Skip to main content
Erschienen in: Strahlentherapie und Onkologie 5/2016

22.02.2016 | Original Article

4D-Listmode-PET-CT and 4D-CT for optimizing PTV margins in gastric lymphoma

Determination of intra- and interfractional gastric motion

verfasst von: Gabriele Reinartz, M.D., Uwe Haverkamp, Ph.D., Ramona Wullenkord, Philipp Lehrich, Jan Kriz, M.D., Florian Büther, Klaus Schäfers, Ph.D., Michael Schäfers, M.D., Hans Theodor Eich, M.D.

Erschienen in: Strahlentherapie und Onkologie | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Purpose

New imaging protocols for radiotherapy in localized gastric lymphoma were evaluated to optimize planning target volume (PTV) margin and determine intra-/interfractional variation of the stomach.

Methods

Imaging of 6 patients was explored prospectively. Intensity-modulated radiotherapy (IMRT) planning was based on 4D/3D imaging of computed tomography (CT) and positron-emission tomography (PET)-CT. Static and motion gross tumor volume (sGTV and mGTV, respectively) were distinguished by defining GTV (empty stomach), clinical target volume (CTV = GTV + 5 mm margin), PTV (GTV + 10/15/20/25 mm margins)  plus paraaortic lymph nodes and proximal duodenum. Overlap of 4D-Listmode-PET-based mCTV with 3D-CT-based PTV (increasing margins) and V95/D95 of mCTV were evaluated. Gastric shifts were determined using online cone-beam CT. Dose contribution to organs at risk was assessed.

Results

The 4D data demonstrate considerable intra-/interfractional variation of the stomach, especially along the vertical axis. Conventional 3D-CT planning utilizing advancing PTV margins of 10/15/20/25 mm resulted in rising dose coverage of mCTV (4D-Listmode-PET-Summation-CT) and rising D95 and V95 of mCTV. A PTV margin of 15 mm was adequate in 3 of 6 patients, a PTV margin of 20 mm was adequate in 4 of 6 patients, and a PTV margin of 25 mm was adequate in 5 of 6 patients.

Conclusion

IMRT planning based on 4D-PET-CT/4D-CT together with online cone-beam CT is advisable to individualize the PTV margin and optimize target coverage in gastric lymphoma.
Literatur
1.
Zurück zum Zitat Fischbach W, Schramm S, Goebeler E (2011) Outcome and quality of life favour a conservative treatment of patients with primary gastric lymphoma. Z Gastroenterol 49:430–435CrossRefPubMed Fischbach W, Schramm S, Goebeler E (2011) Outcome and quality of life favour a conservative treatment of patients with primary gastric lymphoma. Z Gastroenterol 49:430–435CrossRefPubMed
2.
Zurück zum Zitat Tsang RW, Gospodarowicz MK (2005) Radiation therapy for localized low-grade non-Hodgkinʼs lymphomas. Hematol Oncol 23:10–17CrossRefPubMed Tsang RW, Gospodarowicz MK (2005) Radiation therapy for localized low-grade non-Hodgkinʼs lymphomas. Hematol Oncol 23:10–17CrossRefPubMed
3.
Zurück zum Zitat Reinartz G, Willich N, Koch P (2002) Radiotherapy in patients with primary gastrointestinal lymphomas. Chir Gastroenterol 18:53–59CrossRef Reinartz G, Willich N, Koch P (2002) Radiotherapy in patients with primary gastrointestinal lymphomas. Chir Gastroenterol 18:53–59CrossRef
4.
Zurück zum Zitat Schechter NR, Portlock CS, Yahalom J (1998) Treatment of mucosa-associated lymphoid tissue lymphoma of the stomach with radiation alone. J Clin Oncol 16:1916–1921PubMed Schechter NR, Portlock CS, Yahalom J (1998) Treatment of mucosa-associated lymphoid tissue lymphoma of the stomach with radiation alone. J Clin Oncol 16:1916–1921PubMed
5.
Zurück zum Zitat Goda JS, Gospodarowicz MK, Pintilie M et al (2010) Long-term outcome in localized extranodal mucosa-associated lymphoid tissue lymphomas treated with radiotherapy. Cancer 116:3815–3824CrossRefPubMed Goda JS, Gospodarowicz MK, Pintilie M et al (2010) Long-term outcome in localized extranodal mucosa-associated lymphoid tissue lymphomas treated with radiotherapy. Cancer 116:3815–3824CrossRefPubMed
6.
Zurück zum Zitat Doll C, Duncker-Rohr V, Rücker G et al (2014) Influence of experience and qualification on PET-based target volume delineation. Strahlenther Onkol 190:555–562CrossRefPubMed Doll C, Duncker-Rohr V, Rücker G et al (2014) Influence of experience and qualification on PET-based target volume delineation. Strahlenther Onkol 190:555–562CrossRefPubMed
7.
Zurück zum Zitat Büther F, Ernst I, Dawood M et al (2010) Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography. Eur J Nucl Med Mol Imaging 37:2315–2327CrossRefPubMed Büther F, Ernst I, Dawood M et al (2010) Detection of respiratory tumour motion using intrinsic list mode-driven gating in positron emission tomography. Eur J Nucl Med Mol Imaging 37:2315–2327CrossRefPubMed
8.
Zurück zum Zitat Hüttenrauch P, Witt M, Wolff D et al (2014) Target volume coverage and dose to organs at risk in prostate cancer patients. Dose calculation on daily cone-beam CT data sets. Strahlenther Onkol 190:310–316CrossRefPubMed Hüttenrauch P, Witt M, Wolff D et al (2014) Target volume coverage and dose to organs at risk in prostate cancer patients. Dose calculation on daily cone-beam CT data sets. Strahlenther Onkol 190:310–316CrossRefPubMed
9.
Zurück zum Zitat Lee JA, Kim CY, Park YJ et al (2014) Interfractional variability in intensity-modulated radiotherapy of prostate cancer with or without thermoplastic pelvic immobilization. Strahlenther Onkol 190:94–99CrossRefPubMed Lee JA, Kim CY, Park YJ et al (2014) Interfractional variability in intensity-modulated radiotherapy of prostate cancer with or without thermoplastic pelvic immobilization. Strahlenther Onkol 190:94–99CrossRefPubMed
10.
Zurück zum Zitat Van Herk M, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135CrossRefPubMed Van Herk M, Remeijer P, Rasch C et al (2000) The probability of correct target dosage: dose-population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135CrossRefPubMed
11.
Zurück zum Zitat Inoue T, Oh RJ, Shiomi H et al (2013) Stereotactic body radiotherapy for pulmonary metastases. Strahlenther Onkol 189:285–292CrossRefPubMed Inoue T, Oh RJ, Shiomi H et al (2013) Stereotactic body radiotherapy for pulmonary metastases. Strahlenther Onkol 189:285–292CrossRefPubMed
12.
Zurück zum Zitat Bundschuh RA, Andratschke N, Dinges J et al (2012) Respiratory gated [18F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases. Strahlenther Onkol 188:592–598CrossRefPubMed Bundschuh RA, Andratschke N, Dinges J et al (2012) Respiratory gated [18F]FDG PET/CT for target volume delineation in stereotactic radiation treatment of liver metastases. Strahlenther Onkol 188:592–598CrossRefPubMed
13.
Zurück zum Zitat Matoba M, Oota K, Toyoda I (2012) Usefulness of 4D-CT for radiation treatment planning of gastric MZBCL/MALT. J Radiat Res 53:333–337CrossRefPubMed Matoba M, Oota K, Toyoda I (2012) Usefulness of 4D-CT for radiation treatment planning of gastric MZBCL/MALT. J Radiat Res 53:333–337CrossRefPubMed
14.
Zurück zum Zitat Roland T, Hales R, McNutt T et al (2012) A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy. Med Phys 39:195–205CrossRefPubMed Roland T, Hales R, McNutt T et al (2012) A method for deriving a 4D-interpolated balanced planning target for mobile tumor radiotherapy. Med Phys 39:195–205CrossRefPubMed
15.
Zurück zum Zitat Watanabe M, Isobe K, Uno T et al (2011) Interfractional gastric motion and interfractional stomach deformity using CT images. J Radiat Res 52:660–665CrossRefPubMed Watanabe M, Isobe K, Uno T et al (2011) Interfractional gastric motion and interfractional stomach deformity using CT images. J Radiat Res 52:660–665CrossRefPubMed
16.
Zurück zum Zitat Wysocka B, Kassam Z, Lockwood G et al (2010) Interfraction and respiratory organ motion during conformal radiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys 77:53–59CrossRefPubMed Wysocka B, Kassam Z, Lockwood G et al (2010) Interfraction and respiratory organ motion during conformal radiotherapy in gastric cancer. Int J Radiat Oncol Biol Phys 77:53–59CrossRefPubMed
17.
Zurück zum Zitat Harris SL, Pan CC, Tepper JE (2014) Stomach, small and large intestines. In: Rubin P, Constine LS, Marks LB (Hrsg) ALERT-adverse late effects of cancer treatment. Volume 2: normal tissue specific sites and systems. Medical radiology, radiation oncology. Springer, Berlin, pp S353–S394CrossRef Harris SL, Pan CC, Tepper JE (2014) Stomach, small and large intestines. In: Rubin P, Constine LS, Marks LB (Hrsg) ALERT-adverse late effects of cancer treatment. Volume 2: normal tissue specific sites and systems. Medical radiology, radiation oncology. Springer, Berlin, pp S353–S394CrossRef
18.
Zurück zum Zitat Fukada J, Shigematsu N, Hanada T et al (2013) Inter- and Intrafraction Gastric Motion Study—impact of breathing and stomach filling [Abstract]. Int J Radiat Oncol Biol Phys 84:S318CrossRef Fukada J, Shigematsu N, Hanada T et al (2013) Inter- and Intrafraction Gastric Motion Study—impact of breathing and stomach filling [Abstract]. Int J Radiat Oncol Biol Phys 84:S318CrossRef
19.
Zurück zum Zitat Jang JW, Brown JG, Mauch PM et al (2011) Four-dimensional CT planning for gastric MALT lymphoma [Abstract]. Int J Radiat Oncol Biol Phys 81:S629CrossRef Jang JW, Brown JG, Mauch PM et al (2011) Four-dimensional CT planning for gastric MALT lymphoma [Abstract]. Int J Radiat Oncol Biol Phys 81:S629CrossRef
20.
Zurück zum Zitat Della Biancia C, Hunt M, Furhang E et al (2005) Radiation treatment planning techniques for lymphoma of the stomach. Int J Radiat Oncol Biol Phys 62:745–751CrossRefPubMed Della Biancia C, Hunt M, Furhang E et al (2005) Radiation treatment planning techniques for lymphoma of the stomach. Int J Radiat Oncol Biol Phys 62:745–751CrossRefPubMed
21.
Zurück zum Zitat Johnson ME, Pereira GC, El Naqa IM et al (2010) Assessment of PTV for whole stomach irradiation using daily megavoltage CT [Abstract]. Int J Radiat Oncol Biol Phys 78:S554CrossRef Johnson ME, Pereira GC, El Naqa IM et al (2010) Assessment of PTV for whole stomach irradiation using daily megavoltage CT [Abstract]. Int J Radiat Oncol Biol Phys 78:S554CrossRef
22.
Zurück zum Zitat Dabaja B, Wang H, Voong K et al (2013) Image guided radiation therapy proves its benefit in detecting the daily unpredictable shape change of the stomach: a study of patients treated for stomach lymphoma [Abstract]. Int J Radiat Oncol Biol Phys 87:S163 Dabaja B, Wang H, Voong K et al (2013) Image guided radiation therapy proves its benefit in detecting the daily unpredictable shape change of the stomach: a study of patients treated for stomach lymphoma [Abstract]. Int J Radiat Oncol Biol Phys 87:S163
23.
Zurück zum Zitat Murakami M, Nomiya T, Ohta I et al (2011) Considering PTV margins for stomach: inter and intrafractional gastric motion during radiation therapy [Abstract]. Int J Radiat Oncol Biol Phys 81:S632CrossRef Murakami M, Nomiya T, Ohta I et al (2011) Considering PTV margins for stomach: inter and intrafractional gastric motion during radiation therapy [Abstract]. Int J Radiat Oncol Biol Phys 81:S632CrossRef
24.
Zurück zum Zitat Toyoda T, Terahara A, Nakagawa K et al (2012) How much does field size become larger with interfractional computed tomography in treating gastric malignant lymphoma? [Abstract]. Int J Radiat Oncol Biol Phys 84:S771CrossRef Toyoda T, Terahara A, Nakagawa K et al (2012) How much does field size become larger with interfractional computed tomography in treating gastric malignant lymphoma? [Abstract]. Int J Radiat Oncol Biol Phys 84:S771CrossRef
Metadaten
Titel
4D-Listmode-PET-CT and 4D-CT for optimizing PTV margins in gastric lymphoma
Determination of intra- and interfractional gastric motion
verfasst von
Gabriele Reinartz, M.D.
Uwe Haverkamp, Ph.D.
Ramona Wullenkord
Philipp Lehrich
Jan Kriz, M.D.
Florian Büther
Klaus Schäfers, Ph.D.
Michael Schäfers, M.D.
Hans Theodor Eich, M.D.
Publikationsdatum
22.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Strahlentherapie und Onkologie / Ausgabe 5/2016
Print ISSN: 0179-7158
Elektronische ISSN: 1439-099X
DOI
https://doi.org/10.1007/s00066-016-0949-0

Weitere Artikel der Ausgabe 5/2016

Strahlentherapie und Onkologie 5/2016 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.