Skip to main content
Erschienen in: BMC Medicine 1/2013

Open Access 01.12.2013 | Review

Admission prevention in COPD: non-pharmacological management

verfasst von: Eui-Sik Suh, Swapna Mandal, Nicholas Hart

Erschienen in: BMC Medicine | Ausgabe 1/2013

Abstract

Exacerbations of chronic obstructive pulmonary disease (COPD) are one of the commonest causes of hospital admission in Europe, Australasia, and North America. These adverse events have a large effect on the health status of the patients and impose a heavy burden on healthcare systems. While we acknowledge the contribution of pharmacotherapies to exacerbation prevention, our interpretation of the data is that exacerbations continue to be a major burden to individuals and healthcare systems, therefore, there remains great scope for other therapies to influence exacerbation frequency and preservation of quality of life. In this review, the benefits and limitations of pulmonary rehabilitation, non-invasive ventilation, smoking cessation, and long-term oxygen therapy are discussed. In addition, supported discharge, advanced care coordination, and telehealth programs to improve clinical outcome are reviewed as future directions for the management of COPD.
Hinweise

Competing interests

NH is in receipt of a European Union grant for the development of care coordination and telehealthcare for chronic diseases including COPD. ES is in receipt of an unrestricted educational grant from Philips Electronics to develop advanced physiological monitoring techniques in patients with COPD.

Authors’ contributions

ES, SM, and NH contributed to the literature review and manuscript preparation. All authors have read and approved the final manuscript.
Abkürzungen
AHRF
Acute hypercapnic respiratory failure
COPD
Chronic obstructive pulmonary disease
CPAP
Continuous positive airway pressure
FEV1
Forced expiratory volume in 1 second
HRQL
Health-related quality of life
IL
Interleukin
IPAP
Inspiratory positive airway pressure
LTOT
Long-term oxygen therapy
NIV
Non-invasive ventilation
PR
Pulmonary rehabilitation
RCT
Randomised controlled trial
UC
Usual care.

Financial and human cost

Management of chronic obstructive pulmonary disease (COPD) is a worldwide challenge. It has a prevalence of 1.5% in the UK [1] and 5.1% in the USA [2], while in China, which has about one-third of the world’s smokers, the prevalence of COPD in patients aged over 40 years is estimated at 8.2% [3]. Current predictions estimate an annual COPD mortality rate in China of over 2 million by 2033 [4]. As expected, COPD imposes a substantial economic burden on healthcare systems. Data from the USA showed that in 1 year, COPD caused 1.5 million emergency department (ED) attendances, 726,000 hospitalizations, and 119,000 deaths [5]. Direct costs of COPD have been estimated at $29.5 billion, with indirect costs of $20.4 billion [6]. Studies in the UK have estimated an annual direct cost of treatment per patient of £819 [7]. Given the heterogeneity of COPD, it is not surprising that acute exacerbations of COPD display a broad range of phenotypes, which can be categorized by their clinical, physiological, radiological, and etiological features [8]. These are discussed in detail in an earlier review on this subject in this journal [9]. Although exacerbation phenotyping can facilitate the targeting of treatments to individual patients, the severity of the exacerbation determines the urgency and location of treatment, and this pragmatic classification is in widespread use (Table 1) [10]. Up to 50% of exacerbations are mild and may go unreported, with 40 to 45% being classified moderate and less than 10% as severe [10].
Table 1
Classification of exacerbation severity[10]
Level
Description
Mild
An increase in respiratory symptoms that can be controlled by the patient with an increase in the usual medication
Moderate
Requires treatment with systemic steroids and/or antibiotics
Severe
Requires hospitalization or a visit to the ED
An acute exacerbation of COPD has detrimental effects on lung function [1114], health-related quality of life (HRQL) [1517] and exercise capacity [18]. Several studies have shown high mortality rates for patients with COPD who are hospitalized with an acute exacerbation [1923]. The SUPPORT study reported an in-hospital mortality rate of 11% in patients with COPD admitted with hypercapnic respiratory failure, and 2-year mortality was 49% [23]. Soler-Cataluna et al. demonstrated, in a large Spanish cohort of patients with COPD, the relationship between exacerbation frequency and mortality [19]. Whereas exacerbation-free patients had a survival rate of 80%, patients with three or more exacerbations per year had a 5-year survival rate of only 30%. A recent systematic review of 37 studies involving 189,772 hospitalized patients with COPD reported 12 factors (Table 2) associated with short-term mortality (90 days after hospital discharge) and 9 factors associated with long-term mortality (2 years after hospital discharge) (Table 2) [24].
Table 2
Predictors of early and late mortality in hospitalized patients with acute exacerbation of chronic obstructive pulmonary disease (adapted from Singanayagam et al .[24])
Predictors of short-term mortality (up to 90 days after hospitalization)
Predictors of long-term mortality (up to 2 years after hospitalization)
Age
Age
Male sex
Low body mass index
Low body mass index
Cardiac failure
Cardiac failure
Diabetes mellitus
Chronic renal failure
Ischemic heart disease
Confusion
Malignancy
Long-term oxygen therapy
FEV1
Lower limb edema
Long-term oxygen therapy
GOLD stage 4 disease
PaO2 on admission
Cor pulmonale
 
Acidemia
 
Raised plasma troponin level
 
Abbreviations: GOLD Global Initiative for Obstructive Lung Disease, FEV 1 forced expiratory volume in 1 second, P a O 2 partial pressure of oxygen in arterial blood.

Hospital admission and re-admission

Intolerable dyspnea is the major cause of hospital admission during an exacerbation of COPD [25]. This event is common, with hospitalization due to dyspnea accounting for one in eight hospital admissions in the UK and one in four admissions in Canada [26]. In the UK, such patients occupy a hospital bed for a median of 5 days [27], with a 20% re-admission rate within 28 days, and up to a third of patients re-admitted within 3 months [27, 28]. These data differ from other parts of Europe and from the USA, where 30-day re-admission rate is estimated at 10.9% and 8.1%, respectively [29]. Despite these differences, this is clearly a burden to both healthcare systems and patients, and as of 2011, the UK National Health Service has limited the reimbursement to acute hospitals for patients who are re-admitted within 30 days. Similar key performance targets have been imposed in the USA [30]. Although inhaled and oral drug preparations play an important part in exacerbation prevention, the reduction with pharmacotherapy of severe exacerbations requiring hospitalization is limited. Non-pharmacological management therefore has an important role in the management both of patients with stable disease at risk of exacerbation and of those who are in the immediate recovery phase following an acute exacerbation.

Non-pharmacological management

Pulmonary rehabilitation

Physiological principles

Pulmonary rehabilitation (PR) is ‘an evidence-based, multidisciplinary and comprehensive intervention for patients with COPD that is designed to reduce symptoms, optimize functional status, increase patient participation and reduce healthcare costs through stabilizing or reversing systemic manifestations of the disease’ [31]. Exercise training is a major component of PR, and aims to modify skeletal muscle function to enhance exercise capacity [32, 33]. Improved skeletal muscle performance and subsequent reduced lactate production throughout exercise enhances the relationship between respiratory muscle load and respiratory muscle capacity. This is achieved through modifications in breathing pattern, in the context of airflow limitation with optimization of pulmonary mechanics, which reduces exertion-related dyspnea, with a resultant improvement in exercise capacity leading to further improvement in skeletal muscle performance [34, 35].
In addition to impaired exercise capacity and disuse in the stable state, several other mechanisms have been implicated in the muscle wasting and weakness associated with exacerbation [36]. Systemic inflammation, confirmed by an elevation in serum interleukin (IL)-6 and IL-8 levels during acute illness, has been shown to have an inverse relationship with quadriceps muscle strength [37]. In addition, oxidative stress is prominent in the peripheral skeletal muscle of patients during an acute exacerbation, which adversely affects mitochondrial function and the contractile properties of the skeletal muscle [38]. Furthermore, blood gas abnormalities affect skeletal muscle function, with hypoxemia being associated with muscle weakness, inhibition of protein synthesis, and activation of proteolysis [39], while hypercapnic acidosis worsens skeletal muscle fatigability [40] and the endurance properties of the diaphragm [41]. Muscle wasting as a consequence of systemic corticosteroid treatment through the inhibition of protein synthesis, downregulation of the anabolic insulin-like growth factor-1 pathway, and activation of catabolic pathways, combined with appetite suppression and reduced dietary intake due to systemic inflammation during acute illness, drives the energy imbalance between supply and demand [42].
Although exercise training plays an important role in improving patient outcomes in COPD, other components contribute significantly to the benefits of PR. PR also addresses the nutritional deficits that are common in stable COPD and during acute exacerbations [43]. Low body mass index is associated with poor prognosis in patients with COPD [44], and caloric supplementation may help to maintain or restore body weight and fat mass, and ensure adequate protein intake. The patient education component of PR is aimed at self-management and enhanced autonomy, in order to encourage early self-identification and treatment of exacerbations. Education programs may also include breathing strategies to control dyspnea as well as bronchial hygiene techniques [43]. Psychosocial support may help to address the anxiety, depression, and other mental health problems that are often associated with chronic respiratory disease [45, 46].

Pulmonary rehabilitation delivered in the post-acute exacerbation recovery stage

Although well established as part of chronic care in stable COPD [43, 47], there is mounting evidence for the utility of PR in the early recovery period following an exacerbation [48]. Furthermore, data support the role of PR in preventing exacerbations and in reducing acute healthcare utilization, including unscheduled physician visits, ED attendances, and hospital admissions [49]. There are specific features of acute exacerbations that make them an important target for PR. Skeletal muscle dysfunction is evident, with a decline in quadriceps muscle strength of 5% between day 3 and 8 of hospital admission [37]. In the absence of any intervention, quadriceps force continues to decline for up to 3 months after hospital discharge [50]. Immobility and reduced physical activity are major contributors to muscle wasting and weakness, with hospitalized patients spending less than 10 minutes per day walking [51]. Furthermore, these patients remain inactive for up to 1 month after discharge compared with patients with stable COPD and similar disease severity.
Patients are at high risk of re-exacerbation and re-admission in the early recovery phase. Therefore, there is a potential role for an intervention in the post-exacerbation period after an acute episode to reduce the re-admission risk. A recent Cochrane systematic review of five randomized controlled trials (RCTs) of early PR post-acute exacerbation [48] concluded that there was a significant reduction in hospital admissions in patients enrolled in PR programs following an exacerbation (odds ratio 0.22, 95% confidence interval 0.08 to 0.58). More importantly, these data showed that only four patients need to receive PR in the post-acute phase in order to prevent one re-admission, with an overall reduction in mortality observed also (OR 0.28; CI 0.10 to 0.84). There were no serious adverse events in any of the five studies reviewed. Although Eaton et al. showed only a trend towards a reduction in 90-day re-admission in the PR group compared with the usual care (UC) group (23% versus 32%, respectively), the adherence to the PR program was only 40% [52]. However, in the trial of Seymour et al., the effect of early outpatient PR on 3-month re-admission rate was investigated in patients enrolled within 1 week of hospital discharge [50]. The intervention group in this study received 16 exercise training sessions over a 3 month period rather than the standard PR approach of 2 sessions per week for 8 weeks. This ensured that the effect of the treatment was tested, whereas the results of the trial by Eaton et al.[52] were, in part, a consequence of the failure of delivery of the treatment rather than necessarily a failure of the treatment itself. In the Seymour study, re-admission rate at 3 months was lower in the early PR group compared with the UC group (7% versus 33%, respectively; P = 0.02) [50]. Interestingly, Seymour et al. reported that the rate of ED attendances not requiring admission were similar between the two groups, but the rate of hospital attendance of any type was lower in the early PR group (27% versus 57%; P = 0.02). The post-discharge frequency of exacerbations was lower in the early PR group (0.27 versus 1.1; P < 0.01). Although informative, these trials were limited by a relatively short-term follow-up period. By contrast, Ko et al. investigated the effect on healthcare utilization at 12 months of an 8-week program of supervised outpatient PR in patients enrolled up to 3 weeks following hospital discharge [53]. Although the PR group showed improvement in health status at 3 and 6 months, this effect did not persist at 12 months, and there was no reduction in healthcare utilization at 12 months. Similarly, Puhan et al. reported, albeit in an underpowered study, that early PR failed to improve exacerbation rate at 18 months [54]. This is not surprising as the patients enrolled in such trials have severe and very severe COPD, and the interventions that are applied are unlikely to have effect on long-term benefit as the disease process progresses. Despite this, the short-term gains to the patient and acute healthcare providers are clear. In the future, we may target these patients during the exacerbation as inpatients. Acknowledging that these patients have very high levels of dyspnea during this period, which prevents exercise, novel use of technologies that accommodate for or modify dyspnea, such as neuromuscular electrical stimulation [55] and non-invasive ventilation [56], have been used as adjuncts to exercise training in pilot studies, but further work is required.

Pulmonary rehabilitation delivered in the stable state

Although uncontrolled cohort studies have found that PR reduces hospitalization frequency [57, 58] and hospital bed days [5760], RCTs of PR in patients with stable COPD have not shown such consistent results. Griffith et al. reported that despite fewer hospital bed days, there was no reduction in hospitalization frequency in the PR group [61]. Guell et al. found a reduction in hospital admissions over a 2-year period [62]; however, other studies have failed to show a reduction admission frequency and hospital bed days [63, 64]. These contrasting data highlight the differing phenotypes of COPD, based on exacerbation frequency, and the requirement for clinicians to develop strategies to target the timing of PR based on the phenotype rather than on the current clinical state of the patient at the time of starting PR.

Non-invasive ventilation

Non-invasive ventilation (NIV) is well established as the treatment of choice for patients with COPD with acute decompensated hypercapnic respiratory failure (AHRF) who fail to respond to standard medical therapy [65, 66]. Importantly, and in addition to a reduction in mortality, hospital length of stay is reduced compared with standard treatment. Although NIV remains controversial as a domiciliary treatment to reduce hospital admission and improve survival in patients with COPD with stable chronic respiratory failure, the physiological mechanisms by which long-term NIV results in clinical improvement in patients with severe COPD and hypercapnic respiratory failure are well-described [67]. Indeed, Nickol et al. showed that 3 months of NIV enhanced gas exchange through alterations in pulmonary mechanics (shown as reduced gas trapping), and also increased ventilatory sensitivity to carbon dioxide. However, there was limited effect on non-volitional muscle strength [68]. Clinical manifestations of these physiological changes are reflected as reduced dyspnea and improved HRQL, and it is hypothesized that there will be an associated reduction in acute exacerbations and hospitalization, with a potential for improved survival. However, trial data are as yet inconclusive for this high-risk group of patients with severe COPD.
An observational study from Tuggey et al. showed that, following initiation of domiciliary NIV in a cohort of patients with COPD who were prone to recurrent admissions, there was a significant reduction in total hospital days and days spent in the intensive care unit. This was, not unexpectedly, associated with substantial cost savings [69]. This is in contrast to several RCTs that have failed to show a convincing benefit in terms of acute healthcare utilization. In the trial by Casanova et al., there was no difference in survival between patients with stable COPD randomized to NIV or UC [70], although the proportion of patients who required hospital admission at 3 months was reduced in the intervention group (5% versus 15%; P < 0.05, respectively). Unusually, ventilator set-up in this trial was aimed at reducing accessory muscle use and reducing dyspnea, which explains, in part, the low inspiratory positive airway pressure (IPAP) of 12 cm H2O applied. Clini et al. randomized 90 patients to long-term oxygen therapy (LTOT) alone or home NIV (IPAP 14 cm H2O) with LTOT, as part of a multicentre trial [71]. Adherence to NIV was high in this study at 9 hours per day, but there was only a trend to a reduction in hospital admission comparing admission rate before and after enrolment (45% decrease in hospital admissions in the intervention group versus 27% increase in the UC group). More recently, McEvoy et al. found a significant improvement in survival in a combined NIV and LTOT group in both intention-to-treat and per-protocol (>4 hours NIV use per night) analyses (HR 0.63, 95% CI 0.40 to 0.99, P = 0.045 and HR 0.57, CI 0.33 to 0.96, P = 0.036, respectively) [72]. This was achieved with an adherence of 4.3 hours per night. Despite this beneficial effect, NIV in addition to LTOT treatment conferred no benefit in terms of HRQL or hospital admission, albeit the IPAP in this trial was again low, at 12.9 cm H2O.
Patients with COPD are at greatest risk of death and re-admission immediately after an episode of AHRF. Indeed, the reported re-admission rate is 79.9% with a 1-year mortality rate of 49.1% [73]. Two recent trials have focused on this high-risk group [74, 75]. In the trial by Cheung et al., patients who had required NIV for AHRF were randomized to domiciliary nocturnal NIV or continuous positive airway pressure (CPAP) of 5 cm H2O. The intervention was shown to have a lower rate of recurrent AHRF compared with the control group (38.5% versus 60.2%; P = 0.039, respectively) and a longer median time to first re-admission (71 days versus 56 days; P = 0.048, respectively) [74]. CPAP as an appropriate control arm in patients with COPD is interesting. The methodological aim was to balance the possible negative physiological effects of CPAP in patients with severe COPD against the concerns about using a control group that were not exposed to a mask interface. The use of interface with minimal pressure delivery allowed testing of the hypothesis that NIV is beneficial in COPD patients with post-acute hypercapnic respiratory failure. In a separate trial, Funk et al. enrolled patients who had required NIV for AHRF, but randomized the patients, after a run-in period on NIV of 6 months, to either continuation or withdrawal of NIV. The primary endpoint was escalation of ventilation. They found that the rate of ventilation escalation was lower in the NIV continuation group compared with the withdrawal group (15% versus 77%; P = 0.0048, respectively) [75]. These studies suggest a benefit of using domiciliary NIV in patients who are recovering from a recent acute exacerbation complicated by acute hypercapnic respiratory failure.
At present, there is controversy about the use of domiciliary NIV, and there are currently no widely accepted criteria for commencing domiciliary NIV in stable COPD, despite the practice being widespread [76]. The available data indicate that patient selection is important. Specifically, the patients most likely to benefit from long-term domiciliary NIV are those who exhibit symptomatic chronic hypercapnic respiratory failure and those with severe episodes of acute exacerbation requiring acute NIV during hospital admission [77]. Because the prognosis is better for patients who have hypercapnia that is reversible during the post-exacerbation recovery phase [78, 79], it is important to target long-term NIV to patients who remain hypercapnic following their acute episode, as shown by the studies of Cheung et al. and Funk et al.[74, 75]. Preliminary screening data in 25 patients from a UK RCT of post-exacerbation domiciliary NIV suggest a prevalence of persistent severe hypercapnia (arterial partial pressure of carbon dioxide > 7 kPa 2 weeks after an episode of AHRF) of over 40% [80]. However, further studies are needed to elucidate the trajectory of hypercapnia in a large cohort of patients with COPD treated with acute NIV.
Two RCTs are ongoing in the UK [81] and the Netherlands [82] to establish the effect of domiciliary NIV in reducing mortality and hospital admission for patients with COPD who are hypercapnic. The UK trial is focused on patients following an acute hospital admission requiring NIV, and the trial from the Netherlands is focused on patients with stable COPD who are hypercapnic. There are, however, several challenges in conducting such studies. Firstly, the absence of a true placebo for NIV makes it difficult to have a robust control group for comparison. Most studies to date have compared NIV with UC, with or without LTOT [7072, 75], but a limitation of this approach is that it does not take into account the placebo effects of being given a mask interface. Cheung et al. attempted to address this by administering nasal CPAP at 5 cm H2O to patients in the control group [74]. However, as the authors acknowledged, the possibility remained that the CPAP had a beneficial physiological effect on the control group, and could not therefore be considered to be a true placebo [83, 84]. Secondly, the interpretation of the potential benefits of NIV are hampered by relatively short follow-up periods in the trials published to date; only two studies [71, 72] have followed patients up for 2 years or more. Clearly, as patients established on domiciliary NIV are likely to remain on it for several years, it would seem advantageous for future studies to assess its benefits over the longer term.

Smoking cessation

Smoking cessation is one of the few interventions shown to reduce mortality in patients with COPD. However, there are relatively few data showing the benefits of smoking cessation in reducing exacerbations. In the Lung Health Study, there was no significant difference in the risk of hospital admission between current smokers and ex-smokers [85]. Furthermore, Kessler et al. reported that smoking status had no effect on hospitalization risk [86], and Garcia-Aymerich et al. showed that current smoking was associated with a reduced risk of hospitalization in a small cohort of patients with COPD [87], suggesting that patients with very advanced disease and high risk of hospital admission quit tobacco consumption as a result of their significant symptom load. By contrast, Godtfredson et al. reported that, in a large prospective population study in Denmark, previous smokers had a lower risk of hospitalization for COPD (HR 0.57, 95% CI 0.73 to 1.18) compared with current smokers [88]. Interestingly, tobacco consumption (low versus high) had no effect on hospital admission. This study is supported by a population study by Au et al., who reported a reduced risk of COPD exacerbations in ex-smokers compared with current smokers when adjusted for comorbidity, markers of COPD severity, and socioeconomic status (adjusted HR 0.78, 95% CI 0.75 to 0.87) [89]. Importantly, the duration of smoking abstinence significantly influenced the magnitude of the reduced exacerbation risk.

Long-term oxygen therapy

Although LTOT is well established as a treatment to improve survival in patients with COPD and hypoxemia, there was no effect on exacerbation or hospitalization rates in early studies [90, 91]. The benefits of LTOT in reducing acute healthcare utilization have been shown in the EFRAM cohort, with appropriate LTOT utilization being associated with lower risk of admission [87]. Further evidence was given by Ringbaek et al., who showed in a Danish COPD cohort that LTOT reduced admission rates and hospital days by 23.8% and 31.2%, respectively [92].

Risk stratification and physiological monitoring

Early recognition and treatment of exacerbations, and timely detection of treatment failure during an exacerbation are key factors that may reduce in hospital admissions, facilitate early discharge, and avoid re-admissions. The development of clinical tools to achieve this should be a priority for COPD research. Although there has been a considerable focus on molecular biomarkers, the predictive value of the data has been disappointing [93]. However, more encouraging data have shown that fibrinogen levels, as a biomarker of severity of systemic inflammation, combined with forced expiratory volume in 1 second (FEV1) predicted moderate to severe exacerbations in the following year [94].
Despite the limited clinical usefulness of the molecular biomarkers, basic and advanced physiological measurements have been shown to have increased utility in monitoring the course of COPD. Stevenson et al. showed that inspiratory capacity, as a marker of dynamic hyperinflation, changed significantly during the course of recovery from an exacerbation, while the impedance of the respiratory system, as measured by impulse oscillometry, was unchanged [95]. Murphy et al. investigated the use of a novel technique using electromyography of the second intercostal space parasternal muscle as an advanced physiological biomarker of neural respiratory drive in patients with COPD admitted to hospital with an exacerbation. Indices of neural respiratory drive were shown to be superior to standard bedside clinical measures and spirometry in detecting clinical deterioration [96]. Furthermore, when the neural respiratory drive between admission and discharge were compared, this physiological biomarker had the sensitivity and specificity to identify those patients who were re-admitted within 14 days. Advanced physiological technology that monitors the clinical status of the patient during hospital admission will not only identify treatment failure early but will also allow risk stratification for early re-admission. Furthermore, the technology has the potential to be used as part of a home telehealthcare program.

Supported discharge and telehealth programs

Supported discharge and hospital-at-home programs have been introduced to improve the quality of life of patients by reducing hospital attendance and admission. This has potential benefits both for the patient and for reducing the expenditure within acute healthcare organizations. Studies have shown that in patients with uncomplicated acute exacerbations, early supported discharge is safe, and reduces length of stay without an increased re-admission rate, which was an initial clinical concern [97, 98]. However, a meta-analysis of hospital at-home programs, as an alternative to continued hospitalization, concluded from eight trials that there was only a small benefit in terms of re-admission risk (risk ratio 0.76, 95% CI 0.59 to 0.99, P = 0.006) [99]. Furthermore, only a third of all patients were eligible for enrolment in the program, and there was no significant reduction in mortality (RR 0.65, 95% CI 0.4 to 1.04). Importantly, there was also no evidence of a cost saving.
With advances in information technology, advanced care coordination telehealth systems have been developed. These aim to facilitate transfer of clinical data about the patient through telecommunication networks. These data are reviewed remotely by a trained healthcare professional, who provides advice on the basis of the transmitted data [100]. In patients with COPD, such systems are aimed at early recognition and treatment of exacerbations in order to reduce healthcare utilization through admission avoidance, which will be reflected as an enhanced quality of life for the patient [100]. Although bodies such as the European Commission have highlighted the potential of telehealth in the management of chronic diseases, there is limited evidence for its effectiveness in COPD [101]. Although systematic reviews investigating the role of telehealth in patients with COPD have reported reductions in ED attendance and hospital admission [100, 102, 103], there has been a wide variation in the nature of the interventions themselves, with some of the studies being underpowered [102], such that clinical effectiveness has not been established. A meta-analysis reported that telemonitoring actually appeared to increase the mortality rate compared with UC, suggesting that patients may have delayed seeking urgent medical attention because of false reassurance from the remote assistance [103]. The Whole System Demonstrator study, a UK project funded by the Department of Health, was designed to establish whether integrated care supported by telehealthcare was effective in reducing healthcare utilization and mortality in a large number of patients with chronic illness, including COPD [104]. Primary care practices were randomized to provide either telehealth or UC, and patients were enrolled across three UK regions. Telehealth reduced the hospital admission and mortality [104], but interestingly, there was no improvement in either quality of life or psychological outcomes [105]. In a subsequent economic analysis, telehealth was not shown to be cost-effective in patients with COPD [106]. The results of a large UK RCT in patients with COPD are awaited [107]. In the interim, as part of a European Commission Innovation Partnership project, clinicians, researchers and engineers are working together identify the specific technological, physiological, behavioral, and clinical components that should be included in an advanced care coordination and telehealth deployment program to provide the most benefit to patients [108].

Conclusions

Attention has been focused on the development of non-pharmacological strategies to improve health status and quality of life, and to reduce healthcare utilization and costs by preventing the frequency and severity of acute exacerbations of COPD. These non-pharmacological strategies, although they show potential, need further supporting data before widespread implementation can be suggested.

Acknowledgements

We gratefully acknowledge funding from Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, NIHR Comprehensive Biomedical Research Centre, London, UK (to NH); from Guy’s and St Thomas’ Charity (to ES and SM); and from Philips Research (to ES).
Open AccessThis article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

NH is in receipt of a European Union grant for the development of care coordination and telehealthcare for chronic diseases including COPD. ES is in receipt of an unrestricted educational grant from Philips Electronics to develop advanced physiological monitoring techniques in patients with COPD.

Authors’ contributions

ES, SM, and NH contributed to the literature review and manuscript preparation. All authors have read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat White P: Prevalence of COPD in primary care: no room for complacency. Fam Pract. 2009, 26: 1-2.PubMed White P: Prevalence of COPD in primary care: no room for complacency. Fam Pract. 2009, 26: 1-2.PubMed
2.
Zurück zum Zitat Akinbami LJ, Liu X: Chronic obstructive pulmonary disease among adults aged 18 and over in the United States, 1998–2009. NCHS Data Brief. 2011, 63: 1-8.PubMed Akinbami LJ, Liu X: Chronic obstructive pulmonary disease among adults aged 18 and over in the United States, 1998–2009. NCHS Data Brief. 2011, 63: 1-8.PubMed
3.
Zurück zum Zitat Zhong N, Wang C, Yao W, Chen P, Kang J, Huang S, Chen B, Wang C, Ni D, Zhou Y, et al: Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey. Am J Respir Crit Care Med. 2007, 176: 753-760. 10.1164/rccm.200612-1749OC.PubMed Zhong N, Wang C, Yao W, Chen P, Kang J, Huang S, Chen B, Wang C, Ni D, Zhou Y, et al: Prevalence of chronic obstructive pulmonary disease in China: a large, population-based survey. Am J Respir Crit Care Med. 2007, 176: 753-760. 10.1164/rccm.200612-1749OC.PubMed
4.
Zurück zum Zitat Lin H-H, Murray M, Cohen T, Colijn C, Ezzati M: Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study. The Lancet. 2008, 372: 1473-1483. 10.1016/S0140-6736(08)61345-8. Lin H-H, Murray M, Cohen T, Colijn C, Ezzati M: Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factor, modelling study. The Lancet. 2008, 372: 1473-1483. 10.1016/S0140-6736(08)61345-8.
5.
Zurück zum Zitat Mannino DM, Homa DM, Akinbami LJ, Ford ES, Redd SC: Chronic obstructive pulmonary disease surveillance–United States, 1971–2000. MMWR Surveill Summ. 2002, 51: 1-16. Mannino DM, Homa DM, Akinbami LJ, Ford ES, Redd SC: Chronic obstructive pulmonary disease surveillance–United States, 1971–2000. MMWR Surveill Summ. 2002, 51: 1-16.
6.
Zurück zum Zitat National Heart, Lung and Blood Institute. Morbidity and Mortality: 2009 Chartbook of Cardiovascular, Lung and Blood Diseases. 2009, Bethesda (MD): National Institutes of Health National Heart, Lung and Blood Institute. Morbidity and Mortality: 2009 Chartbook of Cardiovascular, Lung and Blood Diseases. 2009, Bethesda (MD): National Institutes of Health
7.
Zurück zum Zitat National Collaborating Centre for Chronic Conditions: Chronic obstructive pulmonary disease. National clinical guideline on management of chronic obstructive pulmonary disease in adults in primary and secondary care. Thorax. 2004, 59: 1-232. National Collaborating Centre for Chronic Conditions: Chronic obstructive pulmonary disease. National clinical guideline on management of chronic obstructive pulmonary disease in adults in primary and secondary care. Thorax. 2004, 59: 1-232.
8.
Zurück zum Zitat Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, Fabbri LM, Goldin JG, Jones PW, Macnee W, et al: Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010, 182: 598-604. 10.1164/rccm.200912-1843CC.PubMed Han MK, Agusti A, Calverley PM, Celli BR, Criner G, Curtis JL, Fabbri LM, Goldin JG, Jones PW, Macnee W, et al: Chronic obstructive pulmonary disease phenotypes: the future of COPD. Am J Respir Crit Care Med. 2010, 182: 598-604. 10.1164/rccm.200912-1843CC.PubMed
9.
Zurück zum Zitat Wedzicha JA, Brill SE, Allinson JP, Donaldson GC: Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease. BMC Med. 2013, 11: 181-10.1186/1741-7015-11-181.PubMedPubMedCentral Wedzicha JA, Brill SE, Allinson JP, Donaldson GC: Mechanisms and impact of the frequent exacerbator phenotype in chronic obstructive pulmonary disease. BMC Med. 2013, 11: 181-10.1186/1741-7015-11-181.PubMedPubMedCentral
10.
Zurück zum Zitat Cazzola M, MacNee W, Martinez FJ, Rabe KF, Franciosi LG, Barnes PJ, Brusasco V, Burge PS, Calverley PM, Celli BR, et al: Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J. 2008, 31: 416-469. 10.1183/09031936.00099306.PubMed Cazzola M, MacNee W, Martinez FJ, Rabe KF, Franciosi LG, Barnes PJ, Brusasco V, Burge PS, Calverley PM, Celli BR, et al: Outcomes for COPD pharmacological trials: from lung function to biomarkers. Eur Respir J. 2008, 31: 416-469. 10.1183/09031936.00099306.PubMed
11.
Zurück zum Zitat Donaldson GC, Seemungal TA, Patel IS, Bhowmik A, Wilkinson TM, Hurst JR, Maccallum PK, Wedzicha JA: Airway and systemic inflammation and decline in lung function in patients with COPD. Chest. 2005, 128: 1995-2004. 10.1378/chest.128.4.1995.PubMed Donaldson GC, Seemungal TA, Patel IS, Bhowmik A, Wilkinson TM, Hurst JR, Maccallum PK, Wedzicha JA: Airway and systemic inflammation and decline in lung function in patients with COPD. Chest. 2005, 128: 1995-2004. 10.1378/chest.128.4.1995.PubMed
12.
Zurück zum Zitat Donaldson GC, Seemungal TAR, Bhowmik A, Wedzicha JA: Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002, 57: 847-852. 10.1136/thorax.57.10.847.PubMedPubMedCentral Donaldson GC, Seemungal TAR, Bhowmik A, Wedzicha JA: Relationship between exacerbation frequency and lung function decline in chronic obstructive pulmonary disease. Thorax. 2002, 57: 847-852. 10.1136/thorax.57.10.847.PubMedPubMedCentral
13.
Zurück zum Zitat Celli BR, Thomas NE, Anderson JA, Ferguson GT, Jenkins CR, Jones PW, Vestbo J, Knobil K, Yates JC, Calverley PMA: Effect of pharmacotherapy on rate of decline of lung function in chronic obstructive pulmonary disease. Am J Res Crit Care Med. 2008, 178: 332-338. 10.1164/rccm.200712-1869OC. Celli BR, Thomas NE, Anderson JA, Ferguson GT, Jenkins CR, Jones PW, Vestbo J, Knobil K, Yates JC, Calverley PMA: Effect of pharmacotherapy on rate of decline of lung function in chronic obstructive pulmonary disease. Am J Res Crit Care Med. 2008, 178: 332-338. 10.1164/rccm.200712-1869OC.
14.
Zurück zum Zitat Vestbo J, Edwards LD, Scanlon PD, Yates JC, Agusti A, Bakke P, Calverley PMA, Celli B, Coxson HO, Crim C, et al: Changes in forced expiratory volume in 1 second over time in COPD. N Eng J Med. 2011, 365: 1184-1192. 10.1056/NEJMoa1105482. Vestbo J, Edwards LD, Scanlon PD, Yates JC, Agusti A, Bakke P, Calverley PMA, Celli B, Coxson HO, Crim C, et al: Changes in forced expiratory volume in 1 second over time in COPD. N Eng J Med. 2011, 365: 1184-1192. 10.1056/NEJMoa1105482.
15.
Zurück zum Zitat Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA: Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998, 157: 1418-1422. 10.1164/ajrccm.157.5.9709032.PubMed Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA: Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998, 157: 1418-1422. 10.1164/ajrccm.157.5.9709032.PubMed
16.
Zurück zum Zitat Halpin DM, Decramer M, Celli B, Kesten S, Liu D, Tashkin DP: Exacerbation frequency and course of COPD. Int J Chron Obstruct Pulmon Dis. 2012, 7: 653-661.PubMedPubMedCentral Halpin DM, Decramer M, Celli B, Kesten S, Liu D, Tashkin DP: Exacerbation frequency and course of COPD. Int J Chron Obstruct Pulmon Dis. 2012, 7: 653-661.PubMedPubMedCentral
17.
Zurück zum Zitat Esteban C, Quintana JM, Moraza J, Aburto M, Egurrola M, España PP, Pérez-Izquierdo J, Aguirre U, Aizpiri S, Capelastegui A: Impact of hospitalisations for exacerbations of COPD on health-related quality of life. Respir Med. 2009, 103: 1201-1208. 10.1016/j.rmed.2009.02.002.PubMed Esteban C, Quintana JM, Moraza J, Aburto M, Egurrola M, España PP, Pérez-Izquierdo J, Aguirre U, Aizpiri S, Capelastegui A: Impact of hospitalisations for exacerbations of COPD on health-related quality of life. Respir Med. 2009, 103: 1201-1208. 10.1016/j.rmed.2009.02.002.PubMed
18.
Zurück zum Zitat Cote CG, Dordelly LJ, Celli BR: Impact of COPD exacerbations on patient-centered outcomes. Chest. 2007, 131: 696-704. 10.1378/chest.06-1610.PubMed Cote CG, Dordelly LJ, Celli BR: Impact of COPD exacerbations on patient-centered outcomes. Chest. 2007, 131: 696-704. 10.1378/chest.06-1610.PubMed
19.
Zurück zum Zitat Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, Salcedo E, Navarro M, Ochando R: Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005, 60: 925-931. 10.1136/thx.2005.040527.PubMedPubMedCentral Soler-Cataluna JJ, Martinez-Garcia MA, Roman Sanchez P, Salcedo E, Navarro M, Ochando R: Severe acute exacerbations and mortality in patients with chronic obstructive pulmonary disease. Thorax. 2005, 60: 925-931. 10.1136/thx.2005.040527.PubMedPubMedCentral
20.
Zurück zum Zitat Almagro P, Calbo E, Ochoa De Echaguen A, Barreiro B, Quintana S, Heredia JL, Garau U: Mortality after hospitalization for COPD. Chest. 2002, 121: 1441-1448. 10.1378/chest.121.5.1441.PubMed Almagro P, Calbo E, Ochoa De Echaguen A, Barreiro B, Quintana S, Heredia JL, Garau U: Mortality after hospitalization for COPD. Chest. 2002, 121: 1441-1448. 10.1378/chest.121.5.1441.PubMed
21.
Zurück zum Zitat Groenewegen KH, Schols AM, Wouters EF: Mortality and mortality-related factors after hospitalization for acute exacerbation of COPD. Chest. 2003, 124: 459-467. 10.1378/chest.124.2.459.PubMed Groenewegen KH, Schols AM, Wouters EF: Mortality and mortality-related factors after hospitalization for acute exacerbation of COPD. Chest. 2003, 124: 459-467. 10.1378/chest.124.2.459.PubMed
22.
Zurück zum Zitat Steer J, Norman EM, Afolabi OA, Gibson GJ, Bourke SC: Dyspnoea severity and pneumonia as predictors of in-hospital mortality and early readmission in acute exacerbations of COPD. Thorax. 2012, 67: 117-121. 10.1136/thoraxjnl-2011-200332.PubMed Steer J, Norman EM, Afolabi OA, Gibson GJ, Bourke SC: Dyspnoea severity and pneumonia as predictors of in-hospital mortality and early readmission in acute exacerbations of COPD. Thorax. 2012, 67: 117-121. 10.1136/thoraxjnl-2011-200332.PubMed
23.
Zurück zum Zitat Connors A, Dawson N, Thomas C, Harrell F, Desbiens N, Fulkerson W, Kussin P, Bellamy P, Goldman L, Knaus W: Outcomes following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (study to understand prognoses and preferences for outcomes and risks of treatments). Am J Respir Crit Care Med. 1996, 154: 959-967. 10.1164/ajrccm.154.4.8887592.PubMed Connors A, Dawson N, Thomas C, Harrell F, Desbiens N, Fulkerson W, Kussin P, Bellamy P, Goldman L, Knaus W: Outcomes following acute exacerbation of severe chronic obstructive lung disease. The SUPPORT investigators (study to understand prognoses and preferences for outcomes and risks of treatments). Am J Respir Crit Care Med. 1996, 154: 959-967. 10.1164/ajrccm.154.4.8887592.PubMed
24.
Zurück zum Zitat Singanayagam A, Schembri S, Chalmers JD: Predictors of mortality in hospitalized adults with acute exacerbation of chronic obstructive pulmonary disease. Ann Am Thoracic Soc. 2013, 10: 81-89. Singanayagam A, Schembri S, Chalmers JD: Predictors of mortality in hospitalized adults with acute exacerbation of chronic obstructive pulmonary disease. Ann Am Thoracic Soc. 2013, 10: 81-89.
25.
Zurück zum Zitat O’Donnell DE, Parker CM: COPD exacerbations. 3: pathophysiology. Thorax. 2006, 61: 354-361. 10.1136/thx.2005.041830.PubMedPubMedCentral O’Donnell DE, Parker CM: COPD exacerbations. 3: pathophysiology. Thorax. 2006, 61: 354-361. 10.1136/thx.2005.041830.PubMedPubMedCentral
26.
Zurück zum Zitat Gershon AS, Guan J, Victor JC, Goldstein R, To T: Quantifying health services use for chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013, 187: 596-601. 10.1164/rccm.201211-2044OC.PubMed Gershon AS, Guan J, Victor JC, Goldstein R, To T: Quantifying health services use for chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2013, 187: 596-601. 10.1164/rccm.201211-2044OC.PubMed
27.
Zurück zum Zitat Royal College of Physicians, British Thoracic Society, British Lung Foundation: Report of the national chronic obstructive pulmonary disease audit 2008: clinical audit of COPD exacerbations admitted to acute NHS trusts across the UK. 2008, Royal College of Physicians Royal College of Physicians, British Thoracic Society, British Lung Foundation: Report of the national chronic obstructive pulmonary disease audit 2008: clinical audit of COPD exacerbations admitted to acute NHS trusts across the UK. 2008, Royal College of Physicians
28.
Zurück zum Zitat Anstey K, Lowe D, Roberts CM, Hosker H: Report of the 2003 National COPD Audit. 2004, London: Royal College of Physicians/British Thoracic Society Anstey K, Lowe D, Roberts CM, Hosker H: Report of the 2003 National COPD Audit. 2004, London: Royal College of Physicians/British Thoracic Society
29.
Zurück zum Zitat Westert GP, Lagoe RJ, Keskimäki I, Leyland A, Murphy M: An international study of hospital readmissions and related utilization in Europe and the USA. Health Policy. 2002, 61: 269-278. 10.1016/S0168-8510(01)00236-6.PubMed Westert GP, Lagoe RJ, Keskimäki I, Leyland A, Murphy M: An international study of hospital readmissions and related utilization in Europe and the USA. Health Policy. 2002, 61: 269-278. 10.1016/S0168-8510(01)00236-6.PubMed
30.
Zurück zum Zitat Reineck LA, Kahn JM: Quality measurement in the affordable care Act. A reaffirmed commitment to value in health care. Am J Res Crit Care Med. 2013, 187: 1038-1039. 10.1164/rccm.201302-0404ED. Reineck LA, Kahn JM: Quality measurement in the affordable care Act. A reaffirmed commitment to value in health care. Am J Res Crit Care Med. 2013, 187: 1038-1039. 10.1164/rccm.201302-0404ED.
31.
Zurück zum Zitat Nici L, ZuWallack R, Wouters E, Donner CF: On pulmonary rehabilitation and the flight of the bumblebee: the ATS/ERS statement on pulmonary rehabilitation. Eur Respir J. 2006, 28: 461-462. 10.1183/09031936.06.00075106.PubMed Nici L, ZuWallack R, Wouters E, Donner CF: On pulmonary rehabilitation and the flight of the bumblebee: the ATS/ERS statement on pulmonary rehabilitation. Eur Respir J. 2006, 28: 461-462. 10.1183/09031936.06.00075106.PubMed
32.
Zurück zum Zitat Barnes PJ, Celli BR: Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009, 33: 1165-1185. 10.1183/09031936.00128008.PubMed Barnes PJ, Celli BR: Systemic manifestations and comorbidities of COPD. Eur Respir J. 2009, 33: 1165-1185. 10.1183/09031936.00128008.PubMed
33.
Zurück zum Zitat Maltais F, Simard AA, Simard C, Jobin J, Desgagnes P, LeBlanc P: Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD. Am J Respir Crit Care Med. 1996, 153: 288-293. 10.1164/ajrccm.153.1.8542131.PubMed Maltais F, Simard AA, Simard C, Jobin J, Desgagnes P, LeBlanc P: Oxidative capacity of the skeletal muscle and lactic acid kinetics during exercise in normal subjects and in patients with COPD. Am J Respir Crit Care Med. 1996, 153: 288-293. 10.1164/ajrccm.153.1.8542131.PubMed
34.
Zurück zum Zitat Porszasz J, Emtner M, Goto S, Somfay A, Whipp BJ, Casaburi R: Exercise training decreases ventilatory requirements and exercise-induced hyperinflation at submaximal intensities in patients with COPD. Chest. 2005, 128: 2025-2034. 10.1378/chest.128.4.2025.PubMed Porszasz J, Emtner M, Goto S, Somfay A, Whipp BJ, Casaburi R: Exercise training decreases ventilatory requirements and exercise-induced hyperinflation at submaximal intensities in patients with COPD. Chest. 2005, 128: 2025-2034. 10.1378/chest.128.4.2025.PubMed
35.
Zurück zum Zitat Hawkins P, Johnson LC, Nikoletou D, Hamnegard CH, Sherwood R, Polkey MI, Moxham J: Proportional assist ventilation as an aid to exercise training in severe chronic obstructive pulmonary disease. Thorax. 2002, 57: 853-859. 10.1136/thorax.57.10.853.PubMedPubMedCentral Hawkins P, Johnson LC, Nikoletou D, Hamnegard CH, Sherwood R, Polkey MI, Moxham J: Proportional assist ventilation as an aid to exercise training in severe chronic obstructive pulmonary disease. Thorax. 2002, 57: 853-859. 10.1136/thorax.57.10.853.PubMedPubMedCentral
36.
Zurück zum Zitat Gayan-Ramirez G, Decramer M: Mechanisms of striated muscle dysfunction during acute exacerbations of COPD. J App Physiol. 2013, 114: 1291-1299. 10.1152/japplphysiol.00847.2012. Gayan-Ramirez G, Decramer M: Mechanisms of striated muscle dysfunction during acute exacerbations of COPD. J App Physiol. 2013, 114: 1291-1299. 10.1152/japplphysiol.00847.2012.
37.
Zurück zum Zitat Spruit MA, Gosselink R, Troosters T, Kasran A, Gayan-Ramirez G, Bogaerts P, Bouillon R, Decramer M: Muscle force during an acute exacerbation in hospitalised patients with COPD and its relationship with CXCL8 and IGF-I. Thorax. 2003, 58: 752-756. 10.1136/thorax.58.9.752.PubMedPubMedCentral Spruit MA, Gosselink R, Troosters T, Kasran A, Gayan-Ramirez G, Bogaerts P, Bouillon R, Decramer M: Muscle force during an acute exacerbation in hospitalised patients with COPD and its relationship with CXCL8 and IGF-I. Thorax. 2003, 58: 752-756. 10.1136/thorax.58.9.752.PubMedPubMedCentral
38.
Zurück zum Zitat Crul T, Testelmans D, Spruit MA, Troosters T, Gosselink R, Geeraerts I, Decramer M, Gayan-Ramirez G: Gene expression profiling in vastus lateralis muscle during an acute exacerbation of COPD. Cell Physiol Biochem. 2010, 25: 491-500. 10.1159/000303054.PubMed Crul T, Testelmans D, Spruit MA, Troosters T, Gosselink R, Geeraerts I, Decramer M, Gayan-Ramirez G: Gene expression profiling in vastus lateralis muscle during an acute exacerbation of COPD. Cell Physiol Biochem. 2010, 25: 491-500. 10.1159/000303054.PubMed
39.
Zurück zum Zitat Kim HC, Mofarrahi M, Hussain SN: Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008, 3: 637-658.PubMedPubMedCentral Kim HC, Mofarrahi M, Hussain SN: Skeletal muscle dysfunction in patients with chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis. 2008, 3: 637-658.PubMedPubMedCentral
40.
Zurück zum Zitat Vianna LG, Koulouris N, Lanigan C, Moxham J: Effect of acute hypercapnia on limb muscle contractility in humans. J Appl Physiol. 1990, 69: 1486-1493.PubMed Vianna LG, Koulouris N, Lanigan C, Moxham J: Effect of acute hypercapnia on limb muscle contractility in humans. J Appl Physiol. 1990, 69: 1486-1493.PubMed
41.
Zurück zum Zitat Juan G, Calverley P, Talamo C, Schnader J, Roussos C: Effect of carbon dioxide on diaphragmatic function in human beings. N Engl J Med. 1984, 310: 874-879. 10.1056/NEJM198404053101402.PubMed Juan G, Calverley P, Talamo C, Schnader J, Roussos C: Effect of carbon dioxide on diaphragmatic function in human beings. N Engl J Med. 1984, 310: 874-879. 10.1056/NEJM198404053101402.PubMed
42.
Zurück zum Zitat Vermeeren M, Schols A, Wouters E: Effects of an acute exacerbation on nutritional and metabolic profile of patients with COPD. Euro Respir J. 1997, 10: 2264-2269. 10.1183/09031936.97.10102264. Vermeeren M, Schols A, Wouters E: Effects of an acute exacerbation on nutritional and metabolic profile of patients with COPD. Euro Respir J. 1997, 10: 2264-2269. 10.1183/09031936.97.10102264.
43.
Zurück zum Zitat Nici L, Donner C, Wouters E, Zuwallack R, Ambrosino N, Bourbeau J, Carone M, Celli B, Engelen M, Fahy B, et al: American Thoracic Society/European Respiratory Society statement on pulmonary rehabilitation. Am J Respir Crit Care Med. 2006, 173: 1390-1413. 10.1164/rccm.200508-1211ST.PubMed Nici L, Donner C, Wouters E, Zuwallack R, Ambrosino N, Bourbeau J, Carone M, Celli B, Engelen M, Fahy B, et al: American Thoracic Society/European Respiratory Society statement on pulmonary rehabilitation. Am J Respir Crit Care Med. 2006, 173: 1390-1413. 10.1164/rccm.200508-1211ST.PubMed
44.
Zurück zum Zitat Vestbo J, Prescott E, Almdal T, Dahl M, Nordestgaard BG, Andersen T, Sorensen TI, Lange P: Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006, 173: 79-83.PubMed Vestbo J, Prescott E, Almdal T, Dahl M, Nordestgaard BG, Andersen T, Sorensen TI, Lange P: Body mass, fat-free body mass, and prognosis in patients with chronic obstructive pulmonary disease from a random population sample: findings from the Copenhagen City Heart Study. Am J Respir Crit Care Med. 2006, 173: 79-83.PubMed
45.
Zurück zum Zitat Maurer J, Rebbapragada V, Borson S, Goldstein R, Kunik ME, Yohannes AM, Hanania NA: Anxiety and depression in copd: current understanding, unanswered questions, and research needs. CHEST Journal. 2008, 134: 43S-56S. 10.1378/chest.08-0342. Maurer J, Rebbapragada V, Borson S, Goldstein R, Kunik ME, Yohannes AM, Hanania NA: Anxiety and depression in copd: current understanding, unanswered questions, and research needs. CHEST Journal. 2008, 134: 43S-56S. 10.1378/chest.08-0342.
46.
Zurück zum Zitat Bhandari NJ, Jain T, Marolda C, ZuWallack RL: Comprehensive pulmonary rehabilitation results in clinically meaningful improvements in anxiety and depression in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev. 2013, 33: 123-127. 10.1097/HCR.0b013e31828254d4.PubMed Bhandari NJ, Jain T, Marolda C, ZuWallack RL: Comprehensive pulmonary rehabilitation results in clinically meaningful improvements in anxiety and depression in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev. 2013, 33: 123-127. 10.1097/HCR.0b013e31828254d4.PubMed
47.
Zurück zum Zitat Lacasse Y, Goldstein R, Lasserson TJ, Martin S: Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006, 4: CD003793 Lacasse Y, Goldstein R, Lasserson TJ, Martin S: Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2006, 4: CD003793
48.
Zurück zum Zitat Puhan MA, Gimeno-Santos E, Scharplatz M, Troosters T, Walters EH, Steurer J: Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2011, 10: CD005305 Puhan MA, Gimeno-Santos E, Scharplatz M, Troosters T, Walters EH, Steurer J: Pulmonary rehabilitation following exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2011, 10: CD005305
49.
Zurück zum Zitat Kon SS, Canavan JL, Man WD: Pulmonary rehabilitation and acute exacerbations of COPD. Expert Rev Respir Med. 2012, 6: 523-531. 10.1586/ers.12.47. quiz 531PubMed Kon SS, Canavan JL, Man WD: Pulmonary rehabilitation and acute exacerbations of COPD. Expert Rev Respir Med. 2012, 6: 523-531. 10.1586/ers.12.47. quiz 531PubMed
50.
Zurück zum Zitat Seymour JM, Moore L, Jolley CJ, Ward K, Creasey J, Steier JS, Yung B, Man WD, Hart N, Polkey MI, et al: Outpatient pulmonary rehabilitation following acute exacerbations of COPD. Thorax. 2010, 65: 423-428. 10.1136/thx.2009.124164.PubMed Seymour JM, Moore L, Jolley CJ, Ward K, Creasey J, Steier JS, Yung B, Man WD, Hart N, Polkey MI, et al: Outpatient pulmonary rehabilitation following acute exacerbations of COPD. Thorax. 2010, 65: 423-428. 10.1136/thx.2009.124164.PubMed
51.
Zurück zum Zitat Pitta F, Troosters T, Probst VS, Spruit MA, Decramer M, Gosselink R: Physical activity and hospitalization for exacerbation of COPD. Chest. 2006, 129: 536-544. 10.1378/chest.129.3.536.PubMed Pitta F, Troosters T, Probst VS, Spruit MA, Decramer M, Gosselink R: Physical activity and hospitalization for exacerbation of COPD. Chest. 2006, 129: 536-544. 10.1378/chest.129.3.536.PubMed
52.
Zurück zum Zitat Eaton T, Young P, Fergusson W, Moodie L, Zeng I, O’Kane F, Good N, Rhodes L, Poole P, Kolbe J: Does early pulmonary rehabilitation reduce acute health-care utilization in COPD patients admitted with an exacerbation? A randomized controlled study. Respirology. 2009, 14: 230-238. 10.1111/j.1440-1843.2008.01418.x.PubMed Eaton T, Young P, Fergusson W, Moodie L, Zeng I, O’Kane F, Good N, Rhodes L, Poole P, Kolbe J: Does early pulmonary rehabilitation reduce acute health-care utilization in COPD patients admitted with an exacerbation? A randomized controlled study. Respirology. 2009, 14: 230-238. 10.1111/j.1440-1843.2008.01418.x.PubMed
53.
Zurück zum Zitat Ko FW, Dai DL, Ngai J, Tung A, Ng S, Lai K, Fong R, Lau H, Tam W, Hui DS: Effect of early pulmonary rehabilitation on health care utilization and health status in patients hospitalized with acute exacerbations of COPD. Respirology. 2011, 16: 617-624. 10.1111/j.1440-1843.2010.01921.x.PubMed Ko FW, Dai DL, Ngai J, Tung A, Ng S, Lai K, Fong R, Lau H, Tam W, Hui DS: Effect of early pulmonary rehabilitation on health care utilization and health status in patients hospitalized with acute exacerbations of COPD. Respirology. 2011, 16: 617-624. 10.1111/j.1440-1843.2010.01921.x.PubMed
54.
Zurück zum Zitat Puhan MA, Spaar A, Frey M, Turk A, Brandli O, Ritscher D, Achermann E, Kaelin R, Karrer W: Early versus late pulmonary rehabilitation in chronic obstructive pulmonary disease patients with acute exacerbations: a randomized trial. Respiration. 2012, 83: 499-506. 10.1159/000329884.PubMed Puhan MA, Spaar A, Frey M, Turk A, Brandli O, Ritscher D, Achermann E, Kaelin R, Karrer W: Early versus late pulmonary rehabilitation in chronic obstructive pulmonary disease patients with acute exacerbations: a randomized trial. Respiration. 2012, 83: 499-506. 10.1159/000329884.PubMed
55.
Zurück zum Zitat Maddocks M, Gao W, Higginson IJ, Wilcock A: Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev. 2013, 1: CD009419 Maddocks M, Gao W, Higginson IJ, Wilcock A: Neuromuscular electrical stimulation for muscle weakness in adults with advanced disease. Cochrane Database Syst Rev. 2013, 1: CD009419
56.
Zurück zum Zitat Dyer F, Flude L, Bazari F, Jolley C, Englebretsen C, Lai D, Polkey MI, Hopkinson NS: Non-invasive ventilation (NIV) as an aid to rehabilitation in acute respiratory disease. BMC Pulm Med. 2011, 11: 58-10.1186/1471-2466-11-58.PubMedPubMedCentral Dyer F, Flude L, Bazari F, Jolley C, Englebretsen C, Lai D, Polkey MI, Hopkinson NS: Non-invasive ventilation (NIV) as an aid to rehabilitation in acute respiratory disease. BMC Pulm Med. 2011, 11: 58-10.1186/1471-2466-11-58.PubMedPubMedCentral
57.
Zurück zum Zitat Raskin J, Spiegler P, McCusker C, ZuWallack R, Bernstein M, Busby J, DiLauro P, Griffiths K, Haggerty M, Hovey L, et al: The effect of pulmonary rehabilitation on healthcare utilization in chronic obstructive pulmonary disease: the northeast pulmonary rehabilitation consortium. J Cardiopulm Rehabil. 2006, 26: 231-236. 10.1097/00008483-200607000-00006.PubMed Raskin J, Spiegler P, McCusker C, ZuWallack R, Bernstein M, Busby J, DiLauro P, Griffiths K, Haggerty M, Hovey L, et al: The effect of pulmonary rehabilitation on healthcare utilization in chronic obstructive pulmonary disease: the northeast pulmonary rehabilitation consortium. J Cardiopulm Rehabil. 2006, 26: 231-236. 10.1097/00008483-200607000-00006.PubMed
58.
Zurück zum Zitat Cecins N, Geelhoed E, Jenkins SC: Reduction in hospitalisation following pulmonary rehabilitation in patients with COPD. Aust Health Rev. 2008, 32: 415-422. 10.1071/AH080415.PubMed Cecins N, Geelhoed E, Jenkins SC: Reduction in hospitalisation following pulmonary rehabilitation in patients with COPD. Aust Health Rev. 2008, 32: 415-422. 10.1071/AH080415.PubMed
59.
Zurück zum Zitat Hui KP, Hewitt AB: A simple pulmonary rehabilitation program improves health outcomes and reduces hospital utilization in patients with COPD. Chest. 2003, 124: 94-97. 10.1378/chest.124.1.94.PubMed Hui KP, Hewitt AB: A simple pulmonary rehabilitation program improves health outcomes and reduces hospital utilization in patients with COPD. Chest. 2003, 124: 94-97. 10.1378/chest.124.1.94.PubMed
60.
Zurück zum Zitat Chakravorty I, Fasakin C, Paine T, Narasimhaiah D, Austin G: Outpatient-based pulmonary rehabilitation for COPD: a cost of illness study. ISRN Pulmonol. 2011, 2011: 6. Chakravorty I, Fasakin C, Paine T, Narasimhaiah D, Austin G: Outpatient-based pulmonary rehabilitation for COPD: a cost of illness study. ISRN Pulmonol. 2011, 2011: 6.
61.
Zurück zum Zitat Griffiths TL, Burr ML, Campbell IA, Lewis-Jenkins V, Mullins J, Shiels K, Turner-Lawlor PJ, Payne N, Newcombe RG, Ionescu AA, et al: Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: a randomised controlled trial. Lancet. 2000, 355: 362-368. 10.1016/S0140-6736(99)07042-7.PubMed Griffiths TL, Burr ML, Campbell IA, Lewis-Jenkins V, Mullins J, Shiels K, Turner-Lawlor PJ, Payne N, Newcombe RG, Ionescu AA, et al: Results at 1 year of outpatient multidisciplinary pulmonary rehabilitation: a randomised controlled trial. Lancet. 2000, 355: 362-368. 10.1016/S0140-6736(99)07042-7.PubMed
62.
Zurück zum Zitat Guell R, Casan P, Belda J, Sangenis M, Morante F, Guyatt GH, Sanchis J: Long-term effects of outpatient rehabilitation of COPD: a randomized trial. Chest. 2000, 117: 976-983. 10.1378/chest.117.4.976.PubMed Guell R, Casan P, Belda J, Sangenis M, Morante F, Guyatt GH, Sanchis J: Long-term effects of outpatient rehabilitation of COPD: a randomized trial. Chest. 2000, 117: 976-983. 10.1378/chest.117.4.976.PubMed
63.
Zurück zum Zitat Engstrom CP, Persson LO, Larsson S, Sullivan M: Long-term effects of a pulmonary rehabilitation programme in outpatients with chronic obstructive pulmonary disease: a randomized controlled study. Scand J Rehabil Med. 1999, 31: 207-213. 10.1080/003655099444371.PubMed Engstrom CP, Persson LO, Larsson S, Sullivan M: Long-term effects of a pulmonary rehabilitation programme in outpatients with chronic obstructive pulmonary disease: a randomized controlled study. Scand J Rehabil Med. 1999, 31: 207-213. 10.1080/003655099444371.PubMed
64.
Zurück zum Zitat Ries AL, Kaplan RM, Limberg TM, Prewitt LM: Effects of pulmonary rehabilitation on physiologic and psychosocial outcomes in patients with chronic obstructive pulmonary disease. Ann Intern Med. 1995, 122: 823-832. 10.7326/0003-4819-122-11-199506010-00003.PubMed Ries AL, Kaplan RM, Limberg TM, Prewitt LM: Effects of pulmonary rehabilitation on physiologic and psychosocial outcomes in patients with chronic obstructive pulmonary disease. Ann Intern Med. 1995, 122: 823-832. 10.7326/0003-4819-122-11-199506010-00003.PubMed
65.
Zurück zum Zitat Plant PK, Owen JL, Elliott MW: Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial. Lancet. 2000, 355: 1931-1935. 10.1016/S0140-6736(00)02323-0.PubMed Plant PK, Owen JL, Elliott MW: Early use of non-invasive ventilation for acute exacerbations of chronic obstructive pulmonary disease on general respiratory wards: a multicentre randomised controlled trial. Lancet. 2000, 355: 1931-1935. 10.1016/S0140-6736(00)02323-0.PubMed
66.
Zurück zum Zitat British Thoracic Society, Royal College of Physicians (London), Intensive Care Society: The Use of Non-Invasive Ventilation in the management of patients with chronic obstructive pulmonary disease admitted to hospital with acute type II respiratory failure (with particular reference to Bilevel positive pressure ventilation). 2008, London: British Thoracic Society, Royal College of Physicians (London), Intensive Care Society British Thoracic Society, Royal College of Physicians (London), Intensive Care Society: The Use of Non-Invasive Ventilation in the management of patients with chronic obstructive pulmonary disease admitted to hospital with acute type II respiratory failure (with particular reference to Bilevel positive pressure ventilation). 2008, London: British Thoracic Society, Royal College of Physicians (London), Intensive Care Society
67.
Zurück zum Zitat Kallet RH, Diaz JV: The physiologic effects of noninvasive ventilation. Respir Care. 2009, 54: 102-115.PubMed Kallet RH, Diaz JV: The physiologic effects of noninvasive ventilation. Respir Care. 2009, 54: 102-115.PubMed
68.
Zurück zum Zitat Nickol AH, Hart N, Hopkinson NS, Hamnegard CH, Moxham J, Simonds A, Polkey MI: Mechanisms of improvement of respiratory failure in patients with COPD treated with NIV. Int J Chron Obstruct Pulmon Dis. 2008, 3: 453-462.PubMedPubMedCentral Nickol AH, Hart N, Hopkinson NS, Hamnegard CH, Moxham J, Simonds A, Polkey MI: Mechanisms of improvement of respiratory failure in patients with COPD treated with NIV. Int J Chron Obstruct Pulmon Dis. 2008, 3: 453-462.PubMedPubMedCentral
69.
Zurück zum Zitat Tuggey JM, Plant PK, Elliott MW: Domiciliary non-invasive ventilation for recurrent acidotic exacerbations of COPD: an economic analysis. Thorax. 2003, 58: 867-871. 10.1136/thorax.58.10.867.PubMedPubMedCentral Tuggey JM, Plant PK, Elliott MW: Domiciliary non-invasive ventilation for recurrent acidotic exacerbations of COPD: an economic analysis. Thorax. 2003, 58: 867-871. 10.1136/thorax.58.10.867.PubMedPubMedCentral
70.
Zurück zum Zitat Casanova C, Celli BR, Tost L, Soriano E, Abreu J, Velasco V, Santolaria F: Long-term controlled trial of nocturnal nasal positive pressure ventilation in patients with severe COPD. Chest. 2000, 118: 1582-1590. 10.1378/chest.118.6.1582.PubMed Casanova C, Celli BR, Tost L, Soriano E, Abreu J, Velasco V, Santolaria F: Long-term controlled trial of nocturnal nasal positive pressure ventilation in patients with severe COPD. Chest. 2000, 118: 1582-1590. 10.1378/chest.118.6.1582.PubMed
71.
Zurück zum Zitat Clini E, Sturani C, Rossi A, Viaggi S, Corrado A, Donner CF, Ambrosino N: The Italian multicentre study on noninvasive ventilation in chronic obstructive pulmonary disease patients. Eur Respir J. 2002, 20: 529-538. 10.1183/09031936.02.02162001.PubMed Clini E, Sturani C, Rossi A, Viaggi S, Corrado A, Donner CF, Ambrosino N: The Italian multicentre study on noninvasive ventilation in chronic obstructive pulmonary disease patients. Eur Respir J. 2002, 20: 529-538. 10.1183/09031936.02.02162001.PubMed
72.
Zurück zum Zitat McEvoy RD, Pierce RJ, Hillman D, Esterman A, Ellis EE, Catcheside PG, O’Donoghue FJ, Barnes DJ, Grunstein RR: Nocturnal non-invasive nasal ventilation in stable hypercapnic COPD: a randomised controlled trial. Thorax. 2009, 64: 561-566. 10.1136/thx.2008.108274.PubMed McEvoy RD, Pierce RJ, Hillman D, Esterman A, Ellis EE, Catcheside PG, O’Donoghue FJ, Barnes DJ, Grunstein RR: Nocturnal non-invasive nasal ventilation in stable hypercapnic COPD: a randomised controlled trial. Thorax. 2009, 64: 561-566. 10.1136/thx.2008.108274.PubMed
73.
Zurück zum Zitat Chu CM, Chan VL, Lin AW, Wong IW, Leung WS, Lai CK: Readmission rates and life threatening events in COPD survivors treated with non-invasive ventilation for acute hypercapnic respiratory failure. Thorax. 2004, 59: 1020-1025. 10.1136/thx.2004.024307.PubMedPubMedCentral Chu CM, Chan VL, Lin AW, Wong IW, Leung WS, Lai CK: Readmission rates and life threatening events in COPD survivors treated with non-invasive ventilation for acute hypercapnic respiratory failure. Thorax. 2004, 59: 1020-1025. 10.1136/thx.2004.024307.PubMedPubMedCentral
74.
Zurück zum Zitat Cheung AP, Chan VL, Liong JT, Lam JY, Leung WS, Lin A, Chu CM: A pilot trial of non-invasive home ventilation after acidotic respiratory failure in chronic obstructive pulmonary disease. Int J Tuberc Lung Dis. 2010, 14: 642-649.PubMed Cheung AP, Chan VL, Liong JT, Lam JY, Leung WS, Lin A, Chu CM: A pilot trial of non-invasive home ventilation after acidotic respiratory failure in chronic obstructive pulmonary disease. Int J Tuberc Lung Dis. 2010, 14: 642-649.PubMed
75.
Zurück zum Zitat Funk GC, Breyer MK, Burghuber OC, Kink E, Kirchheiner K, Kohansal R, Schmidt I, Hartl S: Long-term non-invasive ventilation in COPD after acute-on-chronic respiratory failure. Respir Med. 2011, 105: 427-434. 10.1016/j.rmed.2010.09.005.PubMed Funk GC, Breyer MK, Burghuber OC, Kink E, Kirchheiner K, Kohansal R, Schmidt I, Hartl S: Long-term non-invasive ventilation in COPD after acute-on-chronic respiratory failure. Respir Med. 2011, 105: 427-434. 10.1016/j.rmed.2010.09.005.PubMed
76.
Zurück zum Zitat Lloyd-Owen SJ, Donaldson GC, Ambrosino N, Escarabill J, Farre R, Fauroux B, Robert D, Schoenhofer B, Simonds AK, Wedzicha JA: Patterns of home mechanical ventilation use in Europe: results from the Eurovent survey. Eur Respir J. 2005, 25: 1025-1031. 10.1183/09031936.05.00066704.PubMed Lloyd-Owen SJ, Donaldson GC, Ambrosino N, Escarabill J, Farre R, Fauroux B, Robert D, Schoenhofer B, Simonds AK, Wedzicha JA: Patterns of home mechanical ventilation use in Europe: results from the Eurovent survey. Eur Respir J. 2005, 25: 1025-1031. 10.1183/09031936.05.00066704.PubMed
77.
Zurück zum Zitat NAMDRC: Clinical indications for noninvasive positive pressure ventilation in chronic respiratory failure due to restrictive lung disease, COPD, and nocturnal hypoventilation–a consensus conference report. Chest. 1999, 116: 521-534. NAMDRC: Clinical indications for noninvasive positive pressure ventilation in chronic respiratory failure due to restrictive lung disease, COPD, and nocturnal hypoventilation–a consensus conference report. Chest. 1999, 116: 521-534.
78.
Zurück zum Zitat Costello R, Deegan P, Fitzpatrick M, McNicholas WT: Reversible hypercapnia in chronic obstructive pulmonary disease: a distinct pattern of respiratory failure with a favorable prognosis. Am J Med. 1997, 102: 239-244. 10.1016/S0002-9343(97)00017-X.PubMed Costello R, Deegan P, Fitzpatrick M, McNicholas WT: Reversible hypercapnia in chronic obstructive pulmonary disease: a distinct pattern of respiratory failure with a favorable prognosis. Am J Med. 1997, 102: 239-244. 10.1016/S0002-9343(97)00017-X.PubMed
79.
Zurück zum Zitat McNally E, Fitzpatrick M, Bourke S, Costello R, McNicholas WT: Reversible hypercapnia in acute exacerbations of chronic obstructive pulmonary disease (COPD). Eur Respir J. 1993, 6: 1353-1356.PubMed McNally E, Fitzpatrick M, Bourke S, Costello R, McNicholas WT: Reversible hypercapnia in acute exacerbations of chronic obstructive pulmonary disease (COPD). Eur Respir J. 1993, 6: 1353-1356.PubMed
80.
Zurück zum Zitat Murphy P, Gibson GJ, Polkey MI, Hart N: HOT HMV UK: prevalence of persistent significant hypercapnia following acute exacerbation of COPD (AECOPD) requiring non-invasive ventilation (NIV) [Abstract]. Thorax. 2010, 65: A33. Murphy P, Gibson GJ, Polkey MI, Hart N: HOT HMV UK: prevalence of persistent significant hypercapnia following acute exacerbation of COPD (AECOPD) requiring non-invasive ventilation (NIV) [Abstract]. Thorax. 2010, 65: A33.
83.
Zurück zum Zitat Miro AM, Shivaram U, Hertig I: COntinuous positive airway pressure in copd patients in acute hypercapnic respiratory failure. CHEST Journal. 1993, 103: 266-268. 10.1378/chest.103.1.266. Miro AM, Shivaram U, Hertig I: COntinuous positive airway pressure in copd patients in acute hypercapnic respiratory failure. CHEST Journal. 1993, 103: 266-268. 10.1378/chest.103.1.266.
84.
Zurück zum Zitat Goldberg P, Reissmann H, Maltais F, Ranieri M, Gottfried SB: Efficacy of noninvasive CPAP in COPD with acute respiratory failure. Eur Respir J. 1995, 8: 1894-1900. 10.1183/09031936.95.08111894.PubMed Goldberg P, Reissmann H, Maltais F, Ranieri M, Gottfried SB: Efficacy of noninvasive CPAP in COPD with acute respiratory failure. Eur Respir J. 1995, 8: 1894-1900. 10.1183/09031936.95.08111894.PubMed
85.
Zurück zum Zitat Anthonisen NR, Connett JE, Enright PL, Manfreda J: Lung health study research G: hospitalizations and mortality in the lung health study. Am J Respir Crit Care Med. 2002, 166: 333-339. 10.1164/rccm.2110093.PubMed Anthonisen NR, Connett JE, Enright PL, Manfreda J: Lung health study research G: hospitalizations and mortality in the lung health study. Am J Respir Crit Care Med. 2002, 166: 333-339. 10.1164/rccm.2110093.PubMed
86.
Zurück zum Zitat Kessler R, Faller M, Fourgaut G, Mennecier B, Weitzenblum E: Predictive factors of hospitalization for acute exacerbation in a series of 64 patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999, 159: 158-164. 10.1164/ajrccm.159.1.9803117.PubMed Kessler R, Faller M, Fourgaut G, Mennecier B, Weitzenblum E: Predictive factors of hospitalization for acute exacerbation in a series of 64 patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1999, 159: 158-164. 10.1164/ajrccm.159.1.9803117.PubMed
87.
Zurück zum Zitat Garcia-Aymerich J, Monso E, Marrades RM, Escarrabill J, Felez MA, Sunyer J, Anto JM: Risk factors for hospitalization for a chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med. 2001, 164: 1002-1007. 10.1164/ajrccm.164.6.2006012.PubMed Garcia-Aymerich J, Monso E, Marrades RM, Escarrabill J, Felez MA, Sunyer J, Anto JM: Risk factors for hospitalization for a chronic obstructive pulmonary disease exacerbation. Am J Respir Crit Care Med. 2001, 164: 1002-1007. 10.1164/ajrccm.164.6.2006012.PubMed
88.
Zurück zum Zitat Godtfredsen NS, Vestbo J, Osler M, Prescott E: Risk of hospital admission for COPD following smoking cessation and reduction: a Danish population study. Thorax. 2002, 57: 967-972. 10.1136/thorax.57.11.967.PubMedPubMedCentral Godtfredsen NS, Vestbo J, Osler M, Prescott E: Risk of hospital admission for COPD following smoking cessation and reduction: a Danish population study. Thorax. 2002, 57: 967-972. 10.1136/thorax.57.11.967.PubMedPubMedCentral
89.
Zurück zum Zitat Au DH, Bryson CL, Chien JW, Sun H, Udris EM, Evans LE, Bradley KA: The effects of smoking cessation on the risk of chronic obstructive pulmonary disease exacerbations. J Gen Intern Med. 2009, 24: 457-463. 10.1007/s11606-009-0907-y.PubMedPubMedCentral Au DH, Bryson CL, Chien JW, Sun H, Udris EM, Evans LE, Bradley KA: The effects of smoking cessation on the risk of chronic obstructive pulmonary disease exacerbations. J Gen Intern Med. 2009, 24: 457-463. 10.1007/s11606-009-0907-y.PubMedPubMedCentral
90.
Zurück zum Zitat Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet. 1981, 1: 681-686. Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Report of the Medical Research Council Working Party. Lancet. 1981, 1: 681-686.
91.
Zurück zum Zitat Is 12-hour oxygen as effective as 24-hour oxygen in advanced chronic obstructive pulmonary disease with hypoxemia? (The Nocturnal Oxygen Therapy Trial–NOTT). Chest. 1980, 78: 419-420. Is 12-hour oxygen as effective as 24-hour oxygen in advanced chronic obstructive pulmonary disease with hypoxemia? (The Nocturnal Oxygen Therapy Trial–NOTT). Chest. 1980, 78: 419-420.
92.
Zurück zum Zitat Ringbaek TJ, Viskum K, Lange P: Does long-term oxygen therapy reduce hospitalisation in hypoxaemic chronic obstructive pulmonary disease?. Eur Respir J. 2002, 20: 38-42. 10.1183/09031936.02.00284202.PubMed Ringbaek TJ, Viskum K, Lange P: Does long-term oxygen therapy reduce hospitalisation in hypoxaemic chronic obstructive pulmonary disease?. Eur Respir J. 2002, 20: 38-42. 10.1183/09031936.02.00284202.PubMed
93.
Zurück zum Zitat Hurst JR, Donaldson GC, Perera WR, Wilkinson TM, Bilello JA, Hagan GW, Vessey RS, Wedzicha JA: Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006, 174: 867-874. 10.1164/rccm.200604-506OC.PubMed Hurst JR, Donaldson GC, Perera WR, Wilkinson TM, Bilello JA, Hagan GW, Vessey RS, Wedzicha JA: Use of plasma biomarkers at exacerbation of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2006, 174: 867-874. 10.1164/rccm.200604-506OC.PubMed
94.
Zurück zum Zitat Rosenberg SR, Kalhan R: Biomarkers in chronic obstructive pulmonary disease. Translational Res. 2012, 159: 228-237. 10.1016/j.trsl.2012.01.019. Rosenberg SR, Kalhan R: Biomarkers in chronic obstructive pulmonary disease. Translational Res. 2012, 159: 228-237. 10.1016/j.trsl.2012.01.019.
95.
Zurück zum Zitat Stevenson NJ, Walker PP, Costello RW, Calverley PMA: Lung mechanics and dyspnea during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005, 172: 1510-1516. 10.1164/rccm.200504-595OC.PubMed Stevenson NJ, Walker PP, Costello RW, Calverley PMA: Lung mechanics and dyspnea during exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005, 172: 1510-1516. 10.1164/rccm.200504-595OC.PubMed
96.
Zurück zum Zitat Murphy PB, Kumar A, Reilly C, Jolley C, Walterspacher S, Fedele F, Hopkinson NS, Man WD, Polkey MI, Moxham J, et al: Neural respiratory drive as a physiological biomarker to monitor change during acute exacerbations of COPD. Thorax. 2011, 66: 602-608. 10.1136/thx.2010.151332.PubMed Murphy PB, Kumar A, Reilly C, Jolley C, Walterspacher S, Fedele F, Hopkinson NS, Man WD, Polkey MI, Moxham J, et al: Neural respiratory drive as a physiological biomarker to monitor change during acute exacerbations of COPD. Thorax. 2011, 66: 602-608. 10.1136/thx.2010.151332.PubMed
97.
Zurück zum Zitat Cotton MM, Bucknall CE, Dagg KD, Johnson MK, MacGregor G, Stewart C, Stevenson RD: Early discharge for patients with exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Thorax. 2000, 55: 902-906. 10.1136/thorax.55.11.902.PubMedPubMedCentral Cotton MM, Bucknall CE, Dagg KD, Johnson MK, MacGregor G, Stewart C, Stevenson RD: Early discharge for patients with exacerbations of chronic obstructive pulmonary disease: a randomized controlled trial. Thorax. 2000, 55: 902-906. 10.1136/thorax.55.11.902.PubMedPubMedCentral
98.
Zurück zum Zitat Skwarska E, Cohen G, Skwarski KM, Lamb C, Bushell D, Parker S, MacNee W: Randomized controlled trial of supported discharge in patients with exacerbations of chronic obstructive pulmonary disease. Thorax. 2000, 55: 907-912. 10.1136/thorax.55.11.907.PubMedPubMedCentral Skwarska E, Cohen G, Skwarski KM, Lamb C, Bushell D, Parker S, MacNee W: Randomized controlled trial of supported discharge in patients with exacerbations of chronic obstructive pulmonary disease. Thorax. 2000, 55: 907-912. 10.1136/thorax.55.11.907.PubMedPubMedCentral
99.
Zurück zum Zitat Jeppesen E, Brurberg KG, Vist GE, Wedzicha JA, Wright JJ, Greenstone M, Walters JA: Hospital at home for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012, 5: CD003573 Jeppesen E, Brurberg KG, Vist GE, Wedzicha JA, Wright JJ, Greenstone M, Walters JA: Hospital at home for acute exacerbations of chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2012, 5: CD003573
100.
Zurück zum Zitat McLean S, Nurmatov U, Liu JL, Pagliari C, Car J, Sheikh A: Telehealthcare for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2011, 7: CD007718 McLean S, Nurmatov U, Liu JL, Pagliari C, Car J, Sheikh A: Telehealthcare for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2011, 7: CD007718
101.
Zurück zum Zitat McKinstry B, Pinnock H, Sheikh A: Telemedicine for management of patients with COPD?. Lancet. 2009, 374: 672-673. 10.1016/S0140-6736(09)61542-7.PubMed McKinstry B, Pinnock H, Sheikh A: Telemedicine for management of patients with COPD?. Lancet. 2009, 374: 672-673. 10.1016/S0140-6736(09)61542-7.PubMed
102.
Zurück zum Zitat Bolton CE, Waters CS, Peirce S, Elwyn G: Insufficient evidence of benefit: a systematic review of home telemonitoring for COPD. J Eval Clin Prac. 2011, 17: 1216-1222. 10.1111/j.1365-2753.2010.01536.x. Bolton CE, Waters CS, Peirce S, Elwyn G: Insufficient evidence of benefit: a systematic review of home telemonitoring for COPD. J Eval Clin Prac. 2011, 17: 1216-1222. 10.1111/j.1365-2753.2010.01536.x.
103.
Zurück zum Zitat Polisena J, Tran K, Cimon K, Hutton B, McGill S, Palmer K, Scott RE: Home telehealth for chronic obstructive pulmonary disease: a systematic review and meta-analysis. J Telemed Telecare. 2010, 16: 120-127. 10.1258/jtt.2009.090812.PubMed Polisena J, Tran K, Cimon K, Hutton B, McGill S, Palmer K, Scott RE: Home telehealth for chronic obstructive pulmonary disease: a systematic review and meta-analysis. J Telemed Telecare. 2010, 16: 120-127. 10.1258/jtt.2009.090812.PubMed
104.
Zurück zum Zitat Steventon A, Bardsley M, Billings J, Dixon J, Doll H, Hirani S, Cartwright M, Rixon L, Knapp M, Henderson C, et al: Effect of telehealth on use of secondary care and mortality: findings from the whole system demonstrator cluster randomised trial. BMJ. 2012, 344: e3874-10.1136/bmj.e3874.PubMedPubMedCentral Steventon A, Bardsley M, Billings J, Dixon J, Doll H, Hirani S, Cartwright M, Rixon L, Knapp M, Henderson C, et al: Effect of telehealth on use of secondary care and mortality: findings from the whole system demonstrator cluster randomised trial. BMJ. 2012, 344: e3874-10.1136/bmj.e3874.PubMedPubMedCentral
105.
Zurück zum Zitat Cartwright M, Hirani SP, Rixon L, Beynon M, Doll H, Bower P, Bardsley M, Steventon A, Knapp M, Henderson C, et al: Effect of telehealth on quality of life and psychological outcomes over 12 months (Whole Systems Demonstrator Telehealth Questionnaire Study): nested study of patient reported outcomes in a pragmatic, cluster randomised controlled trial. BMJ. 2013, 346: f653-10.1136/bmj.f653.PubMedPubMedCentral Cartwright M, Hirani SP, Rixon L, Beynon M, Doll H, Bower P, Bardsley M, Steventon A, Knapp M, Henderson C, et al: Effect of telehealth on quality of life and psychological outcomes over 12 months (Whole Systems Demonstrator Telehealth Questionnaire Study): nested study of patient reported outcomes in a pragmatic, cluster randomised controlled trial. BMJ. 2013, 346: f653-10.1136/bmj.f653.PubMedPubMedCentral
106.
Zurück zum Zitat Henderson C, Knapp M, Fernandez JL, Beecham J, Hirani SP, Cartwright M, Rixon L, Beynon M, Rogers A, Bower P, et al: Cost effectiveness of telehealth for patients with long term conditions (Whole Systems Demonstrator Telehealth Questionnaire Study): nested economic evaluation in a pragmatic, cluster randomised controlled trial. BMJ. 2013, 346: f1035-10.1136/bmj.f1035.PubMed Henderson C, Knapp M, Fernandez JL, Beecham J, Hirani SP, Cartwright M, Rixon L, Beynon M, Rogers A, Bower P, et al: Cost effectiveness of telehealth for patients with long term conditions (Whole Systems Demonstrator Telehealth Questionnaire Study): nested economic evaluation in a pragmatic, cluster randomised controlled trial. BMJ. 2013, 346: f1035-10.1136/bmj.f1035.PubMed
107.
Zurück zum Zitat Pinnock H, Hanley J, Lewis S, MacNee W, Pagliari C, van der Pol M, Sheikh A, McKinstry B: The impact of a telemetric chronic obstructive pulmonary disease monitoring service: randomised controlled trial with economic evaluation and nested qualitative study. Prim Care Respir J. 2009, 18: 233-235. 10.4104/pcrj.2009.00040.PubMed Pinnock H, Hanley J, Lewis S, MacNee W, Pagliari C, van der Pol M, Sheikh A, McKinstry B: The impact of a telemetric chronic obstructive pulmonary disease monitoring service: randomised controlled trial with economic evaluation and nested qualitative study. Prim Care Respir J. 2009, 18: 233-235. 10.4104/pcrj.2009.00040.PubMed
Metadaten
Titel
Admission prevention in COPD: non-pharmacological management
verfasst von
Eui-Sik Suh
Swapna Mandal
Nicholas Hart
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2013
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/1741-7015-11-247

Weitere Artikel der Ausgabe 1/2013

BMC Medicine 1/2013 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Metformin rückt in den Hintergrund

24.04.2024 DGIM 2024 Kongressbericht

Es hat sich über Jahrzehnte klinisch bewährt. Doch wo harte Endpunkte zählen, ist Metformin als alleinige Erstlinientherapie nicht mehr zeitgemäß.

Myokarditis nach Infekt – Richtig schwierig wird es bei Profisportlern

24.04.2024 DGIM 2024 Kongressbericht

Unerkannte Herzmuskelentzündungen infolge einer Virusinfektion führen immer wieder dazu, dass junge, gesunde Menschen plötzlich beim Sport einen Herzstillstand bekommen. Gerade milde Herzbeteiligungen sind oft schwer zu diagnostizieren – speziell bei Leistungssportlern. 

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.