Skip to main content
Erschienen in: Clinical Pharmacokinetics 8/2015

01.08.2015 | Review Article

A Comprehensive Review of Drug–Drug Interactions with Metformin

verfasst von: Tore Bjerregaard Stage, Kim Brøsen, Mette Marie Hougaard Christensen

Erschienen in: Clinical Pharmacokinetics | Ausgabe 8/2015

Einloggen, um Zugang zu erhalten

Abstract

Metformin is the world’s most commonly used oral glucose-lowering drug for type 2 diabetes, and this is mainly because it protects against diabetes-related mortality and all-cause mortality. Although it is an old drug, its mechanism of action has not yet been clarified and its pharmacokinetic pathway is still not fully understood. There is considerable inter-individual variability in the response to metformin, and this has led to many drug–drug interaction (DDI) studies of metformin. In this review, we describe both in vitro and human interaction studies of metformin both as a victim and as a perpetrator. We also clarify the importance of including pharmacodynamic end points in DDI studies of metformin and taking pharmacogenetic variation into account when performing these studies to avoid hidden pitfalls in the interpretation of DDIs with metformin. This evaluation of the literature has revealed holes in our knowledge and given clues as to where future DDI studies should be focused and performed.
Literatur
1.
Zurück zum Zitat Eddy DM, Schlessinger L, Kahn R. Clinical outcomes and cost-effectiveness of strategies for managing people at high risk for diabetes. Ann Intern Med. 2005;143:251–64.PubMedCrossRef Eddy DM, Schlessinger L, Kahn R. Clinical outcomes and cost-effectiveness of strategies for managing people at high risk for diabetes. Ann Intern Med. 2005;143:251–64.PubMedCrossRef
2.
Zurück zum Zitat Sussman JB, Kent DM, Nelson JP, Hayward RA. Improving diabetes prevention with benefit based tailored treatment: risk based reanalysis of Diabetes Prevention Program. BMJ. 2015;350:h454.PubMedCentralPubMedCrossRef Sussman JB, Kent DM, Nelson JP, Hayward RA. Improving diabetes prevention with benefit based tailored treatment: risk based reanalysis of Diabetes Prevention Program. BMJ. 2015;350:h454.PubMedCentralPubMedCrossRef
3.
Zurück zum Zitat Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–6.PubMedCentralPubMedCrossRef Madiraju AK, Erion DM, Rahimi Y, Zhang X-M, Braddock DT, Albright RA, et al. Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature. 2014;510:542–6.PubMedCentralPubMedCrossRef
4.
Zurück zum Zitat Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607–14.PubMedCentralPubMedCrossRef Owen MR, Doran E, Halestrap AP. Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain. Biochem J. 2000;348(Pt 3):607–14.PubMedCentralPubMedCrossRef
5.
Zurück zum Zitat El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275:223–8.PubMedCrossRef El-Mir MY, Nogueira V, Fontaine E, Avéret N, Rigoulet M, Leverve X. Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem. 2000;275:223–8.PubMedCrossRef
6.
Zurück zum Zitat Stephenne X, Foretz M, Taleux N, van der Zon GC, Sokal E, Hue L, et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia. 2011;54:3101–10.PubMedCentralPubMedCrossRef Stephenne X, Foretz M, Taleux N, van der Zon GC, Sokal E, Hue L, et al. Metformin activates AMP-activated protein kinase in primary human hepatocytes by decreasing cellular energy status. Diabetologia. 2011;54:3101–10.PubMedCentralPubMedCrossRef
7.
Zurück zum Zitat UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65.
8.
Zurück zum Zitat Wilding J. Managing patients with type 2 diabetes and obesity. Practitioner. 2015;259(25–8):3. Wilding J. Managing patients with type 2 diabetes and obesity. Practitioner. 2015;259(25–8):3.
9.
Zurück zum Zitat Hermann LS, Scherstén B, Bitzén PO, Kjellström T, Lindgärde F, Melander A. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. A double-blind controlled study. Diabetes Care. 1994;17:1100–9.PubMedCrossRef Hermann LS, Scherstén B, Bitzén PO, Kjellström T, Lindgärde F, Melander A. Therapeutic comparison of metformin and sulfonylurea, alone and in various combinations. A double-blind controlled study. Diabetes Care. 1994;17:1100–9.PubMedCrossRef
10.
Zurück zum Zitat Christensen MMH, Brasch-Andersen C, Green H, Nielsen F, Damkier P, Beck-Nielsen H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21:837–50.PubMedCrossRef Christensen MMH, Brasch-Andersen C, Green H, Nielsen F, Damkier P, Beck-Nielsen H, et al. The pharmacogenetics of metformin and its impact on plasma metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics. 2011;21:837–50.PubMedCrossRef
11.
Zurück zum Zitat Pentikäinen PJ, Neuvonen PJ, Penttilä A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol. 1979;16:195–202.PubMedCrossRef Pentikäinen PJ, Neuvonen PJ, Penttilä A. Pharmacokinetics of metformin after intravenous and oral administration to man. Eur J Clin Pharmacol. 1979;16:195–202.PubMedCrossRef
12.
Zurück zum Zitat Becker ML, Pearson ER, Tkáč I. Pharmacogenetics of oral antidiabetic drugs. Int J Endocrinol. 2013;2013:686315.PubMedCentralPubMed Becker ML, Pearson ER, Tkáč I. Pharmacogenetics of oral antidiabetic drugs. Int J Endocrinol. 2013;2013:686315.PubMedCentralPubMed
13.
Zurück zum Zitat Chen S, Zhou J, Xi M, Jia Y, Wong Y, Zhao J, et al. Pharmacogenetic variation and metformin response. Curr Drug Metab. 2013;14:1070–82.PubMedCrossRef Chen S, Zhou J, Xi M, Jia Y, Wong Y, Zhao J, et al. Pharmacogenetic variation and metformin response. Curr Drug Metab. 2013;14:1070–82.PubMedCrossRef
14.
Zurück zum Zitat Zolk O. Disposition of metformin: variability due to polymorphisms of organic cation transporters. Ann Med. 2012;44:119–29.PubMedCrossRef Zolk O. Disposition of metformin: variability due to polymorphisms of organic cation transporters. Ann Med. 2012;44:119–29.PubMedCrossRef
15.
Zurück zum Zitat Zhou K, Donnelly L, Yang J, Li M, Deshmukh H, Van Zuydam N, et al. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol. 2014;2:481–7.PubMedCentralPubMedCrossRef Zhou K, Donnelly L, Yang J, Li M, Deshmukh H, Van Zuydam N, et al. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis. Lancet Diabetes Endocrinol. 2014;2:481–7.PubMedCentralPubMedCrossRef
16.
Zurück zum Zitat Stage TB, Damkier P, Pedersen RS, Christensen MMH, Christiansen L, Christensen K, et al. A twin study of the trough plasma steady-state concentration of metformin. Pharmacogenet Genomics. 2015;25:259–62.PubMedCrossRef Stage TB, Damkier P, Pedersen RS, Christensen MMH, Christiansen L, Christensen K, et al. A twin study of the trough plasma steady-state concentration of metformin. Pharmacogenet Genomics. 2015;25:259–62.PubMedCrossRef
17.
Zurück zum Zitat Caughey GE, Roughead EE, Vitry AI, McDermott RA, Shakib S, Gilbert AL. Comorbidity in the elderly with diabetes: Identification of areas of potential treatment conflicts. Diabetes Res Clin Pract. 2010;87:385–93.PubMedCrossRef Caughey GE, Roughead EE, Vitry AI, McDermott RA, Shakib S, Gilbert AL. Comorbidity in the elderly with diabetes: Identification of areas of potential treatment conflicts. Diabetes Res Clin Pract. 2010;87:385–93.PubMedCrossRef
18.
Zurück zum Zitat Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50:81–98.PubMedCrossRef Graham GG, Punt J, Arora M, Day RO, Doogue MP, Duong JK, et al. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 2011;50:81–98.PubMedCrossRef
19.
Zurück zum Zitat Müller J, Lips KS, Metzner L, Neubert RHH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005;70:1851–60.PubMedCrossRef Müller J, Lips KS, Metzner L, Neubert RHH, Koepsell H, Brandsch M. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem Pharmacol. 2005;70:1851–60.PubMedCrossRef
20.
Zurück zum Zitat Staud F, Cerveny L, Ahmadimoghaddam D, Ceckova M. Multidrug and toxin extrusion proteins (MATE/SLC47); role in pharmacokinetics. Int J Biochem Cell Biol. 2013;45:2007–11.PubMedCrossRef Staud F, Cerveny L, Ahmadimoghaddam D, Ceckova M. Multidrug and toxin extrusion proteins (MATE/SLC47); role in pharmacokinetics. Int J Biochem Cell Biol. 2013;45:2007–11.PubMedCrossRef
21.
Zurück zum Zitat Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos. 2007;35:1956–62.PubMedCentralPubMedCrossRef Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos. 2007;35:1956–62.PubMedCentralPubMedCrossRef
22.
Zurück zum Zitat Wang D-S, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther. 2002;302:510–5.PubMedCrossRef Wang D-S, Jonker JW, Kato Y, Kusuhara H, Schinkel AH, Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J Pharmacol Exp Ther. 2002;302:510–5.PubMedCrossRef
23.
Zurück zum Zitat Han TK, Proctor WR, Costales CL, Cai H, Everett RS, Thakker DR. Four cation-selective transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell monolayers. J Pharmacol Exp Ther. 2015;352:519–28.PubMedCrossRef Han TK, Proctor WR, Costales CL, Cai H, Everett RS, Thakker DR. Four cation-selective transporters contribute to apical uptake and accumulation of metformin in Caco-2 cell monolayers. J Pharmacol Exp Ther. 2015;352:519–28.PubMedCrossRef
24.
Zurück zum Zitat Proctor WR, Bourdet DL, Thakker DR. Mechanisms underlying saturable intestinal absorption of metformin. Drug Metab Dispos. 2008;36:1650–8.PubMedCrossRef Proctor WR, Bourdet DL, Thakker DR. Mechanisms underlying saturable intestinal absorption of metformin. Drug Metab Dispos. 2008;36:1650–8.PubMedCrossRef
25.
Zurück zum Zitat Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, Johns SJ, et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet. Genomics. 2010;20:687–99.PubMedCentralPubMedCrossRef Chen L, Pawlikowski B, Schlessinger A, More SS, Stryke D, Johns SJ, et al. Role of organic cation transporter 3 (SLC22A3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet. Genomics. 2010;20:687–99.PubMedCentralPubMedCrossRef
26.
Zurück zum Zitat Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49:2063–9.PubMedCentralPubMedCrossRef Hundal RS, Krssak M, Dufour S, Laurent D, Lebon V, Chandramouli V, et al. Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes. 2000;49:2063–9.PubMedCentralPubMedCrossRef
27.
Zurück zum Zitat König J, Zolk O, Singer K, Hoffmann C, Fromm MF. Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. Br J Pharmacol. 2011;163:546–55.PubMedCentralPubMedCrossRef König J, Zolk O, Singer K, Hoffmann C, Fromm MF. Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. Br J Pharmacol. 2011;163:546–55.PubMedCentralPubMedCrossRef
28.
Zurück zum Zitat International Transporter Consortium, Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.CrossRef International Transporter Consortium, Giacomini KM, Huang S-M, Tweedie DJ, Benet LZ, Brouwer KLR, et al. Membrane transporters in drug development. Nat Rev Drug Discov. 2010;9:215–36.CrossRef
30.
Zurück zum Zitat Belzer M, Morales M, Jagadish B, Mash EA, Wright SH. Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther. 2013;346:300–10.PubMedCentralPubMedCrossRef Belzer M, Morales M, Jagadish B, Mash EA, Wright SH. Substrate-dependent ligand inhibition of the human organic cation transporter OCT2. J Pharmacol Exp Ther. 2013;346:300–10.PubMedCentralPubMedCrossRef
31.
Zurück zum Zitat Zamek-Gliszczynski MJ, Kalvass JC, Pollack GM, Brouwer KLR. Relationship between drug/metabolite exposure and impairment of excretory transport function. Drug Metab Dispos. 2009;37:386–90.PubMedCentralPubMedCrossRef Zamek-Gliszczynski MJ, Kalvass JC, Pollack GM, Brouwer KLR. Relationship between drug/metabolite exposure and impairment of excretory transport function. Drug Metab Dispos. 2009;37:386–90.PubMedCentralPubMedCrossRef
32.
Zurück zum Zitat Bachmakov I, Glaeser H, Fromm MF, König J. Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes. 2008;57:1463–9.PubMedCrossRef Bachmakov I, Glaeser H, Fromm MF, König J. Interaction of oral antidiabetic drugs with hepatic uptake transporters: focus on organic anion transporting polypeptides and organic cation transporter 1. Diabetes. 2008;57:1463–9.PubMedCrossRef
33.
Zurück zum Zitat Choi M-K, Jin Q-R, Ahn S-H, Bae M-A, Song I-S. Sitagliptin attenuates metformin-mediated AMPK phosphorylation through inhibition of organic cation transporters. Xenobiotica Fate Foreign Compd Biol Syst. 2010;40:817–25.CrossRef Choi M-K, Jin Q-R, Ahn S-H, Bae M-A, Song I-S. Sitagliptin attenuates metformin-mediated AMPK phosphorylation through inhibition of organic cation transporters. Xenobiotica Fate Foreign Compd Biol Syst. 2010;40:817–25.CrossRef
34.
Zurück zum Zitat Herman GA, Bergman A, Yi B, Kipnes M. Sitagliptin Study 012 Group. Tolerability and pharmacokinetics of metformin and the dipeptidyl peptidase-4 inhibitor sitagliptin when co-administered in patients with type 2 diabetes. Curr Med Res Opin. 2006;22:1939–47.PubMedCrossRef Herman GA, Bergman A, Yi B, Kipnes M. Sitagliptin Study 012 Group. Tolerability and pharmacokinetics of metformin and the dipeptidyl peptidase-4 inhibitor sitagliptin when co-administered in patients with type 2 diabetes. Curr Med Res Opin. 2006;22:1939–47.PubMedCrossRef
35.
Zurück zum Zitat Umehara K-I, Iwatsubo T, Noguchi K, Usui T, Kamimura H. Effect of cationic drugs on the transporting activity of human and rat OCT/Oct 1–3 in vitro and implications for drug–drug interactions. Xenobiotica Fate Foreign Compd Biol Syst. 2008;38:1203–18.CrossRef Umehara K-I, Iwatsubo T, Noguchi K, Usui T, Kamimura H. Effect of cationic drugs on the transporting activity of human and rat OCT/Oct 1–3 in vitro and implications for drug–drug interactions. Xenobiotica Fate Foreign Compd Biol Syst. 2008;38:1203–18.CrossRef
36.
Zurück zum Zitat Bachmakov I, Glaeser H, Endress B, Mörl F, König J, Fromm MF. Interaction of beta-blockers with the renal uptake transporter OCT2. Diabetes Obes Metab. 2009;11:1080–3.PubMedCrossRef Bachmakov I, Glaeser H, Endress B, Mörl F, König J, Fromm MF. Interaction of beta-blockers with the renal uptake transporter OCT2. Diabetes Obes Metab. 2009;11:1080–3.PubMedCrossRef
37.
Zurück zum Zitat Li L, Song F, Tu M, Wang K, Zhao L, Wu X, et al. In vitro interaction of clopidogrel and its hydrolysate with OCT1, OCT2 and OAT1. Int J Pharm. 2014;465:5–10.PubMedCrossRef Li L, Song F, Tu M, Wang K, Zhao L, Wu X, et al. In vitro interaction of clopidogrel and its hydrolysate with OCT1, OCT2 and OAT1. Int J Pharm. 2014;465:5–10.PubMedCrossRef
38.
Zurück zum Zitat Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PloS One. 2011;6:e22163.PubMedCentralPubMedCrossRef Nies AT, Hofmann U, Resch C, Schaeffeler E, Rius M, Schwab M. Proton pump inhibitors inhibit metformin uptake by organic cation transporters (OCTs). PloS One. 2011;6:e22163.PubMedCentralPubMedCrossRef
39.
Zurück zum Zitat Müller F, Pontones CA, Renner B, Mieth M, Hoier E, Auge D, et al. N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin–trimethoprim interaction. Eur J Clin Pharmacol. 2015;71:85–94.PubMedCrossRef Müller F, Pontones CA, Renner B, Mieth M, Hoier E, Auge D, et al. N(1)-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin–trimethoprim interaction. Eur J Clin Pharmacol. 2015;71:85–94.PubMedCrossRef
40.
Zurück zum Zitat Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther. 2011;10:531–9.PubMedCentralPubMedCrossRef Minematsu T, Giacomini KM. Interactions of tyrosine kinase inhibitors with organic cation transporters and multidrug and toxic compound extrusion proteins. Mol Cancer Ther. 2011;10:531–9.PubMedCentralPubMedCrossRef
41.
Zurück zum Zitat Kwon M, Choi YA, Choi M-K, Song I-S. Organic cation transporter-mediated drug–drug interaction potential between berberine and metformin. Arch Pharm Res. (epub 31 Oct 2014). Kwon M, Choi YA, Choi M-K, Song I-S. Organic cation transporter-mediated drug–drug interaction potential between berberine and metformin. Arch Pharm Res. (epub 31 Oct 2014).
42.
Zurück zum Zitat Kido Y, Matsson P, Giacomini KM. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011;54:4548–58.PubMedCentralPubMedCrossRef Kido Y, Matsson P, Giacomini KM. Profiling of a prescription drug library for potential renal drug–drug interactions mediated by the organic cation transporter 2. J Med Chem. 2011;54:4548–58.PubMedCentralPubMedCrossRef
43.
Zurück zum Zitat Takanohashi T, Koizumi T, Mihara R, Okudaira K. Prediction of the metabolic interaction of nateglinide with other drugs based on in vitro studies. Drug Metab Pharmacokinet. 2007;22:409–18.PubMedCrossRef Takanohashi T, Koizumi T, Mihara R, Okudaira K. Prediction of the metabolic interaction of nateglinide with other drugs based on in vitro studies. Drug Metab Pharmacokinet. 2007;22:409–18.PubMedCrossRef
44.
Zurück zum Zitat Scheen AJ, de Magalhaes AC, Salvatore T, Lefebvre PJ. Reduction of the acute bioavailability of metformin by the alpha-glucosidase inhibitor acarbose in normal man. Eur J Clin Invest. 1994;24(Suppl 3):50–4.PubMed Scheen AJ, de Magalhaes AC, Salvatore T, Lefebvre PJ. Reduction of the acute bioavailability of metformin by the alpha-glucosidase inhibitor acarbose in normal man. Eur J Clin Invest. 1994;24(Suppl 3):50–4.PubMed
45.
Zurück zum Zitat Kim S, Jang I-J, Shin D, Shin DS, Yoon S, Lim KS, et al. Investigation of bioequivalence of a new fixed-dose combination of acarbose and metformin with the corresponding loose combination as well as the drug–drug interaction potential between both drugs in healthy adult male subjects. J Clin Pharm Ther. 2014;39:424–31.PubMedCrossRef Kim S, Jang I-J, Shin D, Shin DS, Yoon S, Lim KS, et al. Investigation of bioequivalence of a new fixed-dose combination of acarbose and metformin with the corresponding loose combination as well as the drug–drug interaction potential between both drugs in healthy adult male subjects. J Clin Pharm Ther. 2014;39:424–31.PubMedCrossRef
46.
Zurück zum Zitat Halimi S, Le Berre MA, Grangé V. Efficacy and safety of acarbose add-on therapy in the treatment of overweight patients with type 2 diabetes inadequately controlled with metformin: a double-blind, placebo-controlled study. Diabetes Res Clin Pract. 2000;50:49–56.PubMedCrossRef Halimi S, Le Berre MA, Grangé V. Efficacy and safety of acarbose add-on therapy in the treatment of overweight patients with type 2 diabetes inadequately controlled with metformin: a double-blind, placebo-controlled study. Diabetes Res Clin Pract. 2000;50:49–56.PubMedCrossRef
47.
Zurück zum Zitat Cho SK, Kim CO, Park ES, Chung J-Y. Verapamil decreases the glucose-lowering effect of metformin in healthy volunteers. Br J Clin Pharmacol. 2014;78:1426–32.PubMedCrossRef Cho SK, Kim CO, Park ES, Chung J-Y. Verapamil decreases the glucose-lowering effect of metformin in healthy volunteers. Br J Clin Pharmacol. 2014;78:1426–32.PubMedCrossRef
48.
Zurück zum Zitat Zack J, Berg J, Juan A, Pannacciulli N, Allard M, Gottwald M, et al. Pharmacokinetic drug–drug interaction study of ranolazine and metformin in subjects with type 2 diabetes mellitus. Clin Pharmacol Drug Develop. 2015;4:121–9.CrossRef Zack J, Berg J, Juan A, Pannacciulli N, Allard M, Gottwald M, et al. Pharmacokinetic drug–drug interaction study of ranolazine and metformin in subjects with type 2 diabetes mellitus. Clin Pharmacol Drug Develop. 2015;4:121–9.CrossRef
49.
Zurück zum Zitat Tsuda M, Terada T, Ueba M, Sato T, Masuda S, Katsura T, et al. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther. 2009;329:185–91.PubMedCrossRef Tsuda M, Terada T, Ueba M, Sato T, Masuda S, Katsura T, et al. Involvement of human multidrug and toxin extrusion 1 in the drug interaction between cimetidine and metformin in renal epithelial cells. J Pharmacol Exp Ther. 2009;329:185–91.PubMedCrossRef
50.
Zurück zum Zitat Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, et al. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug–drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012;340:393–403.PubMedCrossRef Ito S, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, et al. Competitive inhibition of the luminal efflux by multidrug and toxin extrusions, but not basolateral uptake by organic cation transporter 2, is the likely mechanism underlying the pharmacokinetic drug–drug interactions caused by cimetidine in the kidney. J Pharmacol Exp Ther. 2012;340:393–403.PubMedCrossRef
51.
Zurück zum Zitat Somogyi A, Stockley C, Keal J, Rolan P, Bochner F. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol. 1987;23:545–51.PubMedCentralPubMedCrossRef Somogyi A, Stockley C, Keal J, Rolan P, Bochner F. Reduction of metformin renal tubular secretion by cimetidine in man. Br J Clin Pharmacol. 1987;23:545–51.PubMedCentralPubMedCrossRef
52.
Zurück zum Zitat Wang Z-J, Yin OQP, Tomlinson B, Chow MSS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18:637–45.PubMedCrossRef Wang Z-J, Yin OQP, Tomlinson B, Chow MSS. OCT2 polymorphisms and in-vivo renal functional consequence: studies with metformin and cimetidine. Pharmacogenet Genomics. 2008;18:637–45.PubMedCrossRef
53.
Zurück zum Zitat Seo JH, Lee DY, Hong CW, Lee IH, Ahn KS, Kang GW. Severe lactic acidosis and acute pancreatitis associated with cimetidine in a patient with type 2 diabetes mellitus taking metformin. Intern Med Tokyo Jpn. 2013;52:2245–8.CrossRef Seo JH, Lee DY, Hong CW, Lee IH, Ahn KS, Kang GW. Severe lactic acidosis and acute pancreatitis associated with cimetidine in a patient with type 2 diabetes mellitus taking metformin. Intern Med Tokyo Jpn. 2013;52:2245–8.CrossRef
54.
Zurück zum Zitat Ding Y, Jia Y, Song Y, Lu C, Li Y, Chen M, et al. The effect of lansoprazole, an OCT inhibitor, on metformin pharmacokinetics in healthy subjects. Eur J Clin Pharmacol. 2014;70:141–6.PubMedCrossRef Ding Y, Jia Y, Song Y, Lu C, Li Y, Chen M, et al. The effect of lansoprazole, an OCT inhibitor, on metformin pharmacokinetics in healthy subjects. Eur J Clin Pharmacol. 2014;70:141–6.PubMedCrossRef
55.
Zurück zum Zitat Kim A, Chung I, Yoon SH, Yu K-S, Lim KS, Cho J-Y, et al. Effects of proton pump inhibitors on metformin pharmacokinetics and pharmacodynamics. Drug Metab Dispos. 2014;42:1174–9.PubMedCrossRef Kim A, Chung I, Yoon SH, Yu K-S, Lim KS, Cho J-Y, et al. Effects of proton pump inhibitors on metformin pharmacokinetics and pharmacodynamics. Drug Metab Dispos. 2014;42:1174–9.PubMedCrossRef
56.
Zurück zum Zitat Flory J, Haynes K, Leonard CE, Hennessy S. Proton pump inhibitors do not impair the effectiveness of metformin in patients with diabetes. Br J Clin Pharmacol. 2015;79:330–6.PubMedCrossRef Flory J, Haynes K, Leonard CE, Hennessy S. Proton pump inhibitors do not impair the effectiveness of metformin in patients with diabetes. Br J Clin Pharmacol. 2015;79:330–6.PubMedCrossRef
57.
Zurück zum Zitat Jayasagar G, Krishna Kumar M, Chandrasekhar K, Madhusudan Rao C, Madhusudan Rao Y. Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metabol Drug Interact. 2002;19:41–8. Jayasagar G, Krishna Kumar M, Chandrasekhar K, Madhusudan Rao C, Madhusudan Rao Y. Effect of cephalexin on the pharmacokinetics of metformin in healthy human volunteers. Drug Metabol Drug Interact. 2002;19:41–8.
58.
Zurück zum Zitat Watanabe S, Tsuda M, Terada T, Katsura T, Inui K. Reduced renal clearance of a zwitterionic substrate cephalexin in MATE1-deficient mice. J Pharmacol Exp Ther. 2010;334:651–6.PubMedCrossRef Watanabe S, Tsuda M, Terada T, Katsura T, Inui K. Reduced renal clearance of a zwitterionic substrate cephalexin in MATE1-deficient mice. J Pharmacol Exp Ther. 2010;334:651–6.PubMedCrossRef
59.
Zurück zum Zitat Maeda T, Oyabu M, Yotsumoto T, Higashi R, Nagata K, Yamazoe Y, et al. Effect of pregnane X receptor ligand on pharmacokinetics of substrates of organic cation transporter OCT1 in rats. Drug Metab Dispos. 2007;35:1580–6.PubMedCrossRef Maeda T, Oyabu M, Yotsumoto T, Higashi R, Nagata K, Yamazoe Y, et al. Effect of pregnane X receptor ligand on pharmacokinetics of substrates of organic cation transporter OCT1 in rats. Drug Metab Dispos. 2007;35:1580–6.PubMedCrossRef
60.
Zurück zum Zitat Cho SK, Yoon JS, Lee MG, Lee DH, Lim LA, Park K, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther. 2011;89:416–21.PubMedCrossRef Cho SK, Yoon JS, Lee MG, Lee DH, Lim LA, Park K, et al. Rifampin enhances the glucose-lowering effect of metformin and increases OCT1 mRNA levels in healthy participants. Clin Pharmacol Ther. 2011;89:416–21.PubMedCrossRef
61.
Zurück zum Zitat Rysä J, Buler M, Savolainen MJ, Ruskoaho H, Hakkola J, Hukkanen J. Pregnane X receptor agonists impair postprandial glucose tolerance. Clin Pharmacol Ther. 2013;93:556–63.PubMedCrossRef Rysä J, Buler M, Savolainen MJ, Ruskoaho H, Hakkola J, Hukkanen J. Pregnane X receptor agonists impair postprandial glucose tolerance. Clin Pharmacol Ther. 2013;93:556–63.PubMedCrossRef
62.
Zurück zum Zitat Grün B, Kiessling MK, Burhenne J, Riedel K-D, Weiss J, Rauch G, et al. Trimethoprim-metformin interaction and its genetic modulation by OCT2 and MATE1 transporters. Br J Clin Pharmacol. 2013;76:787–96.PubMedCentralPubMedCrossRef Grün B, Kiessling MK, Burhenne J, Riedel K-D, Weiss J, Rauch G, et al. Trimethoprim-metformin interaction and its genetic modulation by OCT2 and MATE1 transporters. Br J Clin Pharmacol. 2013;76:787–96.PubMedCentralPubMedCrossRef
63.
Zurück zum Zitat Johansson S, Read J, Oliver S, Steinberg M, Li Y, Lisbon E, et al. Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin Pharmacokinet. 2014;53:837–47.PubMedCrossRef Johansson S, Read J, Oliver S, Steinberg M, Li Y, Lisbon E, et al. Pharmacokinetic evaluations of the co-administrations of vandetanib and metformin, digoxin, midazolam, omeprazole or ranitidine. Clin Pharmacokinet. 2014;53:837–47.PubMedCrossRef
64.
Zurück zum Zitat Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89:837–44.PubMedCrossRef Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther. 2011;89:837–44.PubMedCrossRef
65.
Zurück zum Zitat Stage TB, Pedersen RS, Damkier P, Christensen MMH, Feddersen S, Larsen JT, et al. Intake of St John’s wort improves the glucose tolerance in healthy subjects that ingest metformin compared to metformin alone. Br J Clin Pharmacol. 2015;79:298–306.PubMedCrossRef Stage TB, Pedersen RS, Damkier P, Christensen MMH, Feddersen S, Larsen JT, et al. Intake of St John’s wort improves the glucose tolerance in healthy subjects that ingest metformin compared to metformin alone. Br J Clin Pharmacol. 2015;79:298–306.PubMedCrossRef
66.
Zurück zum Zitat Manitpisitkul P, Curtin CR, Shalayda K, Wang S-S, Ford L, Heald D. Pharmacokinetic interactions between topiramate and pioglitazone and metformin. Epilepsy Res. 2014;108:1519–32.PubMedCrossRef Manitpisitkul P, Curtin CR, Shalayda K, Wang S-S, Ford L, Heald D. Pharmacokinetic interactions between topiramate and pioglitazone and metformin. Epilepsy Res. 2014;108:1519–32.PubMedCrossRef
69.
Zurück zum Zitat Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes. (epub 15 December 2014). Dujic T, Zhou K, Donnelly LA, Tavendale R, Palmer CN, Pearson ER. Association of organic cation transporter 1 with intolerance to metformin in type 2 diabetes: a GoDARTS study. Diabetes. (epub 15 December 2014).
70.
Zurück zum Zitat Vaidyanathan S, Maboudian M, Warren V, Yeh C-M, Dieterich HA, Howard D, et al. A study of the pharmacokinetic interactions of the direct renin inhibitor aliskiren with metformin, pioglitazone and fenofibrate in healthy subjects. Curr Med Res Opin. 2008;24:2313–26.PubMedCrossRef Vaidyanathan S, Maboudian M, Warren V, Yeh C-M, Dieterich HA, Howard D, et al. A study of the pharmacokinetic interactions of the direct renin inhibitor aliskiren with metformin, pioglitazone and fenofibrate in healthy subjects. Curr Med Res Opin. 2008;24:2313–26.PubMedCrossRef
71.
Zurück zum Zitat Karim A, Covington P, Christopher R, Davenport M, Fleck P, Li X, et al. Pharmacokinetics of alogliptin when administered with food, metformin, or cimetidine: a two-phase, crossover study in healthy subjects. Int J Clin Pharmacol Ther. 2010;48:46–58.PubMedCrossRef Karim A, Covington P, Christopher R, Davenport M, Fleck P, Li X, et al. Pharmacokinetics of alogliptin when administered with food, metformin, or cimetidine: a two-phase, crossover study in healthy subjects. Int J Clin Pharmacol Ther. 2010;48:46–58.PubMedCrossRef
72.
Zurück zum Zitat Kasichayanula S, Liu X, Shyu WC, Zhang W, Pfister M, Griffen SC, et al. Lack of pharmacokinetic interaction between dapagliflozin, a novel sodium-glucose transporter 2 inhibitor, and metformin, pioglitazone, glimepiride or sitagliptin in healthy subjects. Diabetes Obes Metab. 2011;13:47–54.PubMedCrossRef Kasichayanula S, Liu X, Shyu WC, Zhang W, Pfister M, Griffen SC, et al. Lack of pharmacokinetic interaction between dapagliflozin, a novel sodium-glucose transporter 2 inhibitor, and metformin, pioglitazone, glimepiride or sitagliptin in healthy subjects. Diabetes Obes Metab. 2011;13:47–54.PubMedCrossRef
73.
Zurück zum Zitat Li J, Klemm K, O’Farrell AM, Guler H-P, Cherrington JM, Schwartz S, et al. Evaluation of the potential for pharmacokinetic and pharmacodynamic interactions between dutogliptin, a novel DPP4 inhibitor, and metformin, in type 2 diabetic patients. Curr Med Res Opin. 2010;26:2003–10.PubMedCrossRef Li J, Klemm K, O’Farrell AM, Guler H-P, Cherrington JM, Schwartz S, et al. Evaluation of the potential for pharmacokinetic and pharmacodynamic interactions between dutogliptin, a novel DPP4 inhibitor, and metformin, in type 2 diabetic patients. Curr Med Res Opin. 2010;26:2003–10.PubMedCrossRef
74.
Zurück zum Zitat Rocha J-F, Vaz-da-Silva M, Almeida L, Falcão A, Nunes T, Santos A-T, et al. Effect of eslicarbazepine acetate on the pharmacokinetics of metformin in healthy subjects. Int J Clin Pharmacol Ther. 2009;47:255–61.PubMedCrossRef Rocha J-F, Vaz-da-Silva M, Almeida L, Falcão A, Nunes T, Santos A-T, et al. Effect of eslicarbazepine acetate on the pharmacokinetics of metformin in healthy subjects. Int J Clin Pharmacol Ther. 2009;47:255–61.PubMedCrossRef
75.
Zurück zum Zitat Shin D, Cho YM, Lee S, Lim KS, Kim J-A, Ahn J-Y, et al. Pharmacokinetic and pharmacodynamic interaction between gemigliptin and metformin in healthy subjects. Clin Drug Investig. 2014;34:383–93.PubMedCrossRef Shin D, Cho YM, Lee S, Lim KS, Kim J-A, Ahn J-Y, et al. Pharmacokinetic and pharmacodynamic interaction between gemigliptin and metformin in healthy subjects. Clin Drug Investig. 2014;34:383–93.PubMedCrossRef
76.
Zurück zum Zitat Sung EYY, Moore MP, Lunt H, Doogue M, Zhang M, Begg EJ. Do thiazide diuretics alter the pharmacokinetics of metformin in patients with type 2 diabetes already established on metformin? Br J Clin Pharmacol. 2009;67:130–1.PubMedCentralPubMedCrossRef Sung EYY, Moore MP, Lunt H, Doogue M, Zhang M, Begg EJ. Do thiazide diuretics alter the pharmacokinetics of metformin in patients with type 2 diabetes already established on metformin? Br J Clin Pharmacol. 2009;67:130–1.PubMedCentralPubMedCrossRef
77.
Zurück zum Zitat Bittner B, McIntyre C, Jordan P, Schmidt J. Drug–drug interaction study between a novel oral ibandronate formulation and metformin. Arzneimittelforschung. 2011;61:707–13.PubMed Bittner B, McIntyre C, Jordan P, Schmidt J. Drug–drug interaction study between a novel oral ibandronate formulation and metformin. Arzneimittelforschung. 2011;61:707–13.PubMed
78.
Zurück zum Zitat Veltkamp SA, van Dijk J, Collins C, van Bruijnsvoort M, Kadokura T, Smulders RA. Combination treatment with ipragliflozin and metformin: a randomized, double-blind, placebo-controlled study in patients with type 2 diabetes mellitus. Clin Ther. 2012;34:1761–71.PubMedCrossRef Veltkamp SA, van Dijk J, Collins C, van Bruijnsvoort M, Kadokura T, Smulders RA. Combination treatment with ipragliflozin and metformin: a randomized, double-blind, placebo-controlled study in patients with type 2 diabetes mellitus. Clin Ther. 2012;34:1761–71.PubMedCrossRef
79.
Zurück zum Zitat Graefe-Mody EU, Padula S, Ring A, Withopf B, Dugi KA. Evaluation of the potential for steady-state pharmacokinetic and pharmacodynamic interactions between the DPP-4 inhibitor linagliptin and metformin in healthy subjects. Curr Med Res Opin. 2009;25:1963–72.PubMedCrossRef Graefe-Mody EU, Padula S, Ring A, Withopf B, Dugi KA. Evaluation of the potential for steady-state pharmacokinetic and pharmacodynamic interactions between the DPP-4 inhibitor linagliptin and metformin in healthy subjects. Curr Med Res Opin. 2009;25:1963–72.PubMedCrossRef
80.
Zurück zum Zitat Shin D, Kim T-E, Yoon SH, Cho J-Y, Shin S-G, Jang I-J, et al. Assessment of the pharmacokinetics of co-administered metformin and lobeglitazone, a thiazolidinedione antihyperglycemic agent, in healthy subjects. Curr Med Res Opin. 2012;28:1213–20.PubMedCrossRef Shin D, Kim T-E, Yoon SH, Cho J-Y, Shin S-G, Jang I-J, et al. Assessment of the pharmacokinetics of co-administered metformin and lobeglitazone, a thiazolidinedione antihyperglycemic agent, in healthy subjects. Curr Med Res Opin. 2012;28:1213–20.PubMedCrossRef
81.
Zurück zum Zitat Zhi J, Moore R, Kanitra L, Mulligan TE. Pharmacokinetic evaluation of the possible interaction between selected concomitant medications and orlistat at steady state in healthy subjects. J Clin Pharmacol. 2002;42:1011–9.PubMedCrossRef Zhi J, Moore R, Kanitra L, Mulligan TE. Pharmacokinetic evaluation of the possible interaction between selected concomitant medications and orlistat at steady state in healthy subjects. J Clin Pharmacol. 2002;42:1011–9.PubMedCrossRef
82.
Zurück zum Zitat Rao N, Chou T, Ventura D, Abramowitz W. Investigation of the pharmacokinetic and pharmacodynamic interactions between memantine and glyburide/metformin in healthy young subjects: a single-center, multiple-dose, open-label study. Clin Ther. 2005;27:1596–606.PubMedCrossRef Rao N, Chou T, Ventura D, Abramowitz W. Investigation of the pharmacokinetic and pharmacodynamic interactions between memantine and glyburide/metformin in healthy young subjects: a single-center, multiple-dose, open-label study. Clin Ther. 2005;27:1596–606.PubMedCrossRef
83.
Zurück zum Zitat Di Cicco RA, Allen A, Carr A, Fowles S, Jorkasky DK, Freed MI. Rosiglitazone does not alter the pharmacokinetics of metformin. J Clin Pharmacol. 2000;40:1280–5.PubMed Di Cicco RA, Allen A, Carr A, Fowles S, Jorkasky DK, Freed MI. Rosiglitazone does not alter the pharmacokinetics of metformin. J Clin Pharmacol. 2000;40:1280–5.PubMed
84.
Zurück zum Zitat Lee D, Roh H, Son H, Jang SB, Lee S, Nam SY, et al. Pharmacokinetic interaction between rosuvastatin and metformin in healthy Korean male volunteers: a randomized, open-label, 3-period, crossover, multiple-dose study. Clin Ther. 2014;36:1171–81.PubMedCrossRef Lee D, Roh H, Son H, Jang SB, Lee S, Nam SY, et al. Pharmacokinetic interaction between rosuvastatin and metformin in healthy Korean male volunteers: a randomized, open-label, 3-period, crossover, multiple-dose study. Clin Ther. 2014;36:1171–81.PubMedCrossRef
85.
Zurück zum Zitat Patel CG, Kornhauser D, Vachharajani N, Komoroski B, Brenner E, Handschuh del Corral M, et al. Saxagliptin, a potent, selective inhibitor of DPP-4, does not alter the pharmacokinetics of three oral antidiabetic drugs (metformin, glyburide or pioglitazone) in healthy subjects. Diabetes Obes Metab. 2011;13:604–14.PubMedCrossRef Patel CG, Kornhauser D, Vachharajani N, Komoroski B, Brenner E, Handschuh del Corral M, et al. Saxagliptin, a potent, selective inhibitor of DPP-4, does not alter the pharmacokinetics of three oral antidiabetic drugs (metformin, glyburide or pioglitazone) in healthy subjects. Diabetes Obes Metab. 2011;13:604–14.PubMedCrossRef
86.
Zurück zum Zitat Oefelein MG, Tong W, Kerr S, Bhasi K, Patel RK, Yu D. Effect of concomitant administration of trospium chloride extended release on the steady-state pharmacokinetics of metformin in healthy adults. Clin Drug Investig. 2013;33:123–31.PubMedCentralPubMedCrossRef Oefelein MG, Tong W, Kerr S, Bhasi K, Patel RK, Yu D. Effect of concomitant administration of trospium chloride extended release on the steady-state pharmacokinetics of metformin in healthy adults. Clin Drug Investig. 2013;33:123–31.PubMedCentralPubMedCrossRef
87.
Zurück zum Zitat He Y-L, Sabo R, Picard F, Wang Y, Herron J, Ligueros-Saylan M, et al. Study of the pharmacokinetic interaction of vildagliptin and metformin in patients with type 2 diabetes. Curr Med Res Opin. 2009;25:1265–72.PubMedCrossRef He Y-L, Sabo R, Picard F, Wang Y, Herron J, Ligueros-Saylan M, et al. Study of the pharmacokinetic interaction of vildagliptin and metformin in patients with type 2 diabetes. Curr Med Res Opin. 2009;25:1265–72.PubMedCrossRef
88.
Zurück zum Zitat Kim H-S, Oh M, Kim EJ, Song GS, Ghim J-L, Shon J-H, et al. The effect of voglibose on the pharmacokinetics of metformin in healthy Korean subjects. Int J Clin Pharmacol Ther. 2014;52:1005–11.PubMedCrossRef Kim H-S, Oh M, Kim EJ, Song GS, Ghim J-L, Shon J-H, et al. The effect of voglibose on the pharmacokinetics of metformin in healthy Korean subjects. Int J Clin Pharmacol Ther. 2014;52:1005–11.PubMedCrossRef
89.
Zurück zum Zitat Torlone E, Rambotti AM, Perriello G, Botta G, Santeusanio F, Brunetti P, et al. ACE-inhibition increases hepatic and extrahepatic sensitivity to insulin in patients with type 2 (non-insulin-dependent) diabetes mellitus and arterial hypertension. Diabetologia. 1991;34:119–25.PubMedCrossRef Torlone E, Rambotti AM, Perriello G, Botta G, Santeusanio F, Brunetti P, et al. ACE-inhibition increases hepatic and extrahepatic sensitivity to insulin in patients with type 2 (non-insulin-dependent) diabetes mellitus and arterial hypertension. Diabetologia. 1991;34:119–25.PubMedCrossRef
90.
Zurück zum Zitat Berglund G, Andersson O. Beta-blockers or diuretics in hypertension? A six year follow-up of blood pressure and metabolic side effects. Lancet. 1981;1:744–7.PubMedCrossRef Berglund G, Andersson O. Beta-blockers or diuretics in hypertension? A six year follow-up of blood pressure and metabolic side effects. Lancet. 1981;1:744–7.PubMedCrossRef
92.
Zurück zum Zitat Ohnhaus EE, Berger W, Duckert F, Oesch F. The influence of dimethylbiguanide on phenprocoumon elimination and its mode of action: a drug interaction study. Klin Wochenschr. 1983;61:851–8.PubMedCrossRef Ohnhaus EE, Berger W, Duckert F, Oesch F. The influence of dimethylbiguanide on phenprocoumon elimination and its mode of action: a drug interaction study. Klin Wochenschr. 1983;61:851–8.PubMedCrossRef
93.
Zurück zum Zitat Schier JG, Hoffman RS, Nelson LS. Metformin-induced acidosis due to a warfarin adverse drug event. Ann Pharmacother. 2003;37:1145.PubMedCrossRef Schier JG, Hoffman RS, Nelson LS. Metformin-induced acidosis due to a warfarin adverse drug event. Ann Pharmacother. 2003;37:1145.PubMedCrossRef
95.
Zurück zum Zitat Wijnen JCF, van de Riet IR, Lijfering WM, van der Meer FJM. Metformin use decreases the anticoagulant effect of phenprocoumon. J Thromb Haemost. 2014;12:887–90.PubMedCrossRef Wijnen JCF, van de Riet IR, Lijfering WM, van der Meer FJM. Metformin use decreases the anticoagulant effect of phenprocoumon. J Thromb Haemost. 2014;12:887–90.PubMedCrossRef
96.
Zurück zum Zitat Wenge B, Geyer J, Bönisch H. Oxybutynin and trospium are substrates of the human organic cation transporters. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:203–8.PubMedCrossRef Wenge B, Geyer J, Bönisch H. Oxybutynin and trospium are substrates of the human organic cation transporters. Naunyn Schmiedebergs Arch Pharmacol. 2011;383:203–8.PubMedCrossRef
97.
Zurück zum Zitat Ahlin G, Chen L, Lazorova L, Chen Y, Ianculescu AG, Davis RL, et al. Genotype-dependent effects of inhibitors of the organic cation transporter, OCT1: predictions of metformin interactions. Pharmacogenomics J. 2011;11:400–11.PubMedCrossRef Ahlin G, Chen L, Lazorova L, Chen Y, Ianculescu AG, Davis RL, et al. Genotype-dependent effects of inhibitors of the organic cation transporter, OCT1: predictions of metformin interactions. Pharmacogenomics J. 2011;11:400–11.PubMedCrossRef
98.
Zurück zum Zitat Zolk O, Solbach TF, König J, Fromm MF. Functional characterization of the human organic cation transporter 2 variant p. 270Ala>Ser. Drug Metab Dispos. 2009;37:1312–8.PubMedCrossRef Zolk O, Solbach TF, König J, Fromm MF. Functional characterization of the human organic cation transporter 2 variant p. 270Ala>Ser. Drug Metab Dispos. 2009;37:1312–8.PubMedCrossRef
100.
Zurück zum Zitat Abel S, Nichols DJ, Brearley CJ, Eve MD. Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol. 2000;49:64–71.PubMedCentralPubMedCrossRef Abel S, Nichols DJ, Brearley CJ, Eve MD. Effect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a single dose of dofetilide. Br J Clin Pharmacol. 2000;49:64–71.PubMedCentralPubMedCrossRef
101.
Zurück zum Zitat Haenisch B, Drescher E, Thiemer L, Xin H, Giros B, Gautron S, et al. Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:1017–23.PubMedCrossRef Haenisch B, Drescher E, Thiemer L, Xin H, Giros B, Gautron S, et al. Interaction of antidepressant and antipsychotic drugs with the human organic cation transporters hOCT1, hOCT2 and hOCT3. Naunyn Schmiedebergs Arch Pharmacol. 2012;385:1017–23.PubMedCrossRef
103.
Zurück zum Zitat Tzvetkov MV, dos Santos Pereira JN, Meineke I, Saadatmand AR, Stingl JC, Brockmöller J. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem Pharmacol. 2013;86:666–78. Tzvetkov MV, dos Santos Pereira JN, Meineke I, Saadatmand AR, Stingl JC, Brockmöller J. Morphine is a substrate of the organic cation transporter OCT1 and polymorphisms in OCT1 gene affect morphine pharmacokinetics after codeine administration. Biochem Pharmacol. 2013;86:666–78.
Metadaten
Titel
A Comprehensive Review of Drug–Drug Interactions with Metformin
verfasst von
Tore Bjerregaard Stage
Kim Brøsen
Mette Marie Hougaard Christensen
Publikationsdatum
01.08.2015
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 8/2015
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-015-0270-6

Weitere Artikel der Ausgabe 8/2015

Clinical Pharmacokinetics 8/2015 Zur Ausgabe