hoffman EA, Mitzner W (1995) Measurement of three-dimensional lung tree structures by using computed tomography. J Appl Physiol 79(5):1687–1697PubMed Wood SA, Zerhouni EA, Hoford JD, Hoffman EA, Mitzner W (1995) Measurement of three-dimensional lung tree structures by using computed tomography. J Appl Physiol 79(5):1687–1697PubMed
9.
Zurück zum Zitat Swift RD, Kiraly AP, Sherbondy AJ, Austin AL, Hoffman EA, McLennan G, Higgins WE (2002) Automatic axis generation for virtual bronchoscopic assessment of major airway obstructions. Comput Med Imaging Graph 26(2):103–118PubMedCrossRef Swift RD, Kiraly AP, Sherbondy AJ, Austin AL, Hoffman EA, McLennan G, Higgins WE (2002) Automatic axis generation for virtual bronchoscopic assessment of major airway obstructions. Comput Med Imaging Graph 26(2):103–118PubMedCrossRef
10.
Zurück zum Zitat Prêteux F, Fetita C, Capderou A, Grenier P (1999) Modeling, segmentation and caliber estimation of bronchi in high resolution computerized tomography. J Electron Imaging 8:36–45CrossRef Prêteux F, Fetita C, Capderou A, Grenier P (1999) Modeling, segmentation and caliber estimation of bronchi in high resolution computerized tomography. J Electron Imaging 8:36–45CrossRef
11.
Zurück zum Zitat Aykac D, Hoffman EA, McLennan G, Reinhardt JM (2003) Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging 22(8):940–950PubMedCrossRef Aykac D, Hoffman EA, McLennan G, Reinhardt JM (2003) Segmentation and analysis of the human airway tree from three-dimensional X-ray CT images. IEEE Trans Med Imaging 22(8):940–950PubMedCrossRef
12.
Zurück zum Zitat Tschirren J, Hoffman EA, McLennan G, Sonka M (2005) Segmentation and quantitative analysis of intrathoracic airway trees from computed tomography images. Proc Am Thorac Soc 2(6):484-487, 503-504 Tschirren J, Hoffman EA, McLennan G, Sonka M (2005) Segmentation and quantitative analysis of intrathoracic airway trees from computed tomography images. Proc Am Thorac Soc 2(6):484-487, 503-504
13.
Zurück zum Zitat Lo P, de Bruijne M (2008) Voxel classification-based airway tree segmentation. In: Reinhardt JM, Pluim JP (eds) Proc SPIE: medical imaging 2008: image processing, vol 6914. SPIE, Bellingham Lo P, de Bruijne M (2008) Voxel classification-based airway tree segmentation. In: Reinhardt JM, Pluim JP (eds) Proc SPIE: medical imaging 2008: image processing, vol 6914. SPIE, Bellingham
14.
Zurück zum Zitat Jackson CL, Huber JF (1943) Correlated applied anatomy of the bronchial tree and lungs with a system of nomenclature. Chest 9:319CrossRef Jackson CL, Huber JF (1943) Correlated applied anatomy of the bronchial tree and lungs with a system of nomenclature. Chest 9:319CrossRef
15.
Zurück zum Zitat Netter FH (2003) Atlas of human anatomy, 3rd edn. ICON Learning Systems, Teterboro Netter FH (2003) Atlas of human anatomy, 3rd edn. ICON Learning Systems, Teterboro
16.
Zurück zum Zitat Fabijańska A (2009) Two-pass region growing algorithm for segmenting airway tree from MDCT chest scans. Comput Med Imaging Graph 33(7):537–546PubMedCrossRef Fabijańska A (2009) Two-pass region growing algorithm for segmenting airway tree from MDCT chest scans. Comput Med Imaging Graph 33(7):537–546PubMedCrossRef
17.
Zurück zum Zitat van Ginneken B, Baggerman W, van Rikxoort EM (2008) Robust segmentation and anatomical labeling of the airway tree from thoracic CT scans. Med Image Comput Comput Assist Interv 11(Pt 1):219–226PubMed van Ginneken B, Baggerman W, van Rikxoort EM (2008) Robust segmentation and anatomical labeling of the airway tree from thoracic CT scans. Med Image Comput Comput Assist Interv 11(Pt 1):219–226PubMed
18.
Zurück zum Zitat Graham MW, Gibbs JD, Cornish DC, Higgins WE (2010) Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy. IEEE Trans Med Imaging 29(4):982–997PubMedCrossRef Graham MW, Gibbs JD, Cornish DC, Higgins WE (2010) Robust 3-D airway tree segmentation for image-guided peripheral bronchoscopy. IEEE Trans Med Imaging 29(4):982–997PubMedCrossRef
19.
Zurück zum Zitat Lo P, Sporring J, Ashraf H, Pedersen JJ, de Bruijne M (2010) Vessel-guided airway tree segmentation: A voxel classification approach. Med Image Anal 14(4):527–538PubMedCrossRef Lo P, Sporring J, Ashraf H, Pedersen JJ, de Bruijne M (2010) Vessel-guided airway tree segmentation: A voxel classification approach. Med Image Anal 14(4):527–538PubMedCrossRef
20.
Zurück zum Zitat Grydeland TB, Dirksen A, Coxson HO, Pillai SG, Sharma S, Eide GE, Gulsvik A, Bakke PS (2009) Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking. Eur Respir J 34(4):858–865PubMedCrossRef Grydeland TB, Dirksen A, Coxson HO, Pillai SG, Sharma S, Eide GE, Gulsvik A, Bakke PS (2009) Quantitative computed tomography: emphysema and airway wall thickness by sex, age and smoking. Eur Respir J 34(4):858–865PubMedCrossRef
Metadaten
Titel
3D Airway Tree Reconstruction in Healthy Subjects and Emphysema
verfasst von
Caterina Salito
Livia Barazzetti
Jason C. Woods
Andrea Aliverti
Publikationsdatum
01.08.2011
Verlag
Springer-Verlag
Erschienen in
Lung / Ausgabe 4/2011
Print ISSN: 0341-2040
Elektronische ISSN: 1432-1750
DOI
https://doi.org/10.1007/s00408-011-9305-4

Weitere Artikel der Ausgabe 4/2011

Lung 4/2011 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Erhöhte Mortalität bei postpartalem Brustkrebs

07.05.2024 Mammakarzinom Nachrichten

Auch für Trägerinnen von BRCA-Varianten gilt: Erkranken sie fünf bis zehn Jahre nach der letzten Schwangerschaft an Brustkrebs, ist das Sterberisiko besonders hoch.

Hypertherme Chemotherapie bietet Chance auf Blasenerhalt

07.05.2024 Harnblasenkarzinom Nachrichten

Eine hypertherme intravesikale Chemotherapie mit Mitomycin kann für Patienten mit hochriskantem nicht muskelinvasivem Blasenkrebs eine Alternative zur radikalen Zystektomie darstellen. Kölner Urologen berichten über ihre Erfahrungen.

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

Vorhofflimmern bei Jüngeren gefährlicher als gedacht

06.05.2024 Vorhofflimmern Nachrichten

Immer mehr jüngere Menschen leiden unter Vorhofflimmern. Betroffene unter 65 Jahren haben viele Risikofaktoren und ein signifikant erhöhtes Sterberisiko verglichen mit Gleichaltrigen ohne die Erkrankung.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.