Skip to main content
Erschienen in: Obesity Surgery 10/2020

14.07.2020 | Original Contributions

Acute and Chronic Impact of Biliopancreatic Diversion with Duodenal Switch Surgery on Plasma Lipoprotein(a) Levels in Patients with Severe Obesity

verfasst von: Audrey-Anne Després, Marie-Eve Piché, Audrey Auclair, Laurent Biertho, Simon Marceau, Frédéric-Simon Hould, Simon Biron, Stéfane Lebel, Odette Lescelleur, François Julien, Julie Martin, André Tchernof, Patrick Mathieu, Paul Poirier, Benoit J. Arsenault

Erschienen in: Obesity Surgery | Ausgabe 10/2020

Einloggen, um Zugang zu erhalten

Abstract

Background

Elevated lipoprotein(a) (Lp(a)) level is an independent risk factor for cardiovascular diseases. Lifestyle intervention studies targeting weight loss revealed little to no significant changes in Lp(a) levels. The impact of interventions that induce substantial weight loss, such as bariatric surgery, on Lp(a) levels is currently unclear.

Objective

To determine the acute and long-term impact of bariatric surgery on Lp(a) levels in patients with severe obesity.

Methods

Sixty-nine patients with severe obesity underwent biliopancreatic diversion with duodenal switch (BPD-DS) surgery. The lipid profile was evaluated and Lp(a) levels were measured before surgery and at 6 and 12 months after BPD-DS surgery.

Results

Median Lp(a) levels at baseline were 11.1 (4.1–41.6) nmol/L. Six months and 12 months after the BDP-DS surgery, we observed an improvement of lipid profile. At 6 months, we observed a 13% decrease in Lp(a) levels (9.7 (2.9–25.6) nmol/L, p < 0.0001) but this decrease was not sustained at 12 months (11.1 (3.9–32.8) nmol/L, p = 0.8). When the patients were separated into tertiles according to Lp(a) levels at baseline, we observed that the Lp(a) reduction at 12 months after BPD-DS surgery remained significant but modest in patients of the top Lp(a) tertile.

Conclusion

Our results suggest that BPD-DS surgery modestly reduces Lp(a) levels in the short term (6 months) in patients with severe obesity but this improvement is sustained over time only in patients with higher Lp(a) levels.
Literatur
1.
Zurück zum Zitat Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.PubMedCrossRef Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28.PubMedCrossRef
2.
Zurück zum Zitat Emdin CA, Khera AV, Natarajan P, et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J Am Coll Cardiol. 2016;68(25):2761–72.PubMedPubMedCentralCrossRef Emdin CA, Khera AV, Natarajan P, et al. Phenotypic characterization of genetically lowered human lipoprotein(a) levels. J Am Coll Cardiol. 2016;68(25):2761–72.PubMedPubMedCentralCrossRef
3.
Zurück zum Zitat Boerwinkle E, Leffert CC, Lin J, et al. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90(1):52–60.PubMedPubMedCentralCrossRef Boerwinkle E, Leffert CC, Lin J, et al. Apolipoprotein(a) gene accounts for greater than 90% of the variation in plasma lipoprotein(a) concentrations. J Clin Invest. 1992;90(1):52–60.PubMedPubMedCentralCrossRef
4.
5.
Zurück zum Zitat Sonnichsen AC, Richter WO, Schwandt P. Reduction of lipoprotein (a) by weight loss. Int J Obes. 1990;14(6):487–94.PubMed Sonnichsen AC, Richter WO, Schwandt P. Reduction of lipoprotein (a) by weight loss. Int J Obes. 1990;14(6):487–94.PubMed
6.
Zurück zum Zitat Kiortsis DN, Tzotzas T, Giral P, et al. Changes in lipoprotein(a) levels and hormonal correlations during a weight reduction program. Nutr Metab Cardiovasc Dis. 2001;11(3):153–7.PubMed Kiortsis DN, Tzotzas T, Giral P, et al. Changes in lipoprotein(a) levels and hormonal correlations during a weight reduction program. Nutr Metab Cardiovasc Dis. 2001;11(3):153–7.PubMed
7.
Zurück zum Zitat Berk KA, Yahya R, Verhoeven AJM, et al. Effect of diet-induced weight loss on lipoprotein(a) levels in obese individuals with and without type 2 diabetes. Diabetologia. 2017;60(6):989–97.PubMedPubMedCentralCrossRef Berk KA, Yahya R, Verhoeven AJM, et al. Effect of diet-induced weight loss on lipoprotein(a) levels in obese individuals with and without type 2 diabetes. Diabetologia. 2017;60(6):989–97.PubMedPubMedCentralCrossRef
8.
Zurück zum Zitat Piche ME, Auclair A, Harvey J, et al. How to choose and use bariatric surgery in 2015. Can J Cardiol. 2015;31(2):153–66.PubMedCrossRef Piche ME, Auclair A, Harvey J, et al. How to choose and use bariatric surgery in 2015. Can J Cardiol. 2015;31(2):153–66.PubMedCrossRef
9.
Zurück zum Zitat Boyer M, Lévesque V, Poirier P, et al. Impact of a 1-year lifestyle modification program on plasma lipoprotein and PCSK9 concentrations in patients with coronary artery disease. J Clin Lipidol. 2016;10(6):1353–61.PubMedCrossRef Boyer M, Lévesque V, Poirier P, et al. Impact of a 1-year lifestyle modification program on plasma lipoprotein and PCSK9 concentrations in patients with coronary artery disease. J Clin Lipidol. 2016;10(6):1353–61.PubMedCrossRef
10.
Zurück zum Zitat Boman L, Ericson M. Lipoprotein a levels after intestinal bypass operation for morbid obesity. Obes Surg. 1997;7(2):125–7.PubMedCrossRef Boman L, Ericson M. Lipoprotein a levels after intestinal bypass operation for morbid obesity. Obes Surg. 1997;7(2):125–7.PubMedCrossRef
11.
Zurück zum Zitat Williams DB, Hagedorn JC, Lawson EH, et al. Gastric bypass reduces biochemical cardiac risk factors. Surg Obes Relat Dis. 2007;3(1):8–13.PubMedCrossRef Williams DB, Hagedorn JC, Lawson EH, et al. Gastric bypass reduces biochemical cardiac risk factors. Surg Obes Relat Dis. 2007;3(1):8–13.PubMedCrossRef
12.
Zurück zum Zitat Lin BX, Weiss MC, Parikh M, et al. Changes in lipoprotein(a) following bariatric surgery. Am Heart J. 2018;197:175–6.PubMedCrossRef Lin BX, Weiss MC, Parikh M, et al. Changes in lipoprotein(a) following bariatric surgery. Am Heart J. 2018;197:175–6.PubMedCrossRef
13.
Zurück zum Zitat Piché M-È, Martin J, Cianflone K, et al. Changes in predicted cardiovascular disease risk after biliopancreatic diversion surgery in severely obese patients. Metabolism. 2014;63(1):79–86.PubMedCrossRef Piché M-È, Martin J, Cianflone K, et al. Changes in predicted cardiovascular disease risk after biliopancreatic diversion surgery in severely obese patients. Metabolism. 2014;63(1):79–86.PubMedCrossRef
14.
Zurück zum Zitat Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.PubMedCrossRef Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502.PubMedCrossRef
15.
Zurück zum Zitat To VT, Huttl TP, Lang R, et al. Changes in body weight, glucose homeostasis, lipid profiles, and metabolic syndrome after restrictive bariatric surgery. Exp Clin Endocrinol Diabetes. 2012;120(9):547–52.PubMedCrossRef To VT, Huttl TP, Lang R, et al. Changes in body weight, glucose homeostasis, lipid profiles, and metabolic syndrome after restrictive bariatric surgery. Exp Clin Endocrinol Diabetes. 2012;120(9):547–52.PubMedCrossRef
16.
Zurück zum Zitat Woodard GA, Peraza J, Bravo S, et al. One year improvements in cardiovascular risk factors: a comparative trial of laparoscopic Roux-en-Y gastric bypass vs. adjustable gastric banding. Obes Surg. 2010;20(5):578–82.PubMedCrossRef Woodard GA, Peraza J, Bravo S, et al. One year improvements in cardiovascular risk factors: a comparative trial of laparoscopic Roux-en-Y gastric bypass vs. adjustable gastric banding. Obes Surg. 2010;20(5):578–82.PubMedCrossRef
17.
Zurück zum Zitat Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Intern Med. 2013;273(1):6–30.PubMedCrossRef Kronenberg F, Utermann G. Lipoprotein(a): resurrected by genetics. J Intern Med. 2013;273(1):6–30.PubMedCrossRef
18.
Zurück zum Zitat Santonocito C, De Loecker I, Donadello K, et al. C-reactive protein kinetics after major surgery. Anesth Analg. 2014;119(3):624–9.PubMedCrossRef Santonocito C, De Loecker I, Donadello K, et al. C-reactive protein kinetics after major surgery. Anesth Analg. 2014;119(3):624–9.PubMedCrossRef
19.
Zurück zum Zitat Langsted A, Varbo A, Kamstrup PR, et al. Elevated lipoprotein(a) does not cause low-grade inflammation despite causal association with aortic valve stenosis and myocardial infarction: a study of 100,578 individuals from the general population. J Clin Endocrinol Metab. 2015;100(7):2690–9.PubMedCrossRef Langsted A, Varbo A, Kamstrup PR, et al. Elevated lipoprotein(a) does not cause low-grade inflammation despite causal association with aortic valve stenosis and myocardial infarction: a study of 100,578 individuals from the general population. J Clin Endocrinol Metab. 2015;100(7):2690–9.PubMedCrossRef
20.
Zurück zum Zitat Missala I, Kassner U, Steinhagen-Thiessen E. A systematic literature review of the association of lipoprotein(a) and autoimmune diseases and atherosclerosis. Int J Rheumatol. 2012;2012:480784.PubMedPubMedCentral Missala I, Kassner U, Steinhagen-Thiessen E. A systematic literature review of the association of lipoprotein(a) and autoimmune diseases and atherosclerosis. Int J Rheumatol. 2012;2012:480784.PubMedPubMedCentral
21.
Zurück zum Zitat Langsted A, Kamstrup PR, Nordestgaard BG. Lipoprotein(a): fasting and nonfasting levels, inflammation, and cardiovascular risk. Atherosclerosis. 2014;234(1):95–101.PubMedCrossRef Langsted A, Kamstrup PR, Nordestgaard BG. Lipoprotein(a): fasting and nonfasting levels, inflammation, and cardiovascular risk. Atherosclerosis. 2014;234(1):95–101.PubMedCrossRef
22.
Zurück zum Zitat Muller N, Schulte DM, Turk K, et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J Lipid Res. 2015;56(5):1034–42.PubMedPubMedCentralCrossRef Muller N, Schulte DM, Turk K, et al. IL-6 blockade by monoclonal antibodies inhibits apolipoprotein (a) expression and lipoprotein (a) synthesis in humans. J Lipid Res. 2015;56(5):1034–42.PubMedPubMedCentralCrossRef
23.
Zurück zum Zitat Illan-Gomez F, Gonzalvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5.PubMedCrossRef Illan-Gomez F, Gonzalvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5.PubMedCrossRef
24.
Zurück zum Zitat Schultz O, Oberhauser F, Saech J, et al. Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a) levels in human subjects with rheumatoid diseases. PLoS One. 2010;5(12):e14328.PubMedPubMedCentralCrossRef Schultz O, Oberhauser F, Saech J, et al. Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a) levels in human subjects with rheumatoid diseases. PLoS One. 2010;5(12):e14328.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Shin MJ, Blanche PJ, Rawlings RS, et al. Increased plasma concentrations of lipoprotein(a) during a low-fat, high-carbohydrate diet are associated with increased plasma concentrations of apolipoprotein C-III bound to apolipoprotein B-containing lipoproteins. Am J Clin Nutr. 2007;85(6):1527–32.PubMedCrossRef Shin MJ, Blanche PJ, Rawlings RS, et al. Increased plasma concentrations of lipoprotein(a) during a low-fat, high-carbohydrate diet are associated with increased plasma concentrations of apolipoprotein C-III bound to apolipoprotein B-containing lipoproteins. Am J Clin Nutr. 2007;85(6):1527–32.PubMedCrossRef
26.
Zurück zum Zitat Silaste ML, Rantala M, Alfthan G, et al. Changes in dietary fat intake alter plasma levels of oxidized low-density lipoprotein and lipoprotein(a). Arterioscler Thromb Vasc Biol. 2004;24(3):498–503.PubMedCrossRef Silaste ML, Rantala M, Alfthan G, et al. Changes in dietary fat intake alter plasma levels of oxidized low-density lipoprotein and lipoprotein(a). Arterioscler Thromb Vasc Biol. 2004;24(3):498–503.PubMedCrossRef
27.
Zurück zum Zitat Faghihnia N, Tsimikas S, Miller ER, et al. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J Lipid Res. 2010;51(11):3324–30.PubMedPubMedCentralCrossRef Faghihnia N, Tsimikas S, Miller ER, et al. Changes in lipoprotein(a), oxidized phospholipids, and LDL subclasses with a low-fat high-carbohydrate diet. J Lipid Res. 2010;51(11):3324–30.PubMedPubMedCentralCrossRef
28.
Zurück zum Zitat Ginsberg HN, Kris-Etherton P, Dennis B, et al. Effects of reducing dietary saturated fatty acids on plasma lipids and lipoproteins in healthy subjects: the DELTA Study, protocol 1. Arterioscler Thromb Vasc Biol. 1998;18(3):441–9.PubMedCrossRef Ginsberg HN, Kris-Etherton P, Dennis B, et al. Effects of reducing dietary saturated fatty acids on plasma lipids and lipoproteins in healthy subjects: the DELTA Study, protocol 1. Arterioscler Thromb Vasc Biol. 1998;18(3):441–9.PubMedCrossRef
29.
Zurück zum Zitat Haring B, von Ballmoos MC, Appel LJ, et al. Healthy dietary interventions and lipoprotein (a) plasma levels: results from the Omni Heart Trial. PLoS One. 2014;9(12):e114859.PubMedPubMedCentralCrossRef Haring B, von Ballmoos MC, Appel LJ, et al. Healthy dietary interventions and lipoprotein (a) plasma levels: results from the Omni Heart Trial. PLoS One. 2014;9(12):e114859.PubMedPubMedCentralCrossRef
30.
Zurück zum Zitat Jahansouz C, Xu H, Hertzel AV, et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg. 2016;264(6):1022–8.PubMedCrossRef Jahansouz C, Xu H, Hertzel AV, et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg. 2016;264(6):1022–8.PubMedCrossRef
31.
Zurück zum Zitat Chennamsetty I, Claudel T, Kostner KM, et al. Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest. 2011;121(9):3724–34.PubMedPubMedCentralCrossRef Chennamsetty I, Claudel T, Kostner KM, et al. Farnesoid X receptor represses hepatic human APOA gene expression. J Clin Invest. 2011;121(9):3724–34.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Calmarza P, Bajador E, Lapresta C, et al. Effect of biliary obstruction on lipoprotein(a) concentration. Clin Investig Arterioscler. 2014;26(5):218–23.PubMed Calmarza P, Bajador E, Lapresta C, et al. Effect of biliary obstruction on lipoprotein(a) concentration. Clin Investig Arterioscler. 2014;26(5):218–23.PubMed
33.
Zurück zum Zitat Reyes-Soffer G, Pavlyha M, Ngai C, et al. Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation. 2017;135(4):352–62.PubMedPubMedCentralCrossRef Reyes-Soffer G, Pavlyha M, Ngai C, et al. Effects of PCSK9 inhibition with alirocumab on lipoprotein metabolism in healthy humans. Circulation. 2017;135(4):352–62.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Arsenault BJ, Petrides F, Tabet F, et al. Effect of atorvastatin, cholesterol ester transfer protein inhibition, and diabetes mellitus on circulating proprotein subtilisin kexin type 9 and lipoprotein(a) levels in patients at high cardiovascular risk. J Clin Lipidol. 2018;12(1):130–6.PubMedCrossRef Arsenault BJ, Petrides F, Tabet F, et al. Effect of atorvastatin, cholesterol ester transfer protein inhibition, and diabetes mellitus on circulating proprotein subtilisin kexin type 9 and lipoprotein(a) levels in patients at high cardiovascular risk. J Clin Lipidol. 2018;12(1):130–6.PubMedCrossRef
Metadaten
Titel
Acute and Chronic Impact of Biliopancreatic Diversion with Duodenal Switch Surgery on Plasma Lipoprotein(a) Levels in Patients with Severe Obesity
verfasst von
Audrey-Anne Després
Marie-Eve Piché
Audrey Auclair
Laurent Biertho
Simon Marceau
Frédéric-Simon Hould
Simon Biron
Stéfane Lebel
Odette Lescelleur
François Julien
Julie Martin
André Tchernof
Patrick Mathieu
Paul Poirier
Benoit J. Arsenault
Publikationsdatum
14.07.2020
Verlag
Springer US
Erschienen in
Obesity Surgery / Ausgabe 10/2020
Print ISSN: 0960-8923
Elektronische ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-020-04450-2

Weitere Artikel der Ausgabe 10/2020

Obesity Surgery 10/2020 Zur Ausgabe

Update Chirurgie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.

S3-Leitlinie „Diagnostik und Therapie des Karpaltunnelsyndroms“

Karpaltunnelsyndrom BDC Leitlinien Webinare
CME: 2 Punkte

Das Karpaltunnelsyndrom ist die häufigste Kompressionsneuropathie peripherer Nerven. Obwohl die Anamnese mit dem nächtlichen Einschlafen der Hand (Brachialgia parästhetica nocturna) sehr typisch ist, ist eine klinisch-neurologische Untersuchung und Elektroneurografie in manchen Fällen auch eine Neurosonografie erforderlich. Im Anfangsstadium sind konservative Maßnahmen (Handgelenksschiene, Ergotherapie) empfehlenswert. Bei nicht Ansprechen der konservativen Therapie oder Auftreten von neurologischen Ausfällen ist eine Dekompression des N. medianus am Karpaltunnel indiziert.

Prof. Dr. med. Gregor Antoniadis
Berufsverband der Deutschen Chirurgie e.V.

S2e-Leitlinie „Distale Radiusfraktur“

Radiusfraktur BDC Leitlinien Webinare
CME: 2 Punkte

Das Webinar beschäftigt sich mit Fragen und Antworten zu Diagnostik und Klassifikation sowie Möglichkeiten des Ausschlusses von Zusatzverletzungen. Die Referenten erläutern, welche Frakturen konservativ behandelt werden können und wie. Das Webinar beantwortet die Frage nach aktuellen operativen Therapiekonzepten: Welcher Zugang, welches Osteosynthesematerial? Auf was muss bei der Nachbehandlung der distalen Radiusfraktur geachtet werden?

PD Dr. med. Oliver Pieske
Dr. med. Benjamin Meyknecht
Berufsverband der Deutschen Chirurgie e.V.

S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“

Appendizitis BDC Leitlinien Webinare
CME: 2 Punkte

Inhalte des Webinars zur S1-Leitlinie „Empfehlungen zur Therapie der akuten Appendizitis bei Erwachsenen“ sind die Darstellung des Projektes und des Erstellungswegs zur S1-Leitlinie, die Erläuterung der klinischen Relevanz der Klassifikation EAES 2015, die wissenschaftliche Begründung der wichtigsten Empfehlungen und die Darstellung stadiengerechter Therapieoptionen.

Dr. med. Mihailo Andric
Berufsverband der Deutschen Chirurgie e.V.