Skip to main content
Erschienen in: Journal of Natural Medicines 3/2021

Open Access 26.04.2021 | Review

A review of antidiabetic active thiosugar sulfoniums, salacinol and neokotalanol, from plants of the genus Salacia

verfasst von: Toshio Morikawa, Kiyofumi Ninomiya, Genzoh Tanabe, Hisashi Matsuda, Masayuki Yoshikawa, Osamu Muraoka

Erschienen in: Journal of Natural Medicines | Ausgabe 3/2021

Abstract

During our studies characterizing functional substances from food resources for the prevention and treatment of lifestyle-related diseases, we isolated the active constituents, salacinol (1) and neokotalanol (4), and related thiosugar sulfoniums, from the roots and stems of the genus Salacia plants [Celastraceae (Hippocrateaceae)] such as Salacia reticulata Wight, S. oblonga Wall., and S. chinensis L., and observed their antidiabetic effects. These plant materials have been used traditionally in Ayurvedic medicine as a specific remedy at the early stage of diabetes, and have been extensively consumed in Japan, the United States, and other countries as a food supplement for the prevention of obesity and diabetes. Here, we review our studies on the antidiabetic effects of plants from the genus Salacia, from basic chemical and pharmacological research to their application and development as new functional food ingredients.

Graphic abstract

Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Plants of the genus Salacia, classified as the Celastraceae (Hippocrateaceae) family [1], are widely distributed in Sri Lanka, India, Southeast Asia (e.g., Thailand and Indonesia), and in torrid zone areas, such as Brazil [26]. According to The Plant List (www.​theplantlist.​org, accessed on March 16, 2021), 481 plants from Salacia genus, including S. reticulata Wight (an unresolved name), S. oblonga Wall. (an unresolved name, synonym of Comocladia serrata Blanco), and S. chinensis L. (an accepted name, synonyms of S. prinoides Willd. DC. and Tontelea prinoides Willd.), are recorded [1]. These Salacia plants are termed locally as “Kotala himbutu” in Singhalese for S. reticulata; “Chundan” in Tamil and “Ponkoranti” in Malayalam for S. oblonga; and “Kam Phaeng Chetchan” in Thai for S. chinensis [2, 7]. Their roots and stems have been used extensively for thousands of years in traditional medicines for the treatment of rheumatism, gonorrhea, and skin diseases. In the Ayurvedic system [810] and in Thai traditional medicine [11], they have also been used as a remedy at the early stage of diabetes. Traditionally, in Sri Lanka, aqueous extract was prepared by storing water overnight in mugs made from the root and stem parts of S. reticulata (Fig. 1). Throughout the course of our studies characterizing functional substances from food resources for the prevention and treatment of lifestyle-related diseases, our research group has focused on the antidiabetic effects of plants from the genus Salacia since the mid-1990s. Before we began our research, data on the in vivo hypoglycemic activities of extracts from S. reticulata [12, 13], S. oblonga [14], and S. chinensis [15] had been reported. However, at that time, the active constituents, and the mechanisms underlying the antidiabetic effects of plants from the genus Salacia had not yet been characterized. Here, we review our studies on the antidiabetic effects of plants from the genus Salacia, from basic chemical and pharmacological research to their application and development as new functional food ingredients. Particularly, we focus on and describe active constituents with antidiabetic activity, including salacinol (1), neosalacinol (2), kotalanol (3), neokotalanol (4), and related analogs (58), which are unique thiosugar sulfonium constituents with a novel class of α-glucosidase inhibitors from plants of the Salacia genus (Fig. 2).

Search for active antidiabetic constituents

Suppressive effects of the methanol extract from the roots and stems of S. reticulata on postprandial blood glucose elevation in sugar-loaded rats

According to “9th Edition of The International Diabetes Federation (IDF) Atlas”, diabetes is one of the fastest growing global health emergencies of the twenty-first century. In 2019, an estimated 463 million individuals had diabetes, and this number is projected to reach 578 million by 2030, and 700 million by 2045 [16]. Type 2 diabetes mellitus, or non-insulin-dependent diabetes mellitus, is a chronic metabolic disorder characterized by symptoms such as hyperglycemia, insulin resistance, and relative insulin deficiency [17]. Chronic hyperglycemia can lead to long-term complications, such as cardiovascular and renal disorders, retinopathy, and poor blood flow. The development of type 2 diabetes mellitus can be prevented or delayed in individuals with impaired glucose tolerance by implementing lifestyle changes or through the use of therapeutic agents [18]. Through wide in vivo screening trials, we have identified extracts and their constituents isolated from several natural resources, including Kochia scoparia [19], Borassus flabellifer [20], Solanum lycocarpum [21], Sinocrassula indica [22], Shorea roxburghii [23], Cistanche tubulosa [24, 25], and Helichrysum arenarium [26], which could suppress elevated blood glucose levels in sugar-loaded rats and/or mice models. Our search for antidiabetic principles from plants of the genus Salacia began following the discovery of the suppressive effects of a methanol extract prepared from the roots and stems of S. reticulata (collected in Sri Lanka) on elevated blood glucose levels in maltose- and sucrose-loaded rats at a dose of 50 mg/kg (p.o.); the extract did not affect glucose-loaded rats up to 200 mg/kg (p.o.) [2, 28]. In addition, the extract did not exhibit hypoglycemic activity in alloxan-induced insulin-dependent diabetic mice following a single administration of 3000 mg/kg (p.o.) [2, 28]. To characterize the mechanism underlying the suppression of postprandial glucose activity, the inhibitory effects on small intestinal a-glucosidases, such as maltase and sucrase, were evaluated using rat small intestinal brush border membrane vesicles as an enzymatic mixture. Consequently, the extract inhibited the enzymatic activity of both maltase (IC50 = 42 μg/mL) and sucrase (IC50 = 32 μg/mL). Thus, the S. reticulata extract was characterized as having α-glucosidase inhibitory activity, which inhibited the hydrolysis of oligosaccharides, such as maltose and sucrose, to glucose [2, 27, 28].

Unique thiosugar sulfonium sulfates, salacinol (1) and kotalanol (3), were isolated as the active principles by bioassay-guided separation using the maltase and sucrase inhibitory activities

Our first experiments evaluated the fractionation and isolation of the antidiabetic principles from extracts, including solvent distribution and filtration, column chromatography, and preparative HPLC; these procedures are summarized in Fig. 3. Thus, the active MeOH-soluble fraction (IC50 = 30 μg/mL for maltase and 18 μg/mL for sucrase) was subjected to normal-phase silica gel column chromatography to obtain eight fractions. Among these, fractions 3–6 presented maltase inhibitory activity (IC50 = 35–72 μg/mL), while fractions 2–5 presented sucrase inhibitory activity (IC50 = 6.7–60 μg/mL). Further separation and purification procedures using ODS and NH column chromatography, and finally preparative HPLC, isolated the active constituents salacinol (1) [27, 28] and kotalanol (3) [29] (Fig. 2), along with several sugars and sugar alcohols, including d-glucose, d-fructose, dulcitol, glycerol, sucrose, 3-O-α-d-galactopyranosyl(1 → 6)-O-β-galactopyranosyl-sy-glycerol, galactinol, and stachyose. Because the oligosaccharides as substrate for the enzymatic activities and d-glucose were obtained from the active fractions such as fractions 2–6, the condensation of the maltase and sucrase inhibitory activities of those fractions were not observed as much as the condensation of the active isolates (1 and 3). The structure of salacinol (1) was elucidated based on physicochemical evidence, including the NMR assignments, using several spectroscopy measurements and application of the deuterium shift rule to facilitate the locations of free hydroxy groups. Alkaline treatment of salacinol (1) with sodium methoxide gave 1-deoxy-4-thio-d-arabinofuranose (1a), which was identical to the synthesis from d-xylose. Finally, the absolute stereostructure was elucidated by X-ray crystallographic analysis, which showed that the unique spiro-like configuration of the inner salt was comprised of 1-deoxy-4-thio-d-arabinofuranosyl sulfonium cation and 1′-deoxy-d-erythrosyl-3′-sulfate anion [27, 28]. The stereostructure of kotalanol (3) was also characterized [29, 30]. To our knowledge, 5-thio-d-mannose was hitherto isolated from a marine sponge as the only naturally occurring thiosugar [31], and these compounds (1 and 3) are the first examples of sulfonium-type thiosugars in nature.

A series of other thiosugar sulfonium constituents, neosalacinol (2), neokotalanol (4), and related isolates (5–8) from plans of the genus Salacia

As described above, a unique thiosugar sulfonium sulfate salacinol (1), which had a sulfated C4 polyol side chain connected at the sulfonium moiety, was first isolated from the methanol extract of S. reticulata and subject to structure determination, in 1997 [27, 28]. The related analog of 1 elongated the polyol side chain to C7, kotanlanol (3), and was isolated from the same plant resource in 1998 [29, 30]. Subsequently, 1 and 3 were isolated from the 80% aqueous methanol extract of S. oblonga in 1999 [32] and from the methanol extract of S. chinensis (syn. S. pronoides) in 2008 [33]. From S. chinensis, other related thiosugar sulfonium sulfates, ponkoranol (5) and salaprinol (7), were obtained, which have a sulfated C6, and C3 polyol side chains connected at the sulfonium moiety, respectively [33]. In addition, the desulfonated analogs of these sulfate ester constituents (1, 3, 5, and 7), named neosalacinol (2) [35], neokotalanol (4) [35], neoponkoranol (6) [36, 37], and neosalaprinol (8) [36, 37], which presented higher polarity than each corresponding 3′-O-sulfate ester, were also obtained from the hot water extracts of genus Salacia plants. Thus, we optimized the practical isolation protocol by using the stems of S. chinensis originating in Thailand, and performing hot water extraction. The results demonstrated that we have established practical isolation procedures for 14, as shown in Fig. 4 [34].

Thiosugar sulfoniums (1–6) as a novel class of α-glucosidase inhibitors

As shown in Table 1, salacinol (1) and kotalanol (3) were found to inhibit maltase, sucrase, and isomaltase inhibitory activities against rat small intestinal α-glucosidase (IC50 = 6.0, 1.3, and 1.3 μM for 1; 2.0, 0.43, and 1.8 μM for 3, respectively) [37]. The maltase inhibitory activities of 1 were weaker than those of acarbose and voglibose (1.7 and 1.3 μM, respectively) and equivalent to that of miglitol (8.2 μM). Regarding sucrase inhibitory activity, 1 (1.3 μM) demonstrated equivalence to acarbose (1.5 μM), whereas the isomaltase inhibitory activity was more potent than those of acarbose, voglibose, and miglitol (1.5, 0.22, and 0.43 μM, respectively). However, the common thiosugar moiety 1-deoxy-4-thio-d-arabinofuranose (1a) did not present this activity (each IC50 value > 400 μg/mL for maltase, sucrase, and isomaltase). These data indicated that the sugar alcohol side chain connecting the sulfonium parts was essential for the activity. To examine how 1 and 3 inhibited maltase, sucrase, and isomaltase, small intestinal brush border membrane vesicles were incubated with increasing concentration of maltose (3.1–37 mM, Km = 2.7 mM), sucrose (4.6–37 mM, Km = 20 mM), and isomaltose (0.46–3.7 mM, Km = 4.5 mM). The results plotted according to the Lineweaver–Burk revealed fully competitive inhibition on each α-glucosidase, and the Ki values were 0.31, 0.32, and 0.47 μg/mL for 1; and 0.23, 0.18, and 1.8 μg/mL for 3, respectively [28, 29].
Table 1
IC50 values of thiosugar sulfoniums (18 and 1a), acarbose, voglibose, miglitol, and 1-deoxynojirimycin against α-glucosideses from rat small intestine, Saccharomyces cerevisiae, and Bacillus stearothermophilus
 
IC50 (μM) [(μg/mL)]
 
Rata
Saccharomyces cerevisiaeb
Bacillus stearothermophilusc)
 
Maltase
Sucrase
Isomaltase
Maltase
Sucrase
Maltase
Sucrase
Salacinol (1)
6.0 [2.0]
1.3 [0.42]
1.3 [0.44]
 > 100
 > 100
 > 100
 > 100
Neosalacinol (2)
22.2 [5.7]
2.5 [0.65]
0.68 [0.17]
 > 100
 
 > 100
 
Kotalanol (3)
2.0 [0.86]
0.43 [0.18]
1.8 [0.78]
 > 100
 
 > 100
 
Neokotalanol (4)
1.6 [0.54]
1.5 [0.53]
0.46 [0.16]
 > 100
 > 100
 > 100
 > 100
Ponkoranol (5)
5.6 [2.2]
0.41 [0.16]
4.6 [1.8]
 > 100
 
 > 100
 
Neoponkoranol (6)
5.1 [1.6]
1.0 [0.32]
1.4 [0.43]
 > 100
 
 > 100
 
Salaprinol (7)
 > 329 [> 100]
 > 329 [> 100]
14 [4.4]
    
Neosalaprinol (8)
 > 444 [> 100]
90 [20]
6.5 [1.5]
    
1a
[> 400]
[> 400]
     
Acarbose
1.7 [1.1]
1.5 [1.0]
645 [417]
 > 100
 > 100
0.20 [0.13]
0.021 [0.014]
Voglibose
1.3 [0.34]
0.22 [0.060]
2.2 [0.58]
 > 100
 > 100
 > 100
 > 100
Miglitol
8.2 [1.7]
0.43 [0.090]
4.6 [0.96]
 > 100
 > 100
 > 100
 > 100
1-Deoxynojirimycin
0.67 [0.11]
0.12 [0.020]
0.26 [0.042]
 > 100
 > 100
84.3 [13.8]
2.4 [0.39]
α-Glucosidase inhibitory activity: aRat small intestinal brush border membrane vesicles, bSaccharomyces cerevisiae (purchased from Sigma-Aldrich Co., LLC, St. Louis, USA), or cBacillus stearothermophilus (purchased from Sigma-Aldrich) in 0.1 M maleate buffer (pH 6.0) was prepared as an enzyme solution, respectively. A substrate solution in the maleate buffer (maltose or sucrose: 74 mM; isomaltose: 7.4 mM, 50 μL), the test sample solution (25 μL), and the enzyme solution (25 μL) were mixed at 37 °C for 30 min and then immediately heated in boiling water for 2 min to stop the reaction. The glucose concentrations were determined using the glucose-oxidase method. The IC50 value was determined graphically by plotting the percent inhibition vs. log of the test compound. Each value represents the mean of two–four experiments. Commercial acarbose, voglibose, miglitol, and 1-deoxynojirimycin were purchased from FUJIFILM Wako Pure Chemicals Co. (Osaka, Japan)
Reproduced in part with permission from Phytochem. Anal., 25, 544–550. Copyright [2014] Jhon Wiley & Sons, Ltd
Furthermore, we have also evaluated the inhibitory activities of the active sulfoniums (16) against human intestinal maltase [38]. As shown in Table 2, 1 (IC50 = 4.9 μM), 2 (9.0 μM), 3 (3.9 μM), 4 (3.9 μM), 5 (5.0 μM), and 6 (4.0 μM) inhibited the enzymatic activities of maltase, with almost equivalent activity to miglitol (3.7 μM) and greater potency than acarbose (15.2 μM). According to the Lineweaver–Burk plot, inhibition was characterized as being fully competitive, and the Ki values of 16 were 0.44, 1.2, 0.32, 0.33, 0.32, and 0.70 μM, respectively.
Table 2
IC50 and Ki values of principal thiosugar sulfoniums (16), acarbose, voglibose, miglitol, and 1-deoxynojirimycin against human small intestinal maltase
 
IC50 (μM)
Ki (μM)
Salacinol (1)
4.9
0.44
Neosalacinol (2)
9.0
1.2
Kotalanol (3)
3.9
0.32
Neokotalanol (4)
3.9
0.33
Ponkoranol (5)
5.0
0.32
Neoponkoranol (6)
4.0
0.70
Acarbose
15.2
2.6
Voglibose
1.3
0.17
Miglitol
3.7
0.57
1-Deoxynojirimycin
0.96
0.071
Maltase inhibitory activity: Human small intestinal microsome (batch MIC318017, purchased from BIOPREDIC International, Rennes, France) in 0.1 M maleate buffer (pH 6.0) was prepared as an enzyme solution. A substrate solution in the maleate buffer (maltose: 74 mM, 50 μL), the test sample solution (25 μL), and the enzyme solution (25 μL) were mixed at 37 °C for 30 min and then immediately heated in boiling water for 2 min to stop the reaction. The glucose concentrations were determined using the glucose-oxidase method. The IC50 value was determined graphically by plotting the percent inhibition vs. log of the test compound. Each value represents the mean of four experiments. Commercial acarbose, voglibose, miglitol, and 1-deoxynojirimycin were purchased from FUJIFILM Wako Pure Chemicals Co. (Osaka, Japan)
Kinetic analysis: The enzyme and test samples (1.0–4.0 μM: acarbose; 1 and 3: 0.5–2.0 μM; 26 and miglitol: 0.25–1.0 μM; 0.10–0.40 μM: voglibose) were incubated with increasing concentrations of maltose (3.0–10.6 mM)
Reproduced in part with permission from Nutrients, 7, 1480–1493. Copyright [2015] MDPI
To date, several research groups have performed synthetic and structure–activity relationship (SAR) studies of salacinol (1) and related analogues regarding α-glucosidase inhibitory activity [3955]. We are also performing subsequent studies on the total syntheses of these sulfonium constituents (1–8) and their highly active analogues, as well as more detailed SAR studies [38, 5662]; those data will be summarized separately.

Terpenoid and polyphenol constituents with aldose reductase inhibitory activity

Aldose reductase is a key enzyme that catalyzes the reduction of glucose to sorbitol in the polyol processing pathway. In normal tissue, aldose reductase has low substrate affinity to glucose, such that the conversion of glucose to sorbitol is little catalyzed. However, in diabetes mellitus, the increased availability of glucose in insulin-insensitive tissues (e.g., lens, nerve, and retina) enhances the formation of sorbitol through the polyol pathway. Sorbitol dose not readily diffuse across cell membranes and thus accumulate intracellularly. The intracellular accumulation of sorbitol has been implicated in the chronic complications of diabetes, including cataracts, neuropathy, and retinopathy. These findings suggest that aldose reductase inhibitors have the capacity to prevent and treat such diabetic complications. Previously, we reported several aldose reductase inhibitors obtained from natural resources, such as flavonoids [6369], stilbenoids [23, 65], quinic acid derivatives [68], and phenylthanoids [24]. As a continuation of the above study, several polyphenol constituents with aldose reductase inhibitory activity from S. reticulata [70], S. oblonga [32], and S. chinensis [71, 72] were further explored. We also investigated the inhibitory effect of the 80% aqueous methanol extracts of S. oblonga and S. chinensis against aldose reductase (IC50 = 3.4 and 3.6 μg/mL, respectively) [32, 71]. As shown in Fig. 5, several terpenoids including 14 friedelane-type (922), five oleanane-type (2327), two ursane-type (28 and 29), and six nor-friedelane-type triterpenes (3035) and squalene, two abietane-type diterpenes (36, 37), and three acylated eudesmane-type sesquiterpenes (3840), polyphenols including an xanthone, mangiferin (41), three lignans (4244), two flavones (45 and 46), and six flavan-3-ols (4752), 13 sugar derivatives, and a cyclitol, myo-inositol, were isolated from genus Salacia plants [28, 32, 33, 7073]. Oleanane-type triterpenes, feidelane-3-one-29-ol (17, IC50 = 98 μM), maytenfolic acid (23, 72 μM), and 3β,22β-dihydroxyolean-12-en-29-oic acid (24, 26 μM), norfriedelane-type tritepenes, tingrnine B (32, 7.0 μM), tingenone (33, 13 μM), regeol A (34, 30 μM), and triptocalline A (35, 14 μM), an acylated eudesmane sesquiterpene celahin C (38, 95 μM), and a xanthone mangiferin (41, 3.2 μM), were found to exhibit the inhibitory effects of the constituents on aldose reductase (Table 3) [72]. Among those, mangiferin (41) was suggested to be the most active constituent in the extract of plants from the genus Salacia against aldose reductase [70]. However, the inhibitory activity was moderate compared with that of a clinically used aldose reductase inhibitor epalrestat (0.0072 μM); therefore, the contribution of aldose reductase inhibitory activity on the antidiabetic effect of plants from the genus Salacia is limited.
Table 3
Inhibitory effects of constituents from plants of the genus Salacia on rat lens aldose reductase
 
IC50 (μM)
Friedelan-3-one-29-ol (17)
98
Maytenfolic acid (23)
72
3β,22 β-Dihydroxyolean-12-en-29-oic acid (24)
26
Tingenine B (32)
7.0
Tingenone (33)
13
Regeol A (34)
30
Triptocalline A (35)
14
Celahin C (38)
95
Mangiferin (41)
3.2
Epalrestat
0.0072
Aldose reductase inhibitory activity: The supernatant fluid of a rat lens homogenate was used as a crude enzyme. The incubation mixture contained 180 mM Na, K-phosphate buffer (pH 7.0), 100 mM Li2SO4, 0.03 mM NADPH, 1 mM dL-glyceraldehyde as a substrate, and 100 μL of enzyme fraction, with or without 25 μL of sample solution, in a total volume of 0.5 mL. The reaction was initiated by the addition of NADPH at 30 °C. After 30 min, the reaction was stopped by the addition of 150 μL of 0.5 M HCl. Then, 0.5 mL of 6 M NaOH containing 10 mM imidazole was added, and the solution was heated at 60 °C for 20 min to convert NADP to a fluorescent product. Fluorescence was measured using a fluorophotometer (luminescence spectrometer LS50B, Perkin-Elmer, UK) at an excitation wavelength of 360 nm and an emission wavelength of 460 nm. Each test sample was dissolved in DMSO. Measurements were made in duplicate, and the IC50 value was determined graphically by plotting the percent inhibition versus log of the test compound. An aldose reductase inhibitor epalrestat was used as a reference compound
Reproduced with permission from J. Nat. Prod., 66, 1191–1196. Copyright [2003] ACS

Quantitative evaluation of principal sulfonium constituents as characteristic marker molecules

As discussed, we previously investigated the suppressive effects of the methanol extract from the roots and stems of S. reticulata on the elevated blood glucose levels in maltose- and sucrose-loaded rats [2, 28]. We have also demonstrated the antihyperglycemic effects of the 80% aqueous methanol extracts from S. oblonga and S. chinensis, as well as S. reticulata using the same sugar-loaded animal models [2, 71]. Based on these findings, interest in Salacia as a possible nutraceutical product for patients with diabetes and/or prediabetes is increasing. Thus, there has been a high demand for efficient quality control measures to ensure the authenticity and active contents of these products, and to verify the claims on product labels. Therefore, to evaluate the quality of Salacia extracts for antidiabetic effects, quantitative analyses of sulfonium constituents (18) have been developed as two separate protocols using LC–MS. The sulfonated derivatives (1, 3, 5, and 7) were obtained using an Asahipak NH2P-50 column (Showa Denko K.K., Tokyo, Japan) with an acetonitrile–water solvent system (78:22, v/v) as a mobile phase, associated with negative-ion electrospray ionization mass (ESI–MS) sources (m/z 333, 423, 393, and 303 [M – H], respectively) [34, 37]. The de-O-sulfonate derivatives (2, 4, 6, and 8) were established by ion pair chromatography using an ODS column with 5 mM aqueous undecafluorohexanoic acid–MeOH (99:1, v/v) as the mobile phase and positive-ion ESI–MS measurement (m/z 255, 345, 319, and 225 [M]+, respectively) [35, 37]. Using the established protocols, a variety of Salacia samples collected in different geographical regions (e.g., Sri Lanka, India, and Thailand), as well as their distribution in each part of the plant, including the stems, roots, leaves, and fruit, were evaluated. The distribution of sulfoniums (18) in the stems and roots of these plants differed between the collection areas. Among these, neokotalanol (4) was the major compound in samples from Thailand, whereas salacinol (1) was the major compound in samples from Sri Lanka and India. Regarding differences in the characteristic distributions between plant parts, the sulfoniums were only present in trace amounts in the leaf and fruit parts. [34, 35, 37]. An effort was made to discriminate the Salacia plant species based on the DNA sequence of the internal transcribed spacer (ITS) region in the nuclear ribosomal RNA gene in an authentic specimen, and a genotype characteristic of S. chinensis, which is distinguishable from those of S. reticulata and S. oblonga was identified [74]. Correlations between the total content of four principal sulfoniums (14) and the maltase and sucrase inhibitory activities (1/IC50) of the corresponding extracts from the stems of S. chinensis were plotted. Strong correlations were observed between the total content (%, reduced value to 4) and inhibitory activity (R = 0.959 for maltase and 0.795 for sucrase) [35]. Furthermore, when ponkoranol (5) and neoponkoranol (6) were plotted in addition to total sulfonium (16), these correlations were found to be stronger and almost fully explained both the maltase (R = 0.954) and the sucrase (R = 0.929) inhibitory activities of the extract (Fig. 6). Thus, these practical LC–MS methods for the quantitative determination of sulfoniums with potent α-glucosidase inhibitory activity could be readily utilized for the evaluation of genus Salacia plants.

Evaluation of hot water extract from the stems of S. chinensis (SCE) as a functional food material for improving the effects on blood glucose and HbA1c levels in animal models

In Japan, the government can label two types of food products with certain health claims: Foods for Specified Health Uses (FOSHU) and Foods with Function Claims (FFC) [7581]. Due to the increasing interest in plants of the genus Salacia as a possible food product with health claim for individuals with prediabetes and/or those with high blood glucose levels, we examined the suppressive effects of the hot water extract from the stems of S. chinensis (SCE). Strong correlations have been observed between the total content of four principal thiosugar sulfoniums (14) and the a-glucosidase inhibitory activity (vide supra), on postprandial blood glucose levels in starch-loaded rats. As shown in Fig. 7, SCE significantly suppressed the increase in blood glucose levels in a dose-dependent manner (30–300 mg/kg, p.o.), with an ED50 value of 94.0 mg/kg. Among the sulfonium constituents, salacinol (1), kotalanol (3), and neokotalanol (4) were also evaluated using the in vivo assay, with ED50 values of > 2.06, 0.62, and 0.54 mg/kg, respectively [38].
Next, the effects of 3-weeks’ administration of SCE on postprandial blood glucose and HbA1c levels were evaluated in a typical model of type 2 diabetes mellitus (KK-Ay mice). As shown in Fig. 8, feeding animals a CE-2 diet containing 0.25 and/or 0.50% (w/w) SCE significantly suppressed the increase in both blood glucose and HbA1c levels without significant changes in body weight and food intake. Furthermore, a glucose tolerance test (2 g/kg) was performed following continuous administration of an AIN93M purified diet containing 0.12% (w/w) SCE to glucose-loaded KK-Ay mice for 27 days. The results showed that SCE significantly suppresses the elevation in blood glucose. Thus, SCE exerted antidiabetic effects by both inhibiting the increase in postprandial blood glucose levels and improving glucose tolerance [38].
To verify whether the suppressive effects of SCE on HbA1c levels were due to the presence of α-glucosidase inhibitors, we performed similar chronic experiments using a customized diet, in which all the digestible glucides in AIN93M (AIN93M/Glc) were substituted by d-glucose. There were no significant differences in HbA1c levels in KK-Ay mice fed a customized (AIN93M/Glc) or standard (AIN93M purified) diet supplemented with 0.30% SCE for 14 days compared with the corresponding control group. These results indicate that the antidiabetic effect of SCE is due to the potent α-glucosidase inhibitory activity of its active constituents, which are characteristic sulfoniums, including salacinol (1), neokotalanol (4), and their related analogues isolated from genus Salacia plants [38].
In addition, we examined the antidiabetic effects of SCE and its principal thiosugar sulfonium, neokotalanol (4), using genetically hyperglycemic model ob/ob mice, which are grossly overweight, hyperphagic, obese, hyperinsulinemic, and hyperglycemic, and used as models of diabetes with obesity [82]. Thus, administration of a single-dose of SCE significantly suppressed the elevated blood glucose in enteral nutrient Ensure H® (10 mL/kg, Abbott Japan Co., Ltd., Tokyo, Japan)-loaded ob/ob mice in a dose-dependent manner (50–150 mg/kg p.o.) (Fig. 9). Thus, the suppressive curve of the blood glucose elevation of SCE was similar to that of a clinical α-glucosidase inhibitor voglibose, but dissimilar to that of a clinical dipeptidyl peptidase-4 (DPP-4) inhibitor, alogliptin. Furthermore, continuous administration of 0.20 and 0.50% (w/w) SCE in CE-2 diet-fed ob/ob mice for 23 days significantly suppressed the increase in both blood glucose and HbA1c levels in a dose-dependent manner (Fig. 10). Notably, the water intake of mice in the SCE-treated groups was lower than that of mice in the control group during the administration period [average intake per day: 0.20% SCE group (7.7 ± 1.2 g), 0.50% SCE group (6.2 ± 0.6 g), and Control group (11.5 ± 2.0 g)], which was similar to that of mice treated with 0.001% (w/w) voglibose (5.6 ± 0.5 g). These results suggest that SCE has a beneficial effect on polydipsia with diabetes mellitus.
Similarly, the antidiabetic effects of neokotalanol (4), one of the highest contributing principles based on its potent α-glucosidase inhibitory activity and high content in SCE, were evaluated by evaluating the blood glucose and HbA1c levels of ob/ob mice following 20-day continuous administration. As show in Table 4, administration of the diet containing 0.0003% of neokotalanol (4) was found to significantly suppress the increase in HbA1c levels without causing changes in body weight. Consequently, the potent α-glucosidase inhibitor neokotalanol (4) was identified as one of the active constituents hampering the progress of diabetes in obese-hyperglycemic ob/ob mice.
Table 4
Effects of SCE, neosalacinol (4), and voglibose on food and water intakes, body weight, and HbA1c levels after 20 days of administration in AIN-93 M purified diet-fed ob/ob mice
 
Dose
Food intake
Water intake
Body weight (g)
 
(%)
(g/day, average)
Day 0
Day 3
Day 6
Day 9
Day 12
Day 15
Day 18
Day 20
Control
3.5 ± 0.1
4.0 ± 0.7
32.9 ± 0.6
35.6 ± 0.7
36.4 ± 0.4
36.9 ± 0.5
38.1 ± 0.4
39.2 ± 0.5
40.3 ± 0.4
41.0 ± 0.4
SCE
0.05
3.6 ± 0.1
2.5 ± 0.1**
33.4 ± 0.5
36.1 ± 0.3
36.8 ± 0.2
37.4 ± 0.2
38.6 ± 0.3
39.3 ± 0.2
40.8 ± 0.3
41.3 ± 0.3
Neokotalanol (4)
0.0003
3.5 ± 0.2
2.5 ± 0.2**
32.2 ± 0.5
35.1 ± 0.4
35.8 ± 0.4
36.0 ± 0.4
37.2 ± 0.4
37.8 ± 0.4
39.4 ± 0.4
40.1 ± 0.4
Voglibose
0.0001
4.5 ± 0.2
3.3 ± 0.2
33.0 ± 0.5
36.2 ± 0.4
36.3 ± 0.5
37.1 ± 0.3
38.0 ± 0.4
39.0 ± 0.2
40.2 ± 0.3
40.8 ± 0.4
 
Dose
HbA1c (%)
 
(%)
Day 0
Day 20
Control
6.1 ± 0.0
6.5 ± 0.2
SCE
0.05
6.1 ± 0.1
6.0 ± 0.1*
Neokotalanol (4)
0.0003
5.9 ± 0.1
5.9 ± 0.1**
Voglibose
0.0001
5.9 ± 0.1
6.0 ± 0.1*
Effects on HbA1c levels of AIN-93 M purified diet-fed ob/ob mice following 20 days of administration: Male B6.Cg-Lepob/J (ob/ob) mice (6-week-old, Charles River Laboratories Japan, Inc., Yokohama, Japan) were housed for 1 week in individual meal cages. These mice were divided into four groups based on body weight, blood glucose, and HbA1c levels. Mice in the control group was fed a standard AIN-93 M purified diet. Mice in the SCE-, neokotalanol (4)-, and voglibose-treated groups were fed the same diet supplemented with 0.05, 0.0003, and 0.0001% (w/w) of the respective treatments. On days 0, 3, 6, 9, 12, 15, 18, and 20 (end of the treatment period), their body weights were measured. On days 0 and 20, the HbA1c levels were measured using Quo-Lab (Nipro, Osaka, Japan)
Each value represents the mean ± S.E.M. (n = 6)
Significantly different from the control: *p < 0.05, **p < 0.01
Reproduced with permission from J. Nat. Med., 73, 584–588. Copyright [2019] Springer Nature

Mangiferin (41) is a promising marker molecule for the antidiabetic effect of plants in the genus Salacia

A xanthone C-glycoside mangiferin (41), originally obtained from the stem bark of mango tree (Mangifera indica L.) [8385], was isolated from plants of the genus Salacia as a moderate aldose reductase inhibitor (vide supra) and reported to exert a hypoglycemic effect in KK-Ay mice [2, 86]. Thereafter, mangiferin (41) has attracted attention as a bio-functional molecule for its antidiabetic [83, 84, 8789], antioxidant [83, 84, 9092], antibacterial, antiviral [84], antiparasitic [84], antiinflammatory [83, 84, 9094], and anticancer [83, 84, 95, 96] activities. These findings indicate that mangiferin (41) may be a possible marker molecule for the antidiabetic activity of plants from the genus Salacia. Therefore, simultaneous quantitative determination of polyphenol constituents, including mangiferin (41), by LC–MS was performed to further evaluated plants from the genus Salacia [97]. The results showed that the mangiferin (41) content in plants of the genus Salacia, such as S. reticulata, S. oblonga, and S. chinensis, from different regions were higher in the root part than in the corresponding stem part. Among the root part, the inner root bark was found to possess the richest content of mangiferin (41).

Safety profiles

Extracts from plants of the genus Salacia have been found to have good safety profiles in animal models, such as rats, mice, guinea pigs, and horses, and also in healthy adults, and in patients with borderline diabetes and type 2 diabetes [4, 98106]. Thus, no serious oral toxicity of Salacia extracts, such as aqueous extracts from S. reticulata and S. oblonga, has been observed following single-dose treatment in sub-chronic administration tests [4, 98105]. In addition, the extract from S. reticulata presented no mutagenicity [98], hepatotoxicity [103], antigenicity, or phototoxicity [104]. The S. chinensis extract was found to exert no reproductive toxicity in SD rats, even at a high dosage level [102]. In addition, Stohs and Ray (2015) stated that no adverse effects have been reported in studies evaluating the safety of Salacia extracts in humans [4]. We performed two randomized double-blind placebo-controlled trials to evaluate the safety of long-term and excessive intake of the hot water extract of S. chinensis [106]. The subjects were healthy or had borderline diabetes with fasted blood glucose levels of 100–125 mg/dL. For the long-term intake study, 42 subjects were divided into a test group and a placebo group, and administered three tablets [containing more than 0.221 mg of neokotalanol (4) per tablet] per day for 12 weeks. In the excess intake study, 41 subjects were given 15 tablets per day for 4 weeks under the same conditions. No adverse effects in terms of clinical parameters were observed in either trial, confirming the safety of long-term and excessive intake of S. chinensis extract [106].
We then evaluated the duration of the α-glucosidase inhibitory effect of SCE in a starch-preloaded model. Thus, starch-loaded rats for 0–120 min were administered SCE (75 mg/kg, p.o.) orally, and suppression of elevated blood glucose levels was subsequently observed. In the group subjected to 30 min pre-starch-loading, the increase in blood glucose level was significantly suppressed. However, no effect was observed in the group that was loaded with starch for more than 60 min before treatment, as shown in Fig. 11. Therefore, the suppressive effect of SCE against the increase in blood glucose was estimated to last for approximately 30 min after administration and then weakened over time [38].
Next, we evaluated the kinetics of the principal sulfoniums (14) in SCE following oral administration by examining (i) stability in an artificial gastric juice and (ii) bioavailability through the intestine using an in situ rat ligated intestinal loop model. We found that more than 96% of each sulfonium (14) survived following treatment at 37 °C for 1.0 h. Even after 3.0 h of treatment under the experimental conditions, more than 90% of survived, and the stability of these sulfoniums (14) in the artificial gastric juice was high [38]. Furthermore, these sulfoniums (14) were minimally absorbed in the small intestine [38]. Thus, these data indicated that the sulfoniums reached the small intestine following oral administration without being degraded by gastric juice, where they exerted inhibitory activity against α-glucosidase. In addition, most sulfoniums remained in the intestinal tract without being absorbed. Furthermore, SCE has no effects on reproductive outcomes in rats, even at the high dosage level of 2,000 mg/kg/day [102].

Clinical study

Clinical trials on the aqueous extract of S. reticulata have demonstrated that 5 min pre-treatment with the extract (200 mg) prior to sucrose (50 g) loading suppressed postprandial blood glucose elevation in human volunteers. [107]. Additionally, an extract-containing diet (240 mg/kg/day) fed to patients with mild type 2 diabetes for 6 weeks was found to exert inhibitory effects on fasting blood glucose levels, HbA1c, and BMI in a placebo-controlled and cross-over trial [108]. The aqueous extract was also found to be an effective and safe treatment for patients with type 2 diabetes in a double-blind randomized placebo-controlled cross-over study when administered as a herbal tea containing S. reticulata for 3 months [109]. Finally, the extract (500 mg/day for 6 weeks) was found to improve serum lipids and glycemic control in patients with prediabetes and mild-to-moderate hyperlipidemia in a double-blind placebo-controlled, randomized trial [110]. Clinical trials have also investigated the aqueous extract of S. oblonga, and found it to possess suppressive effects at 500–1000 mg on postprandial plasma glucose and insulin AUC values in healthy adults [111, 112]. In addition, at 240 and 480 mg, the extract was found to possess inhibitory effects on postprandial glycemia and insulinemia in patients with type 2 diabetes after ingestion of a high-carbohydrate meal [113]. To verify the clinical effectiveness of S. chinensis, we evaluated the suppressive effect of SCE on postprandial hyperglycemia in human subjects. This randomized double-blind and cross-over trial was performed in 32 human volunteers with borderline diabetes and fasting blood glucose levels between 100 and 125 mg/dL. Single-dose intake of a tablet containing 100 mg of SCE with 0.221 mg neokotalanol (4) followed by a rice diet (200 g: containing 69.4 g of carbohydrate, 302 kcal) significantly suppressed the increase in postprandial blood glucose levels 30 min after a meal compared with the placebo. In addition, the AUC for blood glucose and serum insulin levels up to 3 h in SCE treatment group were also significantly lower than those in the placebo group [114]. Furthermore, in a placebo-controlled, randomized, double-blind cross-over trial, we recently confirmed the dose-dependent suppression of postprandial hyperglycemia, and improvement of blood glucose parameters following a single-dose of SCE (150, 300, or 600 mg). Additionally, in a placebo-controlled, randomized double-blind trial, we demonstrated that 12-week ingestion of SCE (600 mg before each of three meals daily) improved parameters related to blood glucose, such as HbA1c, glycoalbumin, and 1,5-anhydro-d-glucitol levels, and glucose tolerance after a glucose challenge [115].

Conclusion

Since safety profiles and clinical findings associated with the antidiabetic effects of genus Salacia plants have been reported, several Salacia-containing products, which contribute to the regulation of postprandial blood glucose elevation, have been approved as FOSHU or notified as an FFC to the Consumer Affairs Agency in Japan. The evidence discussed above for the antidiabetic effects of plants from the genus Salacia may have contributed to the development of these functional foods. Furthermore, we hope that additional research on the genus Salacia as beneficial plant resources for the prevention and early treatment of diabetes, and also on their thiosugar sulfonium constituents, such as salacinol (1) and neokotalanol (4), will attract attention to these plants as promising candidates for a new class of antidiabetic agents in the future.

Acknowledgements

This work was supported in part by the 'High-Tech Research Center' Project for Private Universities: a matching fund subsidy from MEXT (Ministry of Education, Culture, Sports, Science and Technology), 2007–2011 (T.M. and O.M.), an MEXT-Supported Program for the Strategic Research Foundation at Private Universities, 2014–2018, S1411037 (T.M.), and JSPS KAKENHI, Japan [Grant Numbers 16K08313 (O.M.), 18K06726 (T.M.)]. The authors thank the Division of Joint Research Center of Kindai University for performing the NMR and MS measurements. We would like to thank Editage (www.​editage.​com) for English language editing.

Declarations

Conflict of interest

The authors declare no conflict of interest.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
2.
Zurück zum Zitat Matsuda H, Yoshikawa M, Morikawa T, Tanabe G, Muraoka O (2005) Antidiabetogenic constituents from Salacia species. J Trad Med 22(Suppl. 1):145–153 Matsuda H, Yoshikawa M, Morikawa T, Tanabe G, Muraoka O (2005) Antidiabetogenic constituents from Salacia species. J Trad Med 22(Suppl. 1):145–153
4.
Zurück zum Zitat Stohs SJ, Ray S (2015) Anti-diabetic and anti-hyperlipidemic effects and safety of Salacia reticulata and related species. Phytother Res 29:986–995PubMedPubMedCentralCrossRef Stohs SJ, Ray S (2015) Anti-diabetic and anti-hyperlipidemic effects and safety of Salacia reticulata and related species. Phytother Res 29:986–995PubMedPubMedCentralCrossRef
5.
Zurück zum Zitat Musini A, Giri A (2015) Salacia oblonga wall: an endangered plant of immenses pharmaceutical value. J Chem Pharm Res 7:1125–1129 Musini A, Giri A (2015) Salacia oblonga wall: an endangered plant of immenses pharmaceutical value. J Chem Pharm Res 7:1125–1129
6.
Zurück zum Zitat Kushwaha PS, Singh AK, Keshari AK, Maity S, Saha S (2016) An updated review on the phytochemistry, pharmacology, and clinical trials of Salacia oblonga. Pharmacogn Rev 10:109–114PubMedPubMedCentralCrossRef Kushwaha PS, Singh AK, Keshari AK, Maity S, Saha S (2016) An updated review on the phytochemistry, pharmacology, and clinical trials of Salacia oblonga. Pharmacogn Rev 10:109–114PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Matsuda H, Morikawa T, Yoshikawa M (2002) Antidiabetogenic constituents from several natural medicines. Pure Appl Chem 74:1301–1308CrossRef Matsuda H, Morikawa T, Yoshikawa M (2002) Antidiabetogenic constituents from several natural medicines. Pure Appl Chem 74:1301–1308CrossRef
8.
Zurück zum Zitat Chandrasena JPC (1935) The chemistry and pharmacology of Ceylon and Indian medicinal plants. H&C Press, Colombo Chandrasena JPC (1935) The chemistry and pharmacology of Ceylon and Indian medicinal plants. H&C Press, Colombo
9.
Zurück zum Zitat Jayaweera DMA (1981) Medicinal plants used in ceylon part 1. National Science Council of Sri Lanka, Colombo, p 77 Jayaweera DMA (1981) Medicinal plants used in ceylon part 1. National Science Council of Sri Lanka, Colombo, p 77
10.
Zurück zum Zitat Vaidyaratnam PS (1996) Indian medicinal plants: a compendium of 500 species. In: Warrier PK, Nambiar VPK, Ramankutty C, (Eds.), Orient Longman, Madras, India, pp. 47–48 Vaidyaratnam PS (1996) Indian medicinal plants: a compendium of 500 species. In: Warrier PK, Nambiar VPK, Ramankutty C, (Eds.), Orient Longman, Madras, India, pp. 47–48
11.
Zurück zum Zitat Chuakul W, Saralamp P, Paonil W, Temsiririkkul R, Clayton T (1997) Medicinal plants in Thailand (volume II). Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, pp 192–193 Chuakul W, Saralamp P, Paonil W, Temsiririkkul R, Clayton T (1997) Medicinal plants in Thailand (volume II). Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, Bangkok, pp 192–193
12.
Zurück zum Zitat Karunanayake EH, Welihinda J, Sirimanne SR, Sinnadorai G (1984) Oral hypoglycaemic activity of some medicinal plants of Sri Lanka. J Ethnopharmacol 11:223–231PubMedCrossRef Karunanayake EH, Welihinda J, Sirimanne SR, Sinnadorai G (1984) Oral hypoglycaemic activity of some medicinal plants of Sri Lanka. J Ethnopharmacol 11:223–231PubMedCrossRef
13.
Zurück zum Zitat Serasinghe S, Sirasinghe P, Yamazaki H, Nishiguchi K, Hombhanje F, Nakanishi S, Sewa K, Hattori M, Namba T (1990) Oral hypoglycemic effect of Salacia reticulata in the streptozotocin-induced diabetic rat. Phytother Res 4:205–206CrossRef Serasinghe S, Sirasinghe P, Yamazaki H, Nishiguchi K, Hombhanje F, Nakanishi S, Sewa K, Hattori M, Namba T (1990) Oral hypoglycemic effect of Salacia reticulata in the streptozotocin-induced diabetic rat. Phytother Res 4:205–206CrossRef
14.
Zurück zum Zitat Augusti KT, Joseph P, Babu TD (1995) Biologically active principles isolated from Salacia oblonga Wall. Indian J Physiol Pharmacol 39:415–417PubMed Augusti KT, Joseph P, Babu TD (1995) Biologically active principles isolated from Salacia oblonga Wall. Indian J Physiol Pharmacol 39:415–417PubMed
15.
Zurück zum Zitat Pillai NR, Seshadri C, Santhakumari C (1979) Hypoglycaemic activity of the root bark of Salacia prinoides. Indian J Exp Biol 17:1279–1280PubMed Pillai NR, Seshadri C, Santhakumari C (1979) Hypoglycaemic activity of the root bark of Salacia prinoides. Indian J Exp Biol 17:1279–1280PubMed
17.
Zurück zum Zitat Dash RP, Babu RJ, Srinivas NR (2018) Reappraisal and perspectives of clinical drug-drug interaction potential of a-glucosidase inhibitors such as acarbose, voglibose and miglitol in the treatment of type 2 diabetes mellitus. Xenobiotica 48:89–108PubMedCrossRef Dash RP, Babu RJ, Srinivas NR (2018) Reappraisal and perspectives of clinical drug-drug interaction potential of a-glucosidase inhibitors such as acarbose, voglibose and miglitol in the treatment of type 2 diabetes mellitus. Xenobiotica 48:89–108PubMedCrossRef
18.
Zurück zum Zitat Ríos JL, Francini F, Schinella GR (2015) Natural products for the treatment of type 2 diabetes mellitus. Plant Med 81:975–994CrossRef Ríos JL, Francini F, Schinella GR (2015) Natural products for the treatment of type 2 diabetes mellitus. Plant Med 81:975–994CrossRef
19.
Zurück zum Zitat Yoshikawa M, Shimada H, Morikawa T, Yoshizumi S, Matsumura N, Murakami T, Matsuda H, Hori K, Yamahara J (1997) Medicinal foodstuffs. VII. On the saponin constituents with glucose and alcohol absorption-inhibitory activity from a food garnish “tonburi”, the fruit of Japanese Kochia scoparia (L.) Schrad.: structures of scoparianosides A, B, and C. Chem Pharm Bull 45:1300–1305CrossRef Yoshikawa M, Shimada H, Morikawa T, Yoshizumi S, Matsumura N, Murakami T, Matsuda H, Hori K, Yamahara J (1997) Medicinal foodstuffs. VII. On the saponin constituents with glucose and alcohol absorption-inhibitory activity from a food garnish “tonburi”, the fruit of Japanese Kochia scoparia (L.) Schrad.: structures of scoparianosides A, B, and C. Chem Pharm Bull 45:1300–1305CrossRef
20.
Zurück zum Zitat Yoshikawa M, Xu F, Morikawa T, Pongpiriyadacha Y, Nakamura S, Asao Y, Kumahara A, Matsuda H (2007) Medicinal foodstuffs. XII. New spirostane-type steroid saponins with antidiabetogenic activity from Borassus flabellifer. Chem Pharm Bull 55:308–316CrossRef Yoshikawa M, Xu F, Morikawa T, Pongpiriyadacha Y, Nakamura S, Asao Y, Kumahara A, Matsuda H (2007) Medicinal foodstuffs. XII. New spirostane-type steroid saponins with antidiabetogenic activity from Borassus flabellifer. Chem Pharm Bull 55:308–316CrossRef
21.
Zurück zum Zitat Yoshikawa M, Nakamura S, Ozaki K, Kumahara A, Morikawa T, Matsuda H (2007) Structures of steroid alkaloid oligoglycosides, robeneosides A and B, and antidiabetogenic constituents from the Brazilian medicinal plant Solanum lycocarpum. J Nat Prod 70:210–214PubMedCrossRef Yoshikawa M, Nakamura S, Ozaki K, Kumahara A, Morikawa T, Matsuda H (2007) Structures of steroid alkaloid oligoglycosides, robeneosides A and B, and antidiabetogenic constituents from the Brazilian medicinal plant Solanum lycocarpum. J Nat Prod 70:210–214PubMedCrossRef
22.
Zurück zum Zitat Yoshikawa M, Wang T, Morikawa T, Xie H, Matsuda H (2007) Bioactive constituents from Chinese natural medicines. XXIV. Hypoglycemic effects of Sinocrassula indica in sugar-loaded rats and genetically diabetic KK-Ay mice and structures of new acylated flavonol glycosides, sinocrassosides A1, A2, B1, and B2. Chem Pharm Bull 55:1308–1315CrossRef Yoshikawa M, Wang T, Morikawa T, Xie H, Matsuda H (2007) Bioactive constituents from Chinese natural medicines. XXIV. Hypoglycemic effects of Sinocrassula indica in sugar-loaded rats and genetically diabetic KK-Ay mice and structures of new acylated flavonol glycosides, sinocrassosides A1, A2, B1, and B2. Chem Pharm Bull 55:1308–1315CrossRef
23.
Zurück zum Zitat Morikawa T, Chaipech S, Matsuda H, Hamao M, Umeda Y, Sato H, Tamura H, Kon’i H, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Antidiabetogenic oligstilbenoids and 3-ethyl-4-phynyl-3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorg Med Chem 20:832–840PubMedCrossRef Morikawa T, Chaipech S, Matsuda H, Hamao M, Umeda Y, Sato H, Tamura H, Kon’i H, Ninomiya K, Yoshikawa M, Pongpiriyadacha Y, Hayakawa T, Muraoka O (2012) Antidiabetogenic oligstilbenoids and 3-ethyl-4-phynyl-3,4-dihydroisocoumarins from the bark of Shorea roxburghii. Bioorg Med Chem 20:832–840PubMedCrossRef
24.
Zurück zum Zitat Morikawa T, Ninomiya K, Imamura M, Akaki J, Fujikura S, Pan Y, Yuan D, Yoshikawa M, Jia X, Li Z, Muraoka O (2014) Acylated phenylethanoid glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice. J Nat Med 68:561–566PubMedCrossRef Morikawa T, Ninomiya K, Imamura M, Akaki J, Fujikura S, Pan Y, Yuan D, Yoshikawa M, Jia X, Li Z, Muraoka O (2014) Acylated phenylethanoid glycosides, echinacoside and acteoside from Cistanche tubulosa, improve glucose tolerance in mice. J Nat Med 68:561–566PubMedCrossRef
25.
Zurück zum Zitat Morikawa T, Xie H, Pan Y, Ninomiya K, Yuan D, Jia X, Yoshikawa M, Nakamura S, Matsuda H, Muraoka O (2019) A review of biologically active natural products from a desert plant Cistance tubulosa. Chem Pharm Bull 67:675–689CrossRef Morikawa T, Xie H, Pan Y, Ninomiya K, Yuan D, Jia X, Yoshikawa M, Nakamura S, Matsuda H, Muraoka O (2019) A review of biologically active natural products from a desert plant Cistance tubulosa. Chem Pharm Bull 67:675–689CrossRef
26.
Zurück zum Zitat Morikawa T, Ninomiya K, Akaki J, Kakihara N, Kuramoto H, Matsumoto Y, Hayakawa T, Muraoka O, Wang LB, Wu LJ, Nakamura S, Yoshikawa M, Matsuda H (2015) Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrichalcone glycosides from flowers of Helichrysum arenarium. J Nat Med 69:494–506PubMedPubMedCentralCrossRef Morikawa T, Ninomiya K, Akaki J, Kakihara N, Kuramoto H, Matsumoto Y, Hayakawa T, Muraoka O, Wang LB, Wu LJ, Nakamura S, Yoshikawa M, Matsuda H (2015) Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrichalcone glycosides from flowers of Helichrysum arenarium. J Nat Med 69:494–506PubMedPubMedCentralCrossRef
27.
Zurück zum Zitat Yoshikawa M, Murakami T, Shimada H, Matsuda H, Yamahara J, Tanabe G, Muraoka O (1997) Salacinol, potent antidiabetic principle with unique thiosugar sulfonium sulfate structure from the Ayurvedic traditional medicine Salacia reticulata in Sri Lankan and India. Tetrahedron Lett 48:8367–8370CrossRef Yoshikawa M, Murakami T, Shimada H, Matsuda H, Yamahara J, Tanabe G, Muraoka O (1997) Salacinol, potent antidiabetic principle with unique thiosugar sulfonium sulfate structure from the Ayurvedic traditional medicine Salacia reticulata in Sri Lankan and India. Tetrahedron Lett 48:8367–8370CrossRef
28.
Zurück zum Zitat Yoshikawa M, Morikawa T, Matsuda H, Tanabe G, Muraoka O (2002) Absolute stereostructure of potent α-glucosidase inhibitor, salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata. Bioorg Med Chem 10:1547–1554PubMedCrossRef Yoshikawa M, Morikawa T, Matsuda H, Tanabe G, Muraoka O (2002) Absolute stereostructure of potent α-glucosidase inhibitor, salacinol, with unique thiosugar sulfonium sulfate inner salt structure from Salacia reticulata. Bioorg Med Chem 10:1547–1554PubMedCrossRef
29.
Zurück zum Zitat Yoshikawa M, Murakami T, Yashiro K, Matsuda H (1998) Kotalanol, a potent a-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic Ayurvedic medicine Salacia reticulata. Chem Pharm Bull 46:1339–1340CrossRef Yoshikawa M, Murakami T, Yashiro K, Matsuda H (1998) Kotalanol, a potent a-glucosidase inhibitor with thiosugar sulfonium sulfate structure, from antidiabetic Ayurvedic medicine Salacia reticulata. Chem Pharm Bull 46:1339–1340CrossRef
30.
Zurück zum Zitat Muraoka O, Xie W, Osaki S, Kagawa A, Tanabe G, Amer MFA, Minematsu T, Morikawa T, Yoshikawa M (2010) Characteristic alkaline catalyzed degradation of kotalanol, a potent α-glucosidase inhibitor isolated from Ayurvedic medicine Salacia reticulata, leading to anhydroheptitols: another structural proof. Thtrahedron 66:3717–3722CrossRef Muraoka O, Xie W, Osaki S, Kagawa A, Tanabe G, Amer MFA, Minematsu T, Morikawa T, Yoshikawa M (2010) Characteristic alkaline catalyzed degradation of kotalanol, a potent α-glucosidase inhibitor isolated from Ayurvedic medicine Salacia reticulata, leading to anhydroheptitols: another structural proof. Thtrahedron 66:3717–3722CrossRef
31.
Zurück zum Zitat Capon RJ, MacLeod JK (1987) 5-Thio-D-mannose from the marine sponge Clathria pyramida (Lendenfeld). The first example of a naturally occurring 5-thiosugar. Chem Commun 1987:1200–1201CrossRef Capon RJ, MacLeod JK (1987) 5-Thio-D-mannose from the marine sponge Clathria pyramida (Lendenfeld). The first example of a naturally occurring 5-thiosugar. Chem Commun 1987:1200–1201CrossRef
32.
Zurück zum Zitat Matsuda H, Murakami T, Yashiro K, Yamahara J, Yoshikawa M (1999) Antidiabetic principles of natural medicines. IV. Aldose reductase and a-glucosidase inhibitors from the roots of Salacia oblonga Wall. (Celastraceae): structure of a new friedelane-type triterpene, kotalagenin 16-acetate. Chem Pharm Bull 47:1725–1729CrossRef Matsuda H, Murakami T, Yashiro K, Yamahara J, Yoshikawa M (1999) Antidiabetic principles of natural medicines. IV. Aldose reductase and a-glucosidase inhibitors from the roots of Salacia oblonga Wall. (Celastraceae): structure of a new friedelane-type triterpene, kotalagenin 16-acetate. Chem Pharm Bull 47:1725–1729CrossRef
33.
Zurück zum Zitat Yoshikawa M, Xu F, Nakamura S, Wang T, Matsuda H, Tanabe G, Muraoka O (2008) Salaprinol and ponkoranol with thiosugar sulfate structure from Salacia prinoides and α-glucosidase inhibitory activity of ponkoranol and kotalanol desulfate. Heterocycles 75:1397–1405CrossRef Yoshikawa M, Xu F, Nakamura S, Wang T, Matsuda H, Tanabe G, Muraoka O (2008) Salaprinol and ponkoranol with thiosugar sulfate structure from Salacia prinoides and α-glucosidase inhibitory activity of ponkoranol and kotalanol desulfate. Heterocycles 75:1397–1405CrossRef
34.
Zurück zum Zitat Muraoka O, Morikawa T, Miyake S, Akaki J, Ninomiya K, Yoshikawa M (2010) Quantitative determination of potent α-glucosidase inhibitors, salacinol and kotalanol, in Salacia species using liquid chromatography-mass spectrometry. J Pharm Biomed Anal 52:770–773PubMedCrossRef Muraoka O, Morikawa T, Miyake S, Akaki J, Ninomiya K, Yoshikawa M (2010) Quantitative determination of potent α-glucosidase inhibitors, salacinol and kotalanol, in Salacia species using liquid chromatography-mass spectrometry. J Pharm Biomed Anal 52:770–773PubMedCrossRef
35.
Zurück zum Zitat Muraoka O, Morikawa T, Miyake S, Akaki J, Ninomiya K, Pongpiriyadacha Y, Yoshikawa M (2011) Quantitative analysis of neosalacinol and neokotalanol, another two potent α-glucosidase inhibitors from Salacia species, by LC-MS with ion pair chromatography. J Nat Med 65:142–148PubMedCrossRef Muraoka O, Morikawa T, Miyake S, Akaki J, Ninomiya K, Pongpiriyadacha Y, Yoshikawa M (2011) Quantitative analysis of neosalacinol and neokotalanol, another two potent α-glucosidase inhibitors from Salacia species, by LC-MS with ion pair chromatography. J Nat Med 65:142–148PubMedCrossRef
36.
Zurück zum Zitat Xie W, Tanabe G, Akaki J, Morikawa T, Ninomiya K, Minematsu T, Yoshikawa M, Wu X, Muraoka O (2011) Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors. Bioorg Med Chem 19:2015–2022PubMedCrossRef Xie W, Tanabe G, Akaki J, Morikawa T, Ninomiya K, Minematsu T, Yoshikawa M, Wu X, Muraoka O (2011) Isolation, structure identification and SAR studies on thiosugar sulfonium salts, neosalaprinol and neoponkoranol, as potent α-glucosidase inhibitors. Bioorg Med Chem 19:2015–2022PubMedCrossRef
37.
Zurück zum Zitat Akaki J, Morikawa T, Miyake S, Ninomiya K, Okada M, Tanabe G, Pongpiriyadacha Y, Yoshikawa M, Muraoka O (2014) Evaluation of Salacia species as anti-diabetic natural resources based on quantitative analysis of eight sulphonium constituents: a new class of α-glucosidase inhibitors. Phytochem Anal 25:544–550PubMedCrossRef Akaki J, Morikawa T, Miyake S, Ninomiya K, Okada M, Tanabe G, Pongpiriyadacha Y, Yoshikawa M, Muraoka O (2014) Evaluation of Salacia species as anti-diabetic natural resources based on quantitative analysis of eight sulphonium constituents: a new class of α-glucosidase inhibitors. Phytochem Anal 25:544–550PubMedCrossRef
38.
Zurück zum Zitat Morikawa T, Akaki J, Ninomiya K, Kinouchi E, Tanabe G, Pongpiriyadacha Y, Yoshikawa M, Muraoka O (2015) Salacinol and related analogs: new leads for type 2 diabetes therapeutic candidate from the Thai traditional natural medicine Salacia chinensis. Neutrients 7:1480–1493CrossRef Morikawa T, Akaki J, Ninomiya K, Kinouchi E, Tanabe G, Pongpiriyadacha Y, Yoshikawa M, Muraoka O (2015) Salacinol and related analogs: new leads for type 2 diabetes therapeutic candidate from the Thai traditional natural medicine Salacia chinensis. Neutrients 7:1480–1493CrossRef
39.
Zurück zum Zitat Yuasa H, Takada J, Hashimoto H (2000) Synthesis of salacinol. Tetrahedron Lett 41:6615–6618CrossRef Yuasa H, Takada J, Hashimoto H (2000) Synthesis of salacinol. Tetrahedron Lett 41:6615–6618CrossRef
40.
Zurück zum Zitat Ghavami A, Johnston BD, Pinto BM (2001) A new class of glycosidase inhibitor: synthesis of salacinol and its stereoisomers. J Org Chem 66:2312–2317PubMedCrossRef Ghavami A, Johnston BD, Pinto BM (2001) A new class of glycosidase inhibitor: synthesis of salacinol and its stereoisomers. J Org Chem 66:2312–2317PubMedCrossRef
41.
Zurück zum Zitat Johnston BD, Ghavami A, Jensen MT, Svensson B, Pinto BM (2002) Synthesis of selenium analogues of the naturally occurring glycosidase inhibitor salacinol and their evaluation as glycosidase inhibitors. J Am Chem Soc 124:8245–8250PubMedCrossRef Johnston BD, Ghavami A, Jensen MT, Svensson B, Pinto BM (2002) Synthesis of selenium analogues of the naturally occurring glycosidase inhibitor salacinol and their evaluation as glycosidase inhibitors. J Am Chem Soc 124:8245–8250PubMedCrossRef
42.
Zurück zum Zitat Ghavami A, Sadalapure KS, Johnston BD, Lobera M, Snider BB, Pinto BM (2003) Improved syntheses of the naturally occurring glycosidase inhibitor salacinol. Synlett 9:1259–1262 Ghavami A, Sadalapure KS, Johnston BD, Lobera M, Snider BB, Pinto BM (2003) Improved syntheses of the naturally occurring glycosidase inhibitor salacinol. Synlett 9:1259–1262
43.
Zurück zum Zitat Johnston BD, Jensen HH, Pinto BM (2006) Synthesis of sulfonium sulfate analogues of disaccharides and their conversion to chain-extended homologues of salacinol: new glycosidase inhibitors. J Org Chem 71:1111–1118PubMedCrossRef Johnston BD, Jensen HH, Pinto BM (2006) Synthesis of sulfonium sulfate analogues of disaccharides and their conversion to chain-extended homologues of salacinol: new glycosidase inhibitors. J Org Chem 71:1111–1118PubMedCrossRef
44.
Zurück zum Zitat Ravindranath HL, Nasi R, Jayakanthan K, Kumarasamy N, Sim JL, Heipel H, Rose DR, Pinto BM (2007) New synthetic routes to chain-extended selenium, sulfer, and nitrogen analogues of the naturally occurring glucosidase inhibitor salacinol and their inhibitory activities against recombinant human maltase glucoamylase. J Org Chem 72:6562–6572CrossRef Ravindranath HL, Nasi R, Jayakanthan K, Kumarasamy N, Sim JL, Heipel H, Rose DR, Pinto BM (2007) New synthetic routes to chain-extended selenium, sulfer, and nitrogen analogues of the naturally occurring glucosidase inhibitor salacinol and their inhibitory activities against recombinant human maltase glucoamylase. J Org Chem 72:6562–6572CrossRef
45.
Zurück zum Zitat Mohan S, Pinto BM (2007) Zwitterionic glycosidase inhibitors: salacinol and related analogues. Carbohydr Res 342:1551–1580PubMedCrossRef Mohan S, Pinto BM (2007) Zwitterionic glycosidase inhibitors: salacinol and related analogues. Carbohydr Res 342:1551–1580PubMedCrossRef
46.
Zurück zum Zitat Nasi R, Patrick BO, Sim L, Rose DR, Pinto BM (2008) Studies directed toward the stereochemical structure determination of the naturally occurring glucosidase inhibitor, kotalanol: synthesis and inhibitory activities against human maltase glucoamylase of seven-carbon, chain-extended homologues of salacinol. J Org Chem 73:6172–6181PubMedCrossRef Nasi R, Patrick BO, Sim L, Rose DR, Pinto BM (2008) Studies directed toward the stereochemical structure determination of the naturally occurring glucosidase inhibitor, kotalanol: synthesis and inhibitory activities against human maltase glucoamylase of seven-carbon, chain-extended homologues of salacinol. J Org Chem 73:6172–6181PubMedCrossRef
47.
Zurück zum Zitat Jayakanthan K, Mohan S, Pinto BM (2009) Structure proof and synthesis of kotalanol and de-O-sulfonated kotalanol, glycosidase inhibitors isolated from an herbal remedy for the treatment of type-2 diabetes. J Am Chem Soc 131:5621–5626PubMedCrossRef Jayakanthan K, Mohan S, Pinto BM (2009) Structure proof and synthesis of kotalanol and de-O-sulfonated kotalanol, glycosidase inhibitors isolated from an herbal remedy for the treatment of type-2 diabetes. J Am Chem Soc 131:5621–5626PubMedCrossRef
48.
Zurück zum Zitat Mohan S, Pinto BM (2009) Sulfonium-ion glycosidase inhibitors isolated from Salacia species used in traditional medicine, and related compounds. Collect Czech Chem Commun 74:1117–1136CrossRef Mohan S, Pinto BM (2009) Sulfonium-ion glycosidase inhibitors isolated from Salacia species used in traditional medicine, and related compounds. Collect Czech Chem Commun 74:1117–1136CrossRef
49.
Zurück zum Zitat Mohan S, Pinto BM (2010) Towards the elusive structure of kotalanol, a naturally occurring glucosidase inhibitor. Nat Prod Rep 27:481–488PubMedCrossRef Mohan S, Pinto BM (2010) Towards the elusive structure of kotalanol, a naturally occurring glucosidase inhibitor. Nat Prod Rep 27:481–488PubMedCrossRef
50.
Zurück zum Zitat Sim L, Jayakanthan K, Mohan S, Nasi R, Johnston BD, Pinto BM, Rose DR (2010) New glucosidase inhibitors from an Ayurvedic herbal treatment for type-2 diabetes: structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata. Biochemistry 49:443–451PubMedCrossRef Sim L, Jayakanthan K, Mohan S, Nasi R, Johnston BD, Pinto BM, Rose DR (2010) New glucosidase inhibitors from an Ayurvedic herbal treatment for type-2 diabetes: structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata. Biochemistry 49:443–451PubMedCrossRef
51.
Zurück zum Zitat Eskandari R, Jayakanthan K, Kuntz DA, Rose DR, Pinto BM (2010) Synthesis of a biologically active isomer of kotalanol, a naturally occurring glucosidase inhibitor. Bioorg Med Chem 18:2829–2835PubMedCrossRef Eskandari R, Jayakanthan K, Kuntz DA, Rose DR, Pinto BM (2010) Synthesis of a biologically active isomer of kotalanol, a naturally occurring glucosidase inhibitor. Bioorg Med Chem 18:2829–2835PubMedCrossRef
52.
Zurück zum Zitat Eskandari R, Kuntz DA, Rose DR, Pinto BM (2010) Potent glucosidase inhibitors: de-O-sulfonated ponkoranol and its stereoisomer. Org Lett 12:1632–1635PubMedCrossRef Eskandari R, Kuntz DA, Rose DR, Pinto BM (2010) Potent glucosidase inhibitors: de-O-sulfonated ponkoranol and its stereoisomer. Org Lett 12:1632–1635PubMedCrossRef
53.
Zurück zum Zitat Eskandari R, Jones K, Rose DR, Pinto BM (2011) The effect of heteroatom substitution of sulfur for selenium in glucosidase inhibitors on intestinal α-glucosidase activities. Chem Commun 47:9134–9136CrossRef Eskandari R, Jones K, Rose DR, Pinto BM (2011) The effect of heteroatom substitution of sulfur for selenium in glucosidase inhibitors on intestinal α-glucosidase activities. Chem Commun 47:9134–9136CrossRef
54.
Zurück zum Zitat Mohan S, Eskandari R, Pinto BM (2014) Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents. Acc Chem Res 47:211–225PubMedCrossRef Mohan S, Eskandari R, Pinto BM (2014) Naturally occurring sulfonium-ion glucosidase inhibitors and their derivatives: a promising class of potential antidiabetic agents. Acc Chem Res 47:211–225PubMedCrossRef
55.
Zurück zum Zitat Bagri P, Chester K, Khan W, Ahmad S (2017) Aspects of extraction and biological evaluation of naturally occurring sugar-mimicking sulfonium-ion and their synthetic analogues as potent α-glucosidase inhibitors from Salacia: a review. RSC Adv 7:28152–28187CrossRef Bagri P, Chester K, Khan W, Ahmad S (2017) Aspects of extraction and biological evaluation of naturally occurring sugar-mimicking sulfonium-ion and their synthetic analogues as potent α-glucosidase inhibitors from Salacia: a review. RSC Adv 7:28152–28187CrossRef
56.
Zurück zum Zitat Xie W, Tanabe G, Xu J, Wu X, Morikawa T, Yoshikawa M, Muraoka O (2013) Research progress of synthesis and structure-activity relationship studies on sulfonium-type α-glucosidase inhibitors isolated from Salacia genus plants. Min Rev Org Chem 10:141–159CrossRef Xie W, Tanabe G, Xu J, Wu X, Morikawa T, Yoshikawa M, Muraoka O (2013) Research progress of synthesis and structure-activity relationship studies on sulfonium-type α-glucosidase inhibitors isolated from Salacia genus plants. Min Rev Org Chem 10:141–159CrossRef
57.
Zurück zum Zitat Nakamura S, Takahira K, Tanabe G, Morikawa T, Sakano M, Ninomiya K, Yoshikawa M, Muraoka O, Nakanishi I (2010) Docking and SAR studies of salacinol derivatives as α-glucosidase inhibitors. Bioorg Med Chem Lett 20:4420–4423PubMedCrossRef Nakamura S, Takahira K, Tanabe G, Morikawa T, Sakano M, Ninomiya K, Yoshikawa M, Muraoka O, Nakanishi I (2010) Docking and SAR studies of salacinol derivatives as α-glucosidase inhibitors. Bioorg Med Chem Lett 20:4420–4423PubMedCrossRef
58.
Zurück zum Zitat Tanabe G, Nakamura S, Tsutsui N, Balakishan G, Xie W, Tsuchiya S, Akaki J, Morikawa T, Ninomiya K, Nakanishi I, Yoshikawa M, Muraoka O (2012) In silico design, synthesis and evaluation of 3’-O-benzylated analogs of salacinol, a potent α-glucosidase inhibitor isolated from an Ayurvedic traditional medicine “Salacia”. Chem Commun 48:8646–8648CrossRef Tanabe G, Nakamura S, Tsutsui N, Balakishan G, Xie W, Tsuchiya S, Akaki J, Morikawa T, Ninomiya K, Nakanishi I, Yoshikawa M, Muraoka O (2012) In silico design, synthesis and evaluation of 3’-O-benzylated analogs of salacinol, a potent α-glucosidase inhibitor isolated from an Ayurvedic traditional medicine “Salacia”. Chem Commun 48:8646–8648CrossRef
59.
Zurück zum Zitat Tanabe G, Xie W, Balakishan G, Amer MFA, Tsutsui N, Takemura H, Nakamura S, Akaki J, Ninomiya K, Morikawa T, Nakanishi I, Muraoka O (2016) Hydrophobic substituents increase the potency of salacinol, a potent α-glucosidase inhibitor from Ayurvedic traditional medicine ‘Salacia’. Bioorg Med Chem 24:3705–3715PubMedCrossRef Tanabe G, Xie W, Balakishan G, Amer MFA, Tsutsui N, Takemura H, Nakamura S, Akaki J, Ninomiya K, Morikawa T, Nakanishi I, Muraoka O (2016) Hydrophobic substituents increase the potency of salacinol, a potent α-glucosidase inhibitor from Ayurvedic traditional medicine ‘Salacia’. Bioorg Med Chem 24:3705–3715PubMedCrossRef
60.
Zurück zum Zitat Ishikawa F, Jinno K, Kinouchi E, Ninomiya K, Marumoto S, Xie W, Muraoka O, Morikawa T, Tanabe G (2018) Diastereoselective synthesis of salacinol-type α-glucosidase inhibitors. J Org Chem 83:185–193PubMedCrossRef Ishikawa F, Jinno K, Kinouchi E, Ninomiya K, Marumoto S, Xie W, Muraoka O, Morikawa T, Tanabe G (2018) Diastereoselective synthesis of salacinol-type α-glucosidase inhibitors. J Org Chem 83:185–193PubMedCrossRef
61.
Zurück zum Zitat Takashima K, Sakano M, Kinouchi E, Nakamura S, Marumoto S, Ishikawa F, Ninomiya K, Nakanishi I, Morikawa T, Tanabe G (2021) Elongation of the side chain by linear alkyl groups increases the potency of salacinol, a potent α-glucosidase inhibitor from the Ayurvedic traditional medicine “Salacia”, against human intestinal maltase. Bioorg Med Chem Lett 33:127751PubMedCrossRef Takashima K, Sakano M, Kinouchi E, Nakamura S, Marumoto S, Ishikawa F, Ninomiya K, Nakanishi I, Morikawa T, Tanabe G (2021) Elongation of the side chain by linear alkyl groups increases the potency of salacinol, a potent α-glucosidase inhibitor from the Ayurvedic traditional medicine “Salacia”, against human intestinal maltase. Bioorg Med Chem Lett 33:127751PubMedCrossRef
62.
Zurück zum Zitat Ishikawa F, Hirano A, Yoshimori Y, Nishida K, Nakamura S, Takashima K, Marumoto S, Ninomiya K, Nakanishi I, Xie W, Morikawa T, Muraoka O, Tanabe G (2021) Ligand compatibility of salacinol-type α-glucosidase inhibitors toward the GH31 family. RSC Adv 11:3221–3225CrossRef Ishikawa F, Hirano A, Yoshimori Y, Nishida K, Nakamura S, Takashima K, Marumoto S, Ninomiya K, Nakanishi I, Xie W, Morikawa T, Muraoka O, Tanabe G (2021) Ligand compatibility of salacinol-type α-glucosidase inhibitors toward the GH31 family. RSC Adv 11:3221–3225CrossRef
63.
Zurück zum Zitat Yoshikawa M, Morikawa T, Murakami T, Toguchida I, Harima S, Matsuda H (1999) Medicinal flowers. I. aldose reductase inhibitors and three new eudesmane-type sesquiterpenes, kikkanols A, B, and C, from the flowers of Chrysanthemum indicum L. Chem Pharm Bull 47:340–345CrossRef Yoshikawa M, Morikawa T, Murakami T, Toguchida I, Harima S, Matsuda H (1999) Medicinal flowers. I. aldose reductase inhibitors and three new eudesmane-type sesquiterpenes, kikkanols A, B, and C, from the flowers of Chrysanthemum indicum L. Chem Pharm Bull 47:340–345CrossRef
64.
Zurück zum Zitat Matsuda H, Morikawa T, Ueda H, Yoshikawa M (2001) Medicinal foodstuffs. XXVI. Inhibitors of aldose reductase and new triterpene and its oligoglycoside, centellasapogenol A and centellasaponin A, from Centella asiatica (Gotu Kola). Heterocycles 55:1499–1504CrossRef Matsuda H, Morikawa T, Ueda H, Yoshikawa M (2001) Medicinal foodstuffs. XXVI. Inhibitors of aldose reductase and new triterpene and its oligoglycoside, centellasapogenol A and centellasaponin A, from Centella asiatica (Gotu Kola). Heterocycles 55:1499–1504CrossRef
65.
Zurück zum Zitat Matsuda H, Morikawa T, Toguchida I, Yoshikawa M (2002) Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull 50:788–795CrossRef Matsuda H, Morikawa T, Toguchida I, Yoshikawa M (2002) Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull 50:788–795CrossRef
66.
Zurück zum Zitat Matsuda H, Morikawa T, Toguchida I, Harima S, Yoshikawa M (2002) Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycosides from the flowers of Chrysanthemum indicum L.: their inhibitory activities of rat lens aldose reductase. Chem Pharm Bull 50:972–975CrossRef Matsuda H, Morikawa T, Toguchida I, Harima S, Yoshikawa M (2002) Medicinal flowers. VI. Absolute stereostructures of two new flavanone glycosides and a phenylbutanoid glycosides from the flowers of Chrysanthemum indicum L.: their inhibitory activities of rat lens aldose reductase. Chem Pharm Bull 50:972–975CrossRef
67.
Zurück zum Zitat Yoshikawa M, Murakami T, Ishiwada T, Morikawa T, Kagawa M, Higashi Y, Matsuda H (2002) New flavonol oligoglycosides and polyacylated sucroses with inhibitory effects on aldose reductase and platelet aggregation from the flowers of Prunus mume. J Nat Prod 65:1151–1155PubMedCrossRef Yoshikawa M, Murakami T, Ishiwada T, Morikawa T, Kagawa M, Higashi Y, Matsuda H (2002) New flavonol oligoglycosides and polyacylated sucroses with inhibitory effects on aldose reductase and platelet aggregation from the flowers of Prunus mume. J Nat Prod 65:1151–1155PubMedCrossRef
68.
Zurück zum Zitat Xie H, Wang T, Matsuda H, Morikawa T, Yoshikawa M, Tani T (2005) Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of saussureosides A and B from Saussurea medusa. Chem Pharm Bull 53:1416–1422CrossRef Xie H, Wang T, Matsuda H, Morikawa T, Yoshikawa M, Tani T (2005) Bioactive constituents from Chinese natural medicines. XV. Inhibitory effect on aldose reductase and structures of saussureosides A and B from Saussurea medusa. Chem Pharm Bull 53:1416–1422CrossRef
69.
Zurück zum Zitat Morikawa T, Xie H, Wang T, Matsuda H, Yoshikawa M (2008) Bioactive constituents from Chinese natural medicines. XXXII. Aminopeptidase N and aldose reductase inhibitors from Sinocrassula indica: structures of sinocrassosides B4, B5, C1, and D1–D3. Chem Pharm Bull 56:1438–1444CrossRef Morikawa T, Xie H, Wang T, Matsuda H, Yoshikawa M (2008) Bioactive constituents from Chinese natural medicines. XXXII. Aminopeptidase N and aldose reductase inhibitors from Sinocrassula indica: structures of sinocrassosides B4, B5, C1, and D1–D3. Chem Pharm Bull 56:1438–1444CrossRef
70.
Zurück zum Zitat Yoshikawa M, Nishida N, Shimoda H, Takada M, Kawahara Y, Matsuda H (2001) Polyphenol constituents from Salacia species: quantitative analysis of mangiferin with α-glucosidase and aldose reductase inhibitory activity. Yakugaku Zasshi 121:371–378PubMedCrossRef Yoshikawa M, Nishida N, Shimoda H, Takada M, Kawahara Y, Matsuda H (2001) Polyphenol constituents from Salacia species: quantitative analysis of mangiferin with α-glucosidase and aldose reductase inhibitory activity. Yakugaku Zasshi 121:371–378PubMedCrossRef
71.
Zurück zum Zitat Yoshikawa M, Pongpiriyadacha Y, Kishi A, Kageura T, Wang T, Morikawa T, Matsuda H (2003) Biological activities of Salacia chinensis originating in Thailand: the quality evaluation guided by α-glucosidase inhibitory activity. Yakugaku Zasshi 123:871–880PubMedCrossRef Yoshikawa M, Pongpiriyadacha Y, Kishi A, Kageura T, Wang T, Morikawa T, Matsuda H (2003) Biological activities of Salacia chinensis originating in Thailand: the quality evaluation guided by α-glucosidase inhibitory activity. Yakugaku Zasshi 123:871–880PubMedCrossRef
72.
Zurück zum Zitat Morikawa T, Kishi A, Pongpiriyadacha Y, Matsuda H, Yoshikawa M (2003) Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpenes and aldose reductase inhibitors from Salacia chinensis. J Nat Prod 66:1191–1196PubMedCrossRef Morikawa T, Kishi A, Pongpiriyadacha Y, Matsuda H, Yoshikawa M (2003) Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpenes and aldose reductase inhibitors from Salacia chinensis. J Nat Prod 66:1191–1196PubMedCrossRef
73.
Zurück zum Zitat Kishi A, Morikawa T, Matsuda H, Yoshikawa M (2003) Structures of new friedelane- and norfriedelane-type triterpenes and polyacylated eudesmane-type sesquiterpene from Salacia chinensis Linn. (S. prinoides DC., Hippocrateaceae) and radical scavenging activities of principal constituents. Chem Pharm Bull 51:1051–1055CrossRef Kishi A, Morikawa T, Matsuda H, Yoshikawa M (2003) Structures of new friedelane- and norfriedelane-type triterpenes and polyacylated eudesmane-type sesquiterpene from Salacia chinensis Linn. (S. prinoides DC., Hippocrateaceae) and radical scavenging activities of principal constituents. Chem Pharm Bull 51:1051–1055CrossRef
74.
Zurück zum Zitat Nakamura K, Akaki J, Ishibushi F, Tani K, Morikawa T, Pongpiriyadacha Y, Muraoka O, Hayakawa T, Kakutani K (2015) Discrimination of Salacia chinensis based on the DNA sequence of the rDNA ITS region. Shoyakugaku Zasshi 69:53–58 Nakamura K, Akaki J, Ishibushi F, Tani K, Morikawa T, Pongpiriyadacha Y, Muraoka O, Hayakawa T, Kakutani K (2015) Discrimination of Salacia chinensis based on the DNA sequence of the rDNA ITS region. Shoyakugaku Zasshi 69:53–58
75.
Zurück zum Zitat Yamada K, Sato-Mito N, Nagata J, Umegaki K (2008) Health claim evidence requirements in Japan. J Nutr 138:1192S-1198SPubMedCrossRef Yamada K, Sato-Mito N, Nagata J, Umegaki K (2008) Health claim evidence requirements in Japan. J Nutr 138:1192S-1198SPubMedCrossRef
76.
Zurück zum Zitat Tsutani K, Takuma H (2008) Regulatory sciences in herbal medicines and dietary supplements. Yakugaku Zasshi 128:867–880PubMedCrossRef Tsutani K, Takuma H (2008) Regulatory sciences in herbal medicines and dietary supplements. Yakugaku Zasshi 128:867–880PubMedCrossRef
77.
Zurück zum Zitat Nagata J, Yamada K (2008) Foods with health claims in Japan. Food Sci Technol Res 14:519–524CrossRef Nagata J, Yamada K (2008) Foods with health claims in Japan. Food Sci Technol Res 14:519–524CrossRef
78.
Zurück zum Zitat Shimizu M (2012) Functional food in Japan: current status and future of gut-modulating food. J Food Drug Anal 20(Suppl. 1):213–216 Shimizu M (2012) Functional food in Japan: current status and future of gut-modulating food. J Food Drug Anal 20(Suppl. 1):213–216
79.
Zurück zum Zitat Kamioka H, Tsutani K, Origasa H, Yoshizaki T, Kitayuguchi J, Shimada M, Tang W, Takano-Ohmuro H (2017) Quality of systematic reviews of the foods with function claims registered at the consumer affairs agency Web site in Japan: a prospective systematic review. Nutr Res 40:21–31PubMedCrossRef Kamioka H, Tsutani K, Origasa H, Yoshizaki T, Kitayuguchi J, Shimada M, Tang W, Takano-Ohmuro H (2017) Quality of systematic reviews of the foods with function claims registered at the consumer affairs agency Web site in Japan: a prospective systematic review. Nutr Res 40:21–31PubMedCrossRef
80.
Zurück zum Zitat Kamioka H, Tsutani K, Origasa H, Yoshizaki T, Kitayuguchi J, Shimada M, Wada Y, Takano-Ohmuro H (2019) Quality of systematic reviews of the foods with function claims in Japan: comparative before- and after-evaluation of verification reports by the consumer affairs agency. Nutrients 11:1583PubMedCentralCrossRef Kamioka H, Tsutani K, Origasa H, Yoshizaki T, Kitayuguchi J, Shimada M, Wada Y, Takano-Ohmuro H (2019) Quality of systematic reviews of the foods with function claims in Japan: comparative before- and after-evaluation of verification reports by the consumer affairs agency. Nutrients 11:1583PubMedCentralCrossRef
81.
Zurück zum Zitat Maeda-Yamamoto M, Ohtani T (2018) Development of functional agricultural products utilizing the new health claim labelling system in Japan. Biosci Boitechnol Biochem 82:554–563CrossRef Maeda-Yamamoto M, Ohtani T (2018) Development of functional agricultural products utilizing the new health claim labelling system in Japan. Biosci Boitechnol Biochem 82:554–563CrossRef
82.
Zurück zum Zitat Kobayashi M, Akaki J, Yamaguchi Y, Yamasaki H, Ninomiya K, Pongpiriyadacha Y, Yoshikawa M, Muraoka O, Morikawa T (2019) Salacia chinensis stem extract and its thiosugar sulfonium constituent, neokotalanol, improves HbA1c levels in ob/ob mice. J Nat Med 73:584–588PubMedCrossRef Kobayashi M, Akaki J, Yamaguchi Y, Yamasaki H, Ninomiya K, Pongpiriyadacha Y, Yoshikawa M, Muraoka O, Morikawa T (2019) Salacia chinensis stem extract and its thiosugar sulfonium constituent, neokotalanol, improves HbA1c levels in ob/ob mice. J Nat Med 73:584–588PubMedCrossRef
83.
Zurück zum Zitat Vyas A, Syeda K, Ahmad A, Padhye S, Sarkar FH (2012) Perspectives on medicinal properties of mangiferin. Min Rev Med Chem 12:412–425CrossRef Vyas A, Syeda K, Ahmad A, Padhye S, Sarkar FH (2012) Perspectives on medicinal properties of mangiferin. Min Rev Med Chem 12:412–425CrossRef
84.
Zurück zum Zitat Matkowski A, Kus P, Góralska E, Wozniak D (2013) Mangiferin—a bioactive xanthanoid, not only from mango and not just antioxidant. Mini-Rev Med Chem 13:439–455PubMed Matkowski A, Kus P, Góralska E, Wozniak D (2013) Mangiferin—a bioactive xanthanoid, not only from mango and not just antioxidant. Mini-Rev Med Chem 13:439–455PubMed
85.
Zurück zum Zitat Ehianeta TS, Laval S, Yu B (2016) Bio- and chemical syntheses of mangiferin and congeners. BioFactors 42:445–458PubMedCrossRef Ehianeta TS, Laval S, Yu B (2016) Bio- and chemical syntheses of mangiferin and congeners. BioFactors 42:445–458PubMedCrossRef
86.
Zurück zum Zitat Miura T, Ichiki H, Hashimoto I, Iwamoto N, Kato M, Kubo M, Ishihara E, Komatsu K, Okada M, Ishida T, Tanigawa K (2001) Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 8:85–87PubMedCrossRef Miura T, Ichiki H, Hashimoto I, Iwamoto N, Kato M, Kubo M, Ishihara E, Komatsu K, Okada M, Ishida T, Tanigawa K (2001) Antidiabetic activity of a xanthone compound, mangiferin. Phytomedicine 8:85–87PubMedCrossRef
87.
Zurück zum Zitat Telang M, Dhulap S, Mandhare A, Hirwani R (2013) Therapeutic and cosmetic application of mangiferin: a patent review. Expert Opin Ther Pat 23:1561–1580PubMedCrossRef Telang M, Dhulap S, Mandhare A, Hirwani R (2013) Therapeutic and cosmetic application of mangiferin: a patent review. Expert Opin Ther Pat 23:1561–1580PubMedCrossRef
89.
Zurück zum Zitat Singh AK, Raj V, Keshari AK, Rai A, Kumar P, Rawat A, Maity B, Kumar D, Prakash A, De A, Samanta A, Bhattacharya B, Saha S (2018) Isolated mangiferin and naringenin exert antidiabetic effect via PPARγ/GLUT4 dual agonistic action with strong metabolic regulation. Chem-Biol Int 280:33–44CrossRef Singh AK, Raj V, Keshari AK, Rai A, Kumar P, Rawat A, Maity B, Kumar D, Prakash A, De A, Samanta A, Bhattacharya B, Saha S (2018) Isolated mangiferin and naringenin exert antidiabetic effect via PPARγ/GLUT4 dual agonistic action with strong metabolic regulation. Chem-Biol Int 280:33–44CrossRef
90.
Zurück zum Zitat Yoshikawa M, Ninomiya K, Shimoda H, Nishida N, Matsuda H (2002) Hepatoprotective and antioxidative properties of Salacia reticulata: preventive effects of phenolic constituents on CCl4-induced liver injury in mice. Biol Pharm Bull 25:72–76PubMedCrossRef Yoshikawa M, Ninomiya K, Shimoda H, Nishida N, Matsuda H (2002) Hepatoprotective and antioxidative properties of Salacia reticulata: preventive effects of phenolic constituents on CCl4-induced liver injury in mice. Biol Pharm Bull 25:72–76PubMedCrossRef
91.
Zurück zum Zitat Saha S, Sadhukhan P, Sil PC (2016) Mangiferin: a xanthanoid with multiportent anti-inflammatory potential. BioFactors 42:459–474PubMedCrossRef Saha S, Sadhukhan P, Sil PC (2016) Mangiferin: a xanthanoid with multiportent anti-inflammatory potential. BioFactors 42:459–474PubMedCrossRef
92.
Zurück zum Zitat Jyotshna KP, Shanker K (2016) Mangiferin: a review of sources and interventions for biological activeties. BioFactors 42:504–514PubMedCrossRef Jyotshna KP, Shanker K (2016) Mangiferin: a review of sources and interventions for biological activeties. BioFactors 42:504–514PubMedCrossRef
93.
Zurück zum Zitat Luczkiewicz P, Kokotkiewicz A, Dampc A, Luczkiewicz M (2014) Mangiferin: a promising therapeutic agent for rheumatoid arthritis treatment. Med Hypoth 83:570–574CrossRef Luczkiewicz P, Kokotkiewicz A, Dampc A, Luczkiewicz M (2014) Mangiferin: a promising therapeutic agent for rheumatoid arthritis treatment. Med Hypoth 83:570–574CrossRef
94.
Zurück zum Zitat Sekiguchi Y, Mano H, Nakatani S, Shimizu J, Kataoka A, Ogura K, Kimira Y, Ebata M, Wada M (2017) Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation. Mol Med Rep 16:1328–1332PubMedPubMedCentralCrossRef Sekiguchi Y, Mano H, Nakatani S, Shimizu J, Kataoka A, Ogura K, Kimira Y, Ebata M, Wada M (2017) Mangiferin positively regulates osteoblast differentiation and suppresses osteoclast differentiation. Mol Med Rep 16:1328–1332PubMedPubMedCentralCrossRef
95.
Zurück zum Zitat Salles AJN, Daglia M, Rastrelli L (2016) The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptotic, and gene regulatory effects. BioFactors 42:475–491CrossRef Salles AJN, Daglia M, Rastrelli L (2016) The potential role of mangiferin in cancer treatment through its immunomodulatory, anti-angiogenic, apoptotic, and gene regulatory effects. BioFactors 42:475–491CrossRef
97.
Zurück zum Zitat Morikawa T, Akaki J, Pongpiriyadacha Y, Yoshikawa M, Ninomiya K, Muraoka O (2018) Simultaneous quantitative determination of polyphenol constituents in Salacia species from different regions by LC-MS. Jpn J Food Chem Saf 25:130–138 Morikawa T, Akaki J, Pongpiriyadacha Y, Yoshikawa M, Ninomiya K, Muraoka O (2018) Simultaneous quantitative determination of polyphenol constituents in Salacia species from different regions by LC-MS. Jpn J Food Chem Saf 25:130–138
98.
Zurück zum Zitat Shimoda H, Fujimura T, Makino K, Yoshijima K, Naitoh K, Ihota H, Miwa Y (1999) Safety profile of extractive from trunk of Salacia reticulata (Celastraceae). J Food Hyg Soc Jpn 40:198–205CrossRef Shimoda H, Fujimura T, Makino K, Yoshijima K, Naitoh K, Ihota H, Miwa Y (1999) Safety profile of extractive from trunk of Salacia reticulata (Celastraceae). J Food Hyg Soc Jpn 40:198–205CrossRef
99.
Zurück zum Zitat Shimoda H, Furuhashi T, Naitou K, Nagase T, Okada M (2001) Thirteen-week repeat dose oral toxicity study of Salacia reticulata extract in rats. Jpn J Pharm Sci 46:527–540 Shimoda H, Furuhashi T, Naitou K, Nagase T, Okada M (2001) Thirteen-week repeat dose oral toxicity study of Salacia reticulata extract in rats. Jpn J Pharm Sci 46:527–540
100.
Zurück zum Zitat Wolf BW, Weisbrode SE (2003) Safety evaluation of an extract from Salacia oblonga. Food Chem Toxicol 41:867–874PubMedCrossRef Wolf BW, Weisbrode SE (2003) Safety evaluation of an extract from Salacia oblonga. Food Chem Toxicol 41:867–874PubMedCrossRef
101.
Zurück zum Zitat Oda Y, Yuasa A, Ueda F, Kakinuma C (2015) A subchronic oral toxicity study of Salacia reticulata extract powder in rats. Toxicol Rep 2:1136–1144PubMedPubMedCentralCrossRef Oda Y, Yuasa A, Ueda F, Kakinuma C (2015) A subchronic oral toxicity study of Salacia reticulata extract powder in rats. Toxicol Rep 2:1136–1144PubMedPubMedCentralCrossRef
102.
Zurück zum Zitat Jihong Y, Shaozhong L, Jingfeng S, Kobayashi M, Akaki J, Yamashita K, Tamesada M, Umemura T (2011) Effects of Salacia chinensis extract on reproductive outcome in rats. Food Chem Toxicol 49:57–60PubMedCrossRef Jihong Y, Shaozhong L, Jingfeng S, Kobayashi M, Akaki J, Yamashita K, Tamesada M, Umemura T (2011) Effects of Salacia chinensis extract on reproductive outcome in rats. Food Chem Toxicol 49:57–60PubMedCrossRef
103.
Zurück zum Zitat Im R, Mano H, Nakatani S, Shimizu J, Wada M (2008) Safety evaluation of the aqueous extract Kothala Himbutu (Salacia reticulata) stem in the hepatic gene expression profile of normal mice using DNA microarrays. Biosci Biotechnol Biochem 72:3075–3083PubMedCrossRef Im R, Mano H, Nakatani S, Shimizu J, Wada M (2008) Safety evaluation of the aqueous extract Kothala Himbutu (Salacia reticulata) stem in the hepatic gene expression profile of normal mice using DNA microarrays. Biosci Biotechnol Biochem 72:3075–3083PubMedCrossRef
104.
Zurück zum Zitat Shimoda H, Asano I, Yamada Y (2001) Antigenicity and phototoxicity of water-soluble extract from Salacia reticulata (Celastraceae). J Food Hyg Soc Jpn 42:144–147CrossRef Shimoda H, Asano I, Yamada Y (2001) Antigenicity and phototoxicity of water-soluble extract from Salacia reticulata (Celastraceae). J Food Hyg Soc Jpn 42:144–147CrossRef
105.
106.
Zurück zum Zitat Kobayashi M, Akaki J, Yamaguchi Y, Yamasaki H, Morikawa T, Ninomiya K, Yoshikawa M, Muraoka O (2016) Safety evaluation of long term and excess intake of the tablet containing hot water extract of Salacia chinensis –randomized double-blind placebo-controlled trials. Jpn Pharmacol Ther 44:399–408 Kobayashi M, Akaki J, Yamaguchi Y, Yamasaki H, Morikawa T, Ninomiya K, Yoshikawa M, Muraoka O (2016) Safety evaluation of long term and excess intake of the tablet containing hot water extract of Salacia chinensis –randomized double-blind placebo-controlled trials. Jpn Pharmacol Ther 44:399–408
107.
Zurück zum Zitat Shimoda H, Kawamori S, Kawahara Y (1998) Effects of an aqueous extract of Salacia reticulata, a useful plant in Sri Lanka, on postprandial hyperglycemia in rats and humans. J Jpn Soc Nutr Food Sci 51:279–287CrossRef Shimoda H, Kawamori S, Kawahara Y (1998) Effects of an aqueous extract of Salacia reticulata, a useful plant in Sri Lanka, on postprandial hyperglycemia in rats and humans. J Jpn Soc Nutr Food Sci 51:279–287CrossRef
108.
Zurück zum Zitat Kajimoto O, Kawamori S, Shimoda H, Kawahara Y, Hirata H, Takahashi T (2000) Effects of a diet containing Salacia reticulata on mild type 2 diabetes in humans—a placebo-controlled, cross-over trial. J Jpn Soc Nutr Food Sci 53:199–205CrossRef Kajimoto O, Kawamori S, Shimoda H, Kawahara Y, Hirata H, Takahashi T (2000) Effects of a diet containing Salacia reticulata on mild type 2 diabetes in humans—a placebo-controlled, cross-over trial. J Jpn Soc Nutr Food Sci 53:199–205CrossRef
109.
Zurück zum Zitat Jayawardena MHS, de Alwis NMW, Hettigoda V, Fernando DJS (2005) A double blind randomized placebo controlled cross over study of a herbal preparation containing Salacia reticulata in the treatment of type 2 diabetes. J Ethnopharmacol 97:215–218PubMedCrossRef Jayawardena MHS, de Alwis NMW, Hettigoda V, Fernando DJS (2005) A double blind randomized placebo controlled cross over study of a herbal preparation containing Salacia reticulata in the treatment of type 2 diabetes. J Ethnopharmacol 97:215–218PubMedCrossRef
110.
Zurück zum Zitat Shivaprasad HN, Bhanumathy M, Sushma G, Midhun T, Raveendra KR, Sushma KR, Venkateshwarlu K (2013) Salacia reticulata improves serum lipid profiles and glycemic control in patients with prediabetes and mild to moderate hyperlipidemia: a double-blind, placebo-controlled, randomized trial. J Med Food 16:564–568PubMedCrossRef Shivaprasad HN, Bhanumathy M, Sushma G, Midhun T, Raveendra KR, Sushma KR, Venkateshwarlu K (2013) Salacia reticulata improves serum lipid profiles and glycemic control in patients with prediabetes and mild to moderate hyperlipidemia: a double-blind, placebo-controlled, randomized trial. J Med Food 16:564–568PubMedCrossRef
111.
Zurück zum Zitat Collene AL, Hertzler SR, Williams JA, Wolf BW (2005) Effects of a nutritional supplement containing Salacia oblonga extract and insulinogenic amino acids on postprandial glycemia, insulinemia, and breath hydrogen responses in healthy adults. Nutrition 21:848–854PubMedCrossRef Collene AL, Hertzler SR, Williams JA, Wolf BW (2005) Effects of a nutritional supplement containing Salacia oblonga extract and insulinogenic amino acids on postprandial glycemia, insulinemia, and breath hydrogen responses in healthy adults. Nutrition 21:848–854PubMedCrossRef
112.
Zurück zum Zitat Heacock PM, Hertzler SR, Williams JA, Wolf BW (2005) Effects of a medical food containing an herbal a-glucosidase inhibitor on postprandial glycemia and insulinemia in healthy adults. J Am Diet Assoc 105:66–71CrossRef Heacock PM, Hertzler SR, Williams JA, Wolf BW (2005) Effects of a medical food containing an herbal a-glucosidase inhibitor on postprandial glycemia and insulinemia in healthy adults. J Am Diet Assoc 105:66–71CrossRef
113.
Zurück zum Zitat Williams JA, Choe YS, Noss MJ, Baumgartner CJ, Mustad VA (2007) Extract of Salacia oblonga lowers acute glycemia in patients with type 2 diabetes. Am J Clin Nutr 86:124–130PubMedCrossRef Williams JA, Choe YS, Noss MJ, Baumgartner CJ, Mustad VA (2007) Extract of Salacia oblonga lowers acute glycemia in patients with type 2 diabetes. Am J Clin Nutr 86:124–130PubMedCrossRef
114.
Zurück zum Zitat Kobayashi M, Akaki J, Yamashita K, Morikawa T, Ninomiya K, Yoshikawa M, Muraoka O (2010) Suppressive effect of the tablet containing Salacia chinensis extract on postprandial blood glucose. Jpn Pharmacol Ther 38:545–550 Kobayashi M, Akaki J, Yamashita K, Morikawa T, Ninomiya K, Yoshikawa M, Muraoka O (2010) Suppressive effect of the tablet containing Salacia chinensis extract on postprandial blood glucose. Jpn Pharmacol Ther 38:545–550
115.
Zurück zum Zitat Kobayashi M, Akaki J, Ninomiya K, Yoshikawa M, Muraoka O, Morikawa T, Odawara M (2021) Dose-dependent suppression of postprandial hyperglycemia and improvement of blood glucose parameters by Salacia chinensis extract: two randomized, double-blind, placebo-controlled studies. J Med Food 24:10–17PubMedCrossRef Kobayashi M, Akaki J, Ninomiya K, Yoshikawa M, Muraoka O, Morikawa T, Odawara M (2021) Dose-dependent suppression of postprandial hyperglycemia and improvement of blood glucose parameters by Salacia chinensis extract: two randomized, double-blind, placebo-controlled studies. J Med Food 24:10–17PubMedCrossRef
Metadaten
Titel
A review of antidiabetic active thiosugar sulfoniums, salacinol and neokotalanol, from plants of the genus Salacia
verfasst von
Toshio Morikawa
Kiyofumi Ninomiya
Genzoh Tanabe
Hisashi Matsuda
Masayuki Yoshikawa
Osamu Muraoka
Publikationsdatum
26.04.2021
Verlag
Springer Singapore
Erschienen in
Journal of Natural Medicines / Ausgabe 3/2021
Print ISSN: 1340-3443
Elektronische ISSN: 1861-0293
DOI
https://doi.org/10.1007/s11418-021-01522-0

Weitere Artikel der Ausgabe 3/2021

Journal of Natural Medicines 3/2021 Zur Ausgabe