Skip to main content
Erschienen in: Journal of Translational Medicine 1/2014

Open Access 01.12.2014 | Review

Adrenomedullin and tumour microenvironment

verfasst von: Ignacio M Larráyoz, Sonia Martínez-Herrero, Josune García-Sanmartín, Laura Ochoa-Callejero, Alfredo Martínez

Erschienen in: Journal of Translational Medicine | Ausgabe 1/2014

Abstract

Adrenomedullin (AM) is a regulatory peptide whose involvement in tumour progression is becoming more relevant with recent studies. AM is produced and secreted by the tumour cells but also by numerous stromal cells including macrophages, mast cells, endothelial cells, and vascular smooth muscle cells. Most cancer patients present high levels of circulating AM and in some cases these higher levels correlate with a worst prognosis. In some cases it has been shown that the high AM levels return to normal following surgical removal of the tumour, thus indicating the tumour as the source of this excessive production of AM. Expression of this peptide is a good investment for the tumour cell since AM acts as an autocrine/paracrine growth factor, prevents apoptosis-mediated cell death, increases tumour cell motility and metastasis, induces angiogenesis, and blocks immunosurveillance by inhibiting the immune system. In addition, AM expression gets rapidly activated by hypoxia through a HIF-1α mediated mechanism, thus characterizing AM as a major survival factor for tumour cells. Accordingly, a number of studies have shown that inhibition of this peptide or its receptors results in a significant reduction in tumour progression. In conclusion, AM is a great target for drug development and new drugs interfering with this system are being developed.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

IML, SM-H, JG-S, LO-C, and AM conceived the review, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Introduction

Adrenomedullin (AM) is a regulatory peptide that was first isolated in 1993 from human pheochromocytoma extracts by Kitamura et al. [1]. These authors found that AM was able to stimulate cAMP production in human platelets and exerted a potent and long-lasting hypotensive activity in rats. AM is synthesized both by tumour cells and by normal adrenal medulla cells, as well as by many other tissues [2]. It is a circulating hormone, although it functions also as a local paracrine and autocrine mediator with multiple biological activities such as vasodilatation, cell growth, regulation of hormone secretion, natriuresis, and antimicrobial effects [2]–[4].

Structure of adrenomedullin

Human AM is a small hormone of 52 amino acids. It belongs to the amylin/calcitonin gene-related peptide (CGRP) super-family, which also includes CGRP, amylin and intermedin, also named adrenomedullin 2 [5]–[7]. The C-terminal tyrosine residue is amidated (-CONH2) and AM contains a six amino acid ring formed by an internal disulfide bond between residues 16 and 21. Both structural features are essential for its biological activity.
The three-dimensional structure of AM comprises a central α-helical region, covering approximately one third of its total length, flanked by two disordered segments. The presence of the α-helix at the centre of AM seems to be a general feature of the calcitonin peptide super-family, which is important for the physiology of these peptides and the recognition of their specific receptors [8].

Adrenomedullin gene expression and release

AM is encoded by the adm gene, which has been identified in several mammalian species and is located on human chromosome 11p15.4; consisting of four exons and three introns, with TATA, CAAT and GC boxes in the 5′-flanking region.
The mature AM peptide is derived from preproadrenomedullin, which contains 185 amino acids in humans. After cleaving the 21-residue N-terminal signaling peptide, preproadrenomedullin is converted to proadrenomedullin, which is a precursor of mature AM (amino acids 95-146 of preproadrenomedullin) as well as of another active peptide, proadrenomedullin N-terminal 20-peptide or PAMP (amino acids 22-41 of preproadrenomedullin) [5].
AM production is mostly regulated by oxidative stress and inflammation-related substances such as lipopolisaccharide and inflammatory cytokines such as TNF-α and IL-1, which increase AM secretion rate. There are several binding sites for activator protein-2 (AP-2) and c-AMP-regulated enhancer element. It has also been discovered that there are nuclear factor-Kβ (NF-Kβ) sites on the promoter of the AM [2]. Hypoxia is also a potent inducer of AM expression. This overexpression is mediated by transactivation of the AM promoter by hypoxia inducible factor 1 (HIF-1) transcription factor, as well as by posttranscriptional mRNA stabilization. Hypoxia response elements (HREs) have been found in the promoter of the human adm gene [9].

Metabolism of adrenomedullin

AM is a circulating peptide and it can be found in plasma at a concentration of 2-10 pM in humans. AM is also present in other biological fluids such as urine, saliva, sweat, milk, amniotic fluid and cerebrospinal liquid.
In plasma, AM is specifically bound to adrenomedullin binding protein-1 (AMBP-1), which was later identified as complement factor H [10]. AM bound to complement factor H cannot be detected in plasma, so it is thought that total plasma AM could be higher than reported in most studies. Circulating AM is rapidly degraded with a half-life of 16-20 minutes. Matrix metalloproteinase 2 seems to be responsible for the initial degradation of AM, which is followed by an aminopeptidase [11],[12].

Adrenomedullin receptors

Specific binding sites for AM are located in many cell types and tissues such as the heart, lungs, spleen, liver, vas deferens, kidney glomerulus, skeletal muscle, hypothalamus, and spinal cord, among others. The wide distribution of binding sites for AM is related with its great variety of biological functions. In addition, AM is able to bind to many areas of the brain, providing the anatomical basis for the involvement of AM in the physiology of the central nervous system [13].
The AM receptor contains a member of the 7-transmembrane domain G-protein-coupled receptor superfamily which is named calcitonin receptor-like receptor (CLR). However, CLR needs the presence of modulating proteins with a single transmembrane domain known as receptor activity modifying proteins (RAMP). Three RAMPs have been identified in the human genome: RAMP1, RAMP2, and RAMP3. RAMPs bind to the CLR in the endoplasmic reticulum promoting transport to the plasma membrane [14].
RAMP1 transports CLR to the membrane surface as a mature glycoprotein, and this heterodimer functions as a CGRP receptor [14]. The CLR molecules transported by RAMP2 and RAMP3 are core-glycosilated and function as AM receptors (AMR); CLR/RAMP2 is known as AMR1, whereas CLR/RAMP3 is dubbed AMR2[5],[15]. It is hypothesized that residues present in RAMP2 and 3 but not in RAMP1 could be able to alter the pharmacology of CLR and be responsible for making CLR/RAMP2 and CLR/RAMP3 AM receptors [16].
The expression of RAMP isoforms in a particular cell may change between physiological and pathological conditions [17], determining the degree of response to AM and CGRP [18],[19]. In physiological conditions the more abundant isoform is RAMP2. The most robust changes in RAMP expression levels coincide with those situations in which plasma AM level is most elevated, as in pregnancy or diseases like sepsis or heart failure. In those situations, there is an elevation in RAMP3 expression, apparently in order to decrease AM responsiveness [18].

Signal transduction mechanisms

The signal transduction pathways activated by AM vary between species, organs, tissues, and cells. However, there are three main signaling pathways whereby AM exerts its actions: cAMP, Akt, and mitogen activated protein kinase (MAPK)-extracellular signal regulated-protein kinase (ERK).
The main signal transduction pathways activated by AM seems to be the adenylyl cyclase/cAMP system. In many cell types, AM and CGRP receptors are coupled to Gs proteins that activate adenylate cyclase and increase intracellular levels of cAMP [5]. In bovine aortic endothelial cells and vascular smooth muscle cells (VSMC) the accumulation of cAMP causes the activation of protein kinase A (PKA) which in turn increases calcium (Ca2+) efflux leading to relaxation of the vascular cells [20]. Moreover, it was confirmed that AM can induce Ca2+ mobilization independently of cAMP levels. AM activated phospholipase C through its specific receptor and accelerated inositol-1,4,5-P3 formation to stimulate Ca2+ release from the endoplasmic reticulum intracellular store. In addition, the activation of phospholipase C is also involved in ion channel opening [20],[21]. However, other studies have shown that AM administration does not have any effects in intracellular Ca2+ concentration and even decreases Ca2+ content in cultured human umbilical vein endothelial cells (HUVECs) [22] or in porcine coronary arteries [23]. These results suggest that the regulation of Ca2+ mobilization by AM may depend on the cell type and physiological context.
Intracellular Ca2+ increases, in response to AM, caused activation of nitric oxide (NO) synthase and NO release leading to relaxation of cardiac myocytes [24]. AM activation of NO pathway has a very important role in the regulation of the cardiovascular system by regulating blood-flow [25], having a cytoprotective action against ischemia/reperfusion injury and against myocardial ischemia-induced arrhythmias in rats [26]. Furthermore, it has been demonstrated that AM inhibited endothelial cell apoptosis through a NO-dependent pathway [27]. Some authors postulate that NO prevents apoptosis by S-nitrosylating caspases [28]–[30].
AM has been shown to activate the PI3K/Akt pathway in vascular endothelial cells where it regulates many steps such as vasodilation, cell survival, proliferation, migration and vascular cord-like structure formation [31]. The specific role of AM in the multistep process of angiogenesis is regulated via a mechanism that requires the activation of the AMR1 and AMR2 receptors [32]. AM also acts directly on myocardium by the presence of CLR in myocytes, where it enhances neovascularization, induces cardioprotective effects and exerts antiapoptotic effects through the PI3K-dependent pathway after ischemia/reperfusion [33].
The role of AM in growth and mitogenesis has led to investigate the regulation of MAPK by AM. AM appears to either stimulate or inhibit cell proliferation depending on the particular cell type. AM signalling directly promotes endothelial cell growth and survival through activation of MAPK/ERK downstream signalling pathways [34]. Under serum deprivation, AM promotes DNA synthesis and cell proliferation in VSMCs [35],[36]. These responses are mediated by p42/p44 MAPK activation. Interestingly, in glomerullar mesangial cells AM causes an opposite effect by increasing apoptosis during serum deprivation [37]. Activation of MAPK and other kinases such as cAMP-PKA, JNK and protein phosphatase 2A (PP2A) have been proposed to mediate the proapoptotic effect of AM in mesangial cells. On the other hand AM protects malignant cells from hypoxia-induced cell death by up-regulation of Bcl-2 in an autocrine/paracrine manner [38].

Physiological activities of adrenomedullin

All signal mechanisms in which AM is involved are the basis of this peptide’s extensive repertoire of biological functions such as vasodilation, cellular proliferation, apoptosis modulation or inflammatory regulation, among others.
The main role played by AM in mammalian development has become apparent following the generation of different knockout (KO) models. In adm gene KO mice, in which the expression of AM and PAMP are suppressed, the null phenotype is embryonically lethal due to the scarcity of placental vascularization, malformation of the basement membrane in the aorta and cervical arteries, detachment of the endothelial cells from the basement structure, and the presence of edema [39]. Very recent studies have confirmed these results, demonstrating that locally produced AM in the trophoblast binucleate cells of the bovine placenta may play a crucial role in regulation of placental vascular and cellular functions during pregnancy, especially during transition from the mid to late gestation period [40]. KO mouse models in which only AM expression, but not PAMP expression, is affected are also embryonic lethal between embryonic day 14 (E14.5) and embryonic day 15 (E15.5) [41]. Thus, AM may be intimately related with embryonic development and pregnancy [42],[43].
A gene-targeted KO model of the CLR gene, Calcrl, demonstrates that Calcrl is also essential for embryo survival. Calcrl -/- pups are not viable, the embryos die between E13.5 and E14.5 of gestation and they exhibit a very similar phenotype to AM-/- and AM/PAMP-/- mice [44].
In models of mice lacking RAMP2 the results are similar to the ones shown above. RAMP2-/- embryos die in utero at midgestation due to severe deformation, vascular fragility, severe edema and hemorrhage [45]. Very recent studies with endothelial cell-specific RAMP2 KO mice (E- RAMP2-/-) have confirmed that the AM-RAMP2 system is a key determinant of vascular integrity and homeostasis from prenatal stages through adulthood [46].
Surprisingly, a complete absence of RAMP3 has no effect on survival. RAMP3-null mice appear normal until old age (9-10 months), at which point they have less weight than their wild-type littermates [47]. These results provide support to the hypothesis that RAMP2 and RAMP3 have distinct physiological functions in embryogenesis, adulthood, and old age.
To continue with the study of the lack of AM in adult tissues and organisms, tissue-specific conditional KO models have been generated using Cre/loxP technology [48].
In the adult organism, AM has been located in many cell types and in most tissues throughout the body [49], including the nervous system and related structures, cardiovascular system, endocrine organs, digestive tube, excretory system, respiratory system, reproductive tract and integument, among others.
AM has a variety of biological actions which are of potential importance for cardiovascular homeostasis, growth and development of cardiovascular tissues and regulation of body fluid [50]–[53]. Systemic AM administration has demonstrated that this peptide reduces arterial pressure, decreases peripheral vascular resistance, and increases heart rate and cardiac output [54]–[57]. Moreover, AM and PAMP function as potent angiogenic agents [58], are necessary to maintain the integrity of the mucous membrane’s microvasculature [46], and promote a faster healing of epithelial wounds [59]–[61]. AM binds to specific receptors in endothelial cells and elicits endothelium-dependent vasorelaxation mediated by NO [62], endothelium-derived hyperpolarizing factor [63], and/or vasodilatory prostanoids [64].
AM exerts a tight control on renal function and body fluid volume [65],[66], regulating the hypothalamic-pituitary-adrenal axis at all levels [67].
AM regulates hormone secretion in many tissues and organs. Levels of this peptide have effects in the hypothalamic-pituitary-adrenal axis as shown above [67]. In addition, AM is synthesized in pancreatic polypeptide-producing F cells of the pancreatic islets and AM receptors are expressed in insulin-producing β-cells [68]. Several studies have shown that endogenous AM tonically inhibits insulin secretion [68],[69].
In the digestive system, AM immunoreactivity is widely distributed in the mucosal and glandular epithelia of the stomach, esophagus, intestine, gallbladder, bile duct and acini of the pancreas and salivary glands [70]. AM is a potent inhibitor of basal gastrin-stimulated HCl secretion [71].
AM and its receptors are abundantly expressed in the central nervous system and its cellular components [70],[72]. It plays an important role in the regulation of specific blood-brain barrier properties [73], it also increases the preganglionic sympathetic discharges [74], and it exerts several neuroprotective actions against ischemic damage [75]. In addition, relatively recent studies suggest that AM may be involved in the neuroendocrine response to stress and nociception [76],[77].
Finally, AM has been found in all epithelial surfaces which separate the external and internal environment and in all body secretions [78]. This wide distribution suggests the possibility that AM has an immunity-related function. It has been proven that both AM and PAMP display potent antimicrobial action against Gram-positive and Gram-negative bacteria [3].

Adrenomedullin and disease

Elevation of AM levels in plasma has been observed for a variety of cardiovascular disorders. Accumulating evidence supports a compensatory role for AM in heart failure [79] and myocardial infarction [80]. It has been established that plasma AM levels increase in patients with heart failure in proportion to the severity of the disease [81]; and they are also increased during acute phase of myocardial infarction reaching its maximum on day 2–3 and returning to baseline after about 3 weeks [80]. Furthermore, recent studies suggest that plasma AM level is an independent prognostic indicator of heart failure [55],[82] and AM exerts a protective action against ischemia-reperfusion injury after stroke [55]. It is well established that AM also protects against ischemia-reperfusion injury in other organs, such as the kidney [83] or the brain [75].
AM was detected in macrophages found within the atherosclerotic plaque [84]. Plasma AM is increased in patients with chronic ischemic stroke and correlates with the extent of carotid artery atherosclerosis [85]. In theory, AM could inhibit atherogenesis due to its inhibitory effect on migration and proliferation of vascular smooth muscle cells, inhibition of endothelial cell apoptosis and anti-inflammatory activity.
Elevation of plasma AM concentration is also observed in patients with primary arterial hypertension and is higher in individuals with complications of hypertension, such as left ventricular hypertrophy and nephrosclerosis [86]. It is suggested that the up-regulation of cardiac AM system in hypertension is a protective mechanism decreasing myocardial overload due to vasodilatory and natriuretic properties of AM, as well as limiting further myocardial hypertrophy and remodelling [87].
Plasma AM concentration is increased, whereas urinary AM excretion is decreased in various types of glomerulonephritis [88]. In addition, plasma AM progressively increases in patients with chronic renal failure [89].
In septic shock patients, a marked elevation of AM blood levels has been reported, probably as a defensive action [90]–[92]. However, excessive AM release during septic shock may provoke adverse effects such as hypotension which may threaten the patient’s life [3].
AM also plays a role in primary and secondary pulmonary hypertension. Very recent studies in rats with pulmonary hypertension induced by high blood flow suggest that AM exerts a protective action in the development of this pathology, by inhibiting pulmonary procollagen synthesis and alleviating pulmonary artery collagen accumulation [93].
Furthermore, AM has emerged as a novel and promising therapy for digestive pathologies related with inflammation such as gastric ulcers [94] and inflammatory bowel diseases [95],[96]. This is closely related with the local and systemic anti-inflammatory actions that AM is able to exert [97],[98]. For example, it has been demonstrated that AM inhibits the secretion of pro-inflammatory cytokines when it is released to the medium by peripheral blood monocytes [5] and plays a role in the evolution of Th1/Th2 cytokines balance, decreasing pro-inflammatory cytokines levels (IL-6, IL-10, TNF-α, IFN-γ) [99]–[101]. In addition to the regulatory role on immune cells, AM also decreases endothelial permeability, thus reducing the formation of inflammatory exudates [5].
The existence of AM in pancreatic islets and its inhibitory effect on insulin secretion suggest that AM may be involved in the pathogenesis of diabetes mellitus. In type 1 diabetes, plasma AM is increased only in patients with microangiopathy. Increased AM may result from endothelial activation and/or impaired renal clearance in subjects with diabetic nephropathy [102]. This suggests that increased AM in type 1 diabetes is a consequence of the disease rather than a causal agent. In humans, the levels of circulating AM are clearly elevated in patients with type 2 diabetes when compared to normal controls [103],[104]. In addition, AM has emerged as a possible biomarker for early diagnosis in pancreatic cancer-induced diabetes [105].
AM is also involved in many eye pathologies. AM levels in the plasma, vitreous fluid samples and fibrous membrane tissues are all significantly elevated in patients with proliferative diabetic retinopathy compared with control subjects [106]. AM concentration in vitreous fluid is markedly increased in patients with proliferative vitreoretinopathy, the most common complication of retinal detachment originating from the proliferation of retinal pigment cells [107].

Adrenomedullin levels in cancer patients

There are now many studies that show an association between AM expression and cancer. Initially, these were predominantly studies where plasma AM concentrations were measured in patients suffering from different tumour types and compared with healthy patients. These tumours included bronchial neuroendocrine tumour, clear cell renal cell carcinoma, midgut tumour, osteosarcoma, pancreatic adenocarcinoma, pancreatic insulinoma, aldosterone-producing adenoma, pheochromocytoma, pituitary adenoma, and plexiform neurofibroma [108]–[118] and there were significant increases of AM levels in all cancer patients.
Interestingly, in patients with osteosarcoma, insulinoma, pheochromocytoma, and primary aldosteronism due to adenoma, elevated blood AM levels decreased following surgery and returned to normal [109],[111],[113],[114], indicating that the tumour was the main source of these excessive AM levels. However, plasma AM levels of patients after 4–5 weeks of surgery of clear cell renal cell carcinoma and of other kidney tumours were similar to pre-surgery levels. Therefore, plasma AM is not suited as a tumour marker for this disease [118].
Nowadays with the accessibility of molecular techniques, AM mRNA and/or protein expression have also been determined in different tumour types and compared with normal tissue, normal-looking tissue adjacent to the tumour, or with other related no tumoural and pathological tissues. Several clinical studies suggest that AM is over-expressed in numerous tumours including colorectal cancer, bladder urothelial cell carcinoma, chromophobe renal carcinoma, clear-cell renal carcinoma, osteosarcoma, pancreatic adenocarcinoma, insulinoma, ovarian carcinoma, endometrial cancer, leiomyoma, glioma, glioblastoma, neuroblastoma, ganglioneuroblastoma, pituitary adenoma (ACTH-secreting), somatotropinoma, astrocytoma, hepatocellular carcinoma, non-small cell lung carcinoma, squamous cell carcinoma, adenocarcinoma of the lung, bronchial neuroendocrine carcinoma, midgut neuroendocrine carcinoma, pheochromocytoma, aldosterone-producing adenoma, breast cancer, intraocular or orbital tumours, and melanoma, as shown in Table 1[108]–[110],[116],[118]–[144]. However, AM expression in the anterior pituitary is diminished in tumours as compared to the normal gland [145]. On the other hand, as described by Letizia et al. [112], blood AM concentrations in control patients was low as compared to the setting of Cushing disease due to pituitary adenoma [112]. These data could be interpreted by an increased release of AM from the secretory granules of the pituitary into circulation. In prostate, no difference on the expression of AM was detected between benign epithelial cells adjacent to prostate adenocarcinoma lesions and tumour [146].
Table 1
Expression of AM and AM receptors in tumours and their role on disease progression
Cancer type
AM in plasma*
AM expression
Receptor expression
DP**
References
Breast carcinoma
presence
Prot
 
lymph node metastasis
[138],[144]
Bladder urothelial cell carcinoma
 
>mRNA/Prot
  
[120]
Chromophobe renal carcinoma
 
>mRNA
  
[121]
<Prot
Clear-cell renal carcinoma
 
>mRNA
CLR and RAMP2
 
[118],[121]
Prot
Colorectal carcinoma
 
>mRNA
>CLR, RAMP2, RAMP3
progression
[119],[147],[148]
>Prot
Midgut tumour
>
  
progression
[108]
Anaplastic astrocytoma
 
<mRNA
  
[128],[131]
Glioma
 
>mRNA
 
progression
[127]
Glioblastoma
 
>mRNA
CLR, RAMP2 and RAMP3
 
[121],[128],[131]
Hepatocellular carcinoma
 
>mRNA
 
invasion and progression
[132],[133]
>Prot
Intraocular or orbital tumours
 
>mRNA
  
[139]
Leiomyoma
 
>Prot
  
[126]
ganglioneuroblastoma
 
>Prot
  
[129]
Neuroblastoma
 
>mRNA
 
differentiation
[129],[143]
>Prot
Bronchial neuroendocrine tumour
>
  
progression
[108]
Small cell lung carcinoma
 
<mRNA
  
[134],[141]
Non-small cell lung carcinoma
 
mRNA immunoreactivity was essentially weak
  
[134],[141]
Squamous cell carcinoma of the lungs
 
<mRNA
  
[134],[141]
Adenocarcinoma of the lung
 
mRNA
  
[134],[141]
Osteosarcoma
>
>mRNA / Prot
 
metastasis
[109]
Ovarian carcinoma
 
> mRNA / Prot
 
over-all survival
[123],[124],[142]
Positive Prognostic Factor
[149]
Endometrial carcinoma
 
>mRNA
 
progression
[125],[150]
<Prot
Pancreatic adenocarcinoma
>
>AM &CLR mRNA / Prot
CLR, RAMP1 and RAMP2
 
[110],[116],[122],[151]
Pancreatic insulinoma
>
>Prot
  
[110],[111]
Adrenocortical tumours
>
mRNA
  
[113],[135],[136]
Prot no detected
Pheochromocytoma
>
mRNA
CLR, RAMP1, RAMP2 and RAMP3
 
[114],[117],[129],[135]–[137],[152]
>Prot
Pituytary adenomas
>
>Prot
 
progression
[112],[130],[136],[145]
Plexiform neurofibroma
>
  
biomarker of transformation
[115]
Somatotropinoma
 
>mRNA
  
Knerr et al., [131])
Prolactinoma
 
mRNA
meningiomas
 
mRNA
Prostate
 
mRNA
 
high Gleason scores
[146],[153]
adenocarcinoma
 
Prot
Skin carcinomas
 
Prot
> CLR, RAMP2, and RAMP3
 
[78],[140]
*>:higher plasma AM concentration in cancer patients than in healthy controls.
**DP: Correlation of AM with disease progression.
In most tumours a high AM mRNA expression correlated with high protein expression. However, in endometrial cancer tissues and chromophobe renal carcinoma, although AM mRNA levels were high, the protein expression was mild [121],[125], indicating complex post-transcriptional regulation.
Furthermore, in some tumours it is possible to correlate plasma levels and expression of AM with disease progression. Plasma levels and AM expression of bronchial neuroendocrine carcinomas and midgut neuroendocrine carcinomas correlate with tumour progression [108]. In breast cancer, AM plasma concentrations correlate with the presence of lymph node metastasis [144]. AM expression is highly correlated with the degree of malignancy and metastasis of osteosarcoma [109]. In patients with leiomyomas, high AM expression is associated with increased vascular density [126]. Epithelial ovarian cancer patients with high AM expression showed a higher incidence of metastasis, larger residual size of tumours after cytoreduction, and shorter disease-free and overall survival time [123]. AM gene expression levels may play a key role in the biology of epithelial ovarian cancer and may define a more aggressive tumour phenotype [124]. However, recent studies performed in ovarian cancer patients by Baranello et al. found high expression levels of AM as a positive prognostic factor [149]. In hepatocellular carcinoma, AM expression was positively correlated with invasion and progression [132],[133]. Elevated AM mRNA was associated with high Gleason scores in prostate cancer [153]. High AM mRNA levels were associated with an increased risk of relapse in patients who underwent surgery for localized clear cell renal and colorectal carcinoma [121],[147]. In colorectal carcinoma, AM mRNA levels are also a significant factor for poor prognosis and incidence of liver metastasis [147]. The expression of AM is associated with melanomagenesis in melanoma patients [140]. AM mRNA in neuroblastoma is linked to tumour differentiation [143]. The correlation of AM expression and the grade of glioma supports the hypothesis that AM may participate in the progression of the tumour [128].
There is significant evidence for the association of the expression of AM and its receptors with cancer. AM and CLR mRNA levels were higher in pancreatic adenocarcinoma tissues compared to normal pancreatic tissues [116]. The expression levels of AM, CLR, RAMP2 and RAMP3 in human melanoma were higher than in control tissues [140]. Tissue microarray analysis of human colorectal tumours revealed a clear increase of AM, CLR, RAMP2, and RAMP3 staining in lymph nodes and distant metastasis when compared with primary tumours [119]. Recently, new cancer risk markers are being developed. Cheung et al demonstrated that carriers of a single nucleotide polymorphism (SNP), rs4910118, had significantly lower levels of circulating AM than homozygotes for the more common allele [154]. In agreement with this, Martinez-Herrero et al. described that carriers of the rs4910118 SNP have a 4.6-fold lower risk of developing cancer than homozygotes for the major allele [155].
Midregional -proadrenomedullin (MR-proAM) is a stable and reliable surrogate marker for AM release levels. MR-proAM was measured in plasma from persons without cancer prior to the baseline exam. During the follow-up median period of 14 years diverse cancer events occurred. In this context, MR-proAM predicts later development of cancer in males, particularly in younger males [156].

Adrenomedullin and tumour microenvironment

There is an increasing body of evidence suggesting that malignant growth encompasses several processes including increase in growth signals, angiogenesis and metastasis, inhibition of apoptosis, and others [157]–[159].
Although AM does not cause cancer by itself it can promote its advance through different mechanisms. In addition, known carcinogens such as cigarette smoking can increase AM expression through activation of aryl hydrocarbon receptor (AHR), and blockade of AM can decrease tobacco-induced tumour growth [160]. AM has been shown to be strongly up-regulated in several different tumour types, especially when subjected to hypoxic environments. AM is involved in tumour initiation and progression by promoting cell proliferation, angiogenesis, change of phenotype, and the inhibition of apoptosis [161]–[164]. In the last years, numerous studies have appeared showing a relation between AM expression and cancer. In most of them, the expression (either mRNA and/or protein) of AM has been compared between normal tissue and different tumour types. In general, the reports show that AM is over-expressed in tumours such as renal cell carcinoma, some endocrine-related tumours, hepatocellular carcinoma, non-small cell lung carcinoma, and others [19],[132],[134],[165]–[168]. Interestingly, there are some reports of decreased expression of AM in human pituitary adenomas in comparison with nontumoural adenohypophyses [145].

Adrenomedullin expression in cancer cells and its role on malignant growth

Over the last years, numerous authors have reported the regulatory properties that AM possesses on the proliferation of a wide variety of cancer cells. In 1996, Miller and cols analyzed the expression of AM mRNA by RT-PCR in 20 human normal tissues and 48 tumour cell lines [166]. The authors found that 95% of normal and tumour cells expressed the mRNA for the peptide [166]. Tumour cell lines evaluated included small cell lung carcinomas, non-small cell lung carcinomas, breast, nervous system (glioblastoma, neuroblastomas), ovarian, prostate, adrenal, chondrosarcoma, and chronic monocytic leukemia [166]. These data have been replicated on different tumour cell lines such as pancreatic cell lines (PANC1, L3.6, HPAFII, SU86.86) [110],[116],[169], gliomas [170],[171], prostate cancer cell lines [162],[172]–[175], ovarian cancer [149],[176],[177], osteosarcoma [109], renal carcinoma [121],[178], multiple myeloma [179], bladder urothelial cell carcinoma [120], pituitary adenomas [145], colorectal cancer [119],[147],[148], breast cancer [144], endometrial cancer [38], hepatocellular carcinoma [132] and others.
It is noteworthy to mention that, in some tumours, RAMP3 is expressed alongside RAMP2 while in others only RAMP2 is present. In renal tumours, for instance, RAMP2 was expressed in the tumour cells themselves, while RAMP3 elevation was found in inflammatory cells associated with the tumour, highlighting the importance of the interaction of the tumour with the microenvironment [121].
Interestingly, Lombardero and cols reported that the expression of AM measured by immunohistochemistry in various hormone-secreting pituitary adenomas was found to be diminished as compared to nontumoural adenohypophyses [145], although this fact may represent a faster disregulated secretion of the peptide to the blood stream.

Adrenomedullin expression is increased under hypoxic conditions

Focal areas of hypoxia are inherent to the environment of solid tumours [180],[181]. Decreased oxygen availability is one of the driving forces of cancer survival and progression. When tumour cells are exposed to hypoxic conditions, an oxygen-sensing mechanism, based on the hypoxia-inducible factor-1 (HIF-1), mediates the expression of a group of genes that help tumour cells to survive [9],[182],[183]. Several studies have addressed the regulation of AM (and its receptors) expression under hypoxic conditions in a variety of tumour tissues and cell lines. The first authors to report an induction of AM in a tumour cell line exposed to hypoxia were Nakayama and cols in 1998 [184]. Human colorectal carcinoma cells exposed to a reduced oxygen tension showed a time-dependent increase in AM mRNA and peptide expression. Later on, the hypoxia-induced upregulation of AM expression was described in a variety of human tumour cell lines from lung, breast, ovary, prostate, bone, blood [9], multiple myeloma [179], bladder urothelial cell carcinoma [120], colorectal carcinoma [119],[147],[148] and hepatocellular carcinoma [132], among others. The first proof that this increased expression was mediated by HIF-1 was provided by Garayoa and cols [9] using HIF-1α and HIF-1β knockout cell lines.
As an example to illustrate the effect of AM in hypoxic environments we can compare the role that AM plays in the pathophysiology of pilocytic astrocytomas and glioblastomas. Pilocytic astrocytoma is a slowly growing tumour where preexisting blood vessels are sufficient to provide enough oxygen and to ensure tumour growth [171]. Glioblastoma, however, is a rapidly growing tumour where normal blood supply is not sufficient, leading to necrosis and hypoxia [171]. Real-time quantitative RT-PCR was used to study expression of AM, RAMP2, RAMP3, and CLR in pilocytic astrocytoma and glioblastoma. Interestingly, although there were not differences in RAMP2 or RAMP3 expression, AM mRNA expression was induced in glioblastoma whereas it was barely detectable in pilocytic astrocytoma when subjected to hypoxic conditions. Furthermore, AM and VEGF mRNA expression were highly correlated, supporting the view that AM may function as an autocrine/paracrine growth factor for glioblastoma cells subjected to hypoxia [171].

Adrenomedullin is a survival factor for tumour cells

Adrenomedullin is able to reduce apoptosis of both endothelial and tumour cells. AM-overexpressing endometrial tumour cells, prostate cancer cells, or breast carcinoma cells present reduced levels of proapoptotic proteins such as fragmented PARP, Bax, and activated caspases, resulting in lower level of induced-apoptosis compared with control cells [165],[172],[185]. However, the up-regulation of AM in tumours can be used to design strategies to treat these types of cancer. For instance, AM expression up-regulated the expression of IL13 receptor α2 which can be used to increase the sensitivity to IL13PE cytotoxin (consisting of IL-13 and a truncated form of Pseudomonas exotoxin) [175].
AM can stimulate cell growth and inhibit apoptosis in a variety of tumour cells, including prostate cancer [172],[174],[175], ovarian cancer [149],[176], osteosarcoma [109], renal carcinoma [178], bladder carcinoma [120], breast cancer [186], colorectal cancer [119],[148], gliomas [170], and hepatocellular carcinoma [132].
Thus, when AM was overexpressed in the endometrial cancer cell line RL95.2 a marked growth increase was seen in response to hypoxia-induced apoptosis [38]. Similarly, T47D and MCF-7 breast tumour cell lines challenged with serum-free conditions were able to maintain cell proliferation only in the presence of AM [165]. Also, the implication of AM in the survival of U87 glioblastoma cells was demonstrated by intratumoural administration of an anti-AM antibody in xenografted mice which resulted in a 70% decrease in xenograft weight and density of tumour vessels.
The role of AM in prostate cancer cell pathophysiology seems to be controversial. Depending on the cell line used (PC-3, DU145, or LNCap) and the insult (etoposide or serum deprivation) the effect of AM on proliferation/apoptosis differs [172],[173]. After serum deprivation, AM prevented apoptosis in DU145 and PC-3 cells, but not in LNCaP cells [172],[173]. However, after treatment with etoposide, AM prevented apoptosis in PC-3 and LNCaP cells, but not in DU145 cells [172],[173]. Surprisingly, although PC-3 prostate cancer cells over-expressing AM generated smaller tumours in vivo when injected in nude mice [172], blockade of AM by an specific antibody in DU145 prostate cancer cells induced a clear regression of tumour growth and metastasis in a xenograft mouse model [174].
As noted above, the presence of AM peptide, as well as AM receptors, has been described in ovarian cancer cells [178]. Silencing of the AM gene inhibited the proliferation and increased the chemosensitivity of HO8910 cells by downregulation of Bcl-2 and p-ERK, as described for other cancer cell types [176]. However, other authors have reported that AM effect in ovarian cancer cells is weak as revealed by proliferation assays and cell cycle analysis performed under stressing conditions, such as serum starvation and/or hypoxia [149]. Baranello and cols found that AM was a survival factor for HEY cells but not for A2780 or OVCAR-3 ovarian cancer cells. Furthermore, a clinical study revealed that high expression of AM was linked to a positive outcome, suggesting that the use of AM antagonists could be deleterious in the treatment of ovarian cancer patients [149].
Although the expression of AM, CLR, RAMP1, and RAMP2 mRNA has been reported in several pancreatic cancer cells, RAMP3 mRNA expression could only be found in 1 of 5 cell lines studied [116]. These observations, and the strong colocalization of CLR with RAMP1/RAMP2 but not with RAMP3, indicate that RAMP1/2 but not RAMP3 are the main coreceptors for CLR in pancreatic adenocarcinoma [116]. Intratumoural injection of AM antagonist peptides or transfer of naked DNA encoding AM antagonists induce the regression of a pancreatic cancer cell line and a breast cancer cell line in a mouse xenograft [169]. In addition to its role regulating proliferation/apoptosis, the blockade of AM action seems to also involve a reduction in tumoural neovascularization, which is entirely inhibited in AMA (adrenomedullin antagonist)-treated mice [169].
The role of AM in cell growth and invasion in human colorectal tumours has also been explored recently. Human colon carcinoma cells (HT-29, HCT116, DLD1, and SW480) express AM, CLR, RAMP2, and RAMP3, and the expression of AM is increased under hypoxic conditions [119],[147],[148]. Addition of synthetic AM to tumour cells in culture stimulated cell proliferation and invasion which could be reversed by co-incubation with an AM antibody or an AM antagonist [119],[148]. Furthermore, AM antibody treatment significantly reduced the growth of HT-29 tumour xenografts in mice [119]. These data seem to correlate well with clinical data where AM has been described as an independent prognostic factor for colorectal cancer [147].
In recent years numerous xenografted tumour models have been used to provide new insights in the understanding of AM’s role in tumour growth in vivo. Interestingly, vascular density or directed growth of blood vessels measured in these xenograft models correlates well with AM expression. Thus, human endometrial, breast, lung or pancreatic tumour cell lines overexpressing AM show an increase in blood vessel density [38],[165],[169],[187],[188], while colorectal, prostate, and renal carcinoma cells with decreased AM availability resulted in blood vessel density reduction [119],[148],[174],[189]. Similar results were obtained when xenografting human glioblastoma cells, who express high basal levels of AM. Both density of blood vessels and cell growth were decreased when an antibody against AM was administered intratumourally [128].
All these data taken together support the idea that AM functions as a potent autocrine/paracrine growth factor for tumour cells and demonstrate that reduction of endogenous AM, either pharmacologically or by gene therapy, can potentially impair tumour growth in vivo. The collective findings point out that the autocrine loop formed by AM and its receptors plays a major role in tumour formation and progression, and that it may be a target for new treatments against malignant diseases.

Adrenomedullin in extra-tumoural components

Stromal factors interact with cancer cells to establish a microenvironment that supports tumour growth and survival. AM is an autocrine/paracrine peptide produced by stromal and cancer cells to support such a microenvironment [149]. AM enhances blood and lymphatic angiogenesis, providing necessary nutrients and oxygen to the tumour cells to grow and, eventually, to disseminate [9],[34],[149]. The main sources of AM are the vascular endothelium and, usually, the tumour cells themselves, although other types of cells such as mast cells, macrophages and fibroblasts can also produce the peptide [138],[140]. The role of AM in tumourigenic angiogenesis has been studied using several in vitro, xenograft, and knockout mouse models [38],[165],[168],[185]. AM can regulate the tumour microenvironment by promoting proliferation and migration of endothelial cells, reducing the activity of the immune system by reducing cytokine secretion [3], and inhibiting the complement pathway [168],[183]. Experiments using AM knockout mice demonstrated that AM is essential for vascular morphogenesis in normal animals [39],[188],[190], as well as in tumours. In fact, AM is not only able to enhance bone marrow-derived mononuclear cell differentiation into endothelial cells but also it is important for the formation of mature vessels [191].

Adrenomedullin and cancer treatment

Several strategies have been proposed to inhibit AM-induced tumour growth, including AM mRNA rybozyme which modulates AM expression, and other approaches targeting AM binding to its receptor for example anti-AM blocking antibodies, small nonpeptide molecules, receptor antagonists, truncated peptides, e.g. AM22–52 (AMA) and PAMP12-20 [167],[192].
Various studies using human tumour xenografts in immuno-deficient mice have shown that lowering AM levels reduces tumour growth. For example, growth of sarcoma tumours was slower when injected in heterozygotic AM knockout mice as compared to their wild type counterparts. In addition, treatment of tumours with a competitive inhibitor of AM (AMA) resulted in tumour reduction [193]. Besides, tumour weight was reduced following intra-tumoural injection of an AM antagonist (AMA) in mouse models of pancreatic [169],[187], mammary [169], and skin [140] cancer cell growth. Furthermore, a single intra-tumoural or intra-muscular transfer of naked DNA-encoding AMA suppresses renal cell carcinoma growth [189].
Moreover, targeting AM receptors (AMR) with systemic delivery of neutralizing antibodies inhibits growth of human tumour xenografts in mice. Antibodies against AMR significantly reduced the growth of glioblastoma [53],[128], lung [53], prostate [174], colon tumours [53],[119], and melanoma [140] growth in vivo. Although some authors have raised concerns about the specificity of the antibodies against the receptors [194], the original authors performed pre-absorption tests that resulted in successful band suppression showing at least immunological specificity against synthetic peptides used as antigens [32],[53]. Nevertheless, more studies from other laboratories are needed to completely characterize these antibodies and to confirm originally obtained results.
Other strategies targeting AM includes RNA interference that reduced the growth of human bladder urothelial cell carcinoma [120]. In addition, the peptide fragment PAMP (12-20) diminished tumour growth in a xenograft model using lung carcinoma [195].
Obviously none of these potential treatments has undergone pre-clinical and clinical testing and nothing is known about potential side effects and/or toxicity in humans. Therefore we must be careful with the interpretation of previous data until clinical trials have been performed.

Conclusion

All these studies support the idea of AM as a survival factor for tumour cells, that can be produced either by the tumour itself or by a number of stromal cells surrounding the tumour. In general, AM expression is upregulated by hypoxia, a common occurrence in tumours, and the excessive production of this peptide results in poorer prognosis for the patients. Therefore, new therapies based on the blockade of the AM autocrine/paracrine system are been developed and some of them are very effective in animal models. It remains to be seen whether this efficacy would persist in clinical trials.

Acknowledgements

This work was funded by a grant from the Instituto de Salud Carlos III (PI13/02166).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

IML, SM-H, JG-S, LO-C, and AM conceived the review, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T: Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun. 1993, 192: 553-560.PubMed Kitamura K, Kangawa K, Kawamoto M, Ichiki Y, Nakamura S, Matsuo H, Eto T: Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma. Biochem Biophys Res Commun. 1993, 192: 553-560.PubMed
2.
Zurück zum Zitat Hinson JP, Kapas S, Smith DM: Adrenomedullin, a multifunctional regulatory peptide. Endocr Rev. 2000, 21: 138-167.PubMed Hinson JP, Kapas S, Smith DM: Adrenomedullin, a multifunctional regulatory peptide. Endocr Rev. 2000, 21: 138-167.PubMed
3.
Zurück zum Zitat Zudaire E, Portal-Nunez S, Cuttitta F: The central role of adrenomedullin in host defense. J Leukoc Biol. 2006, 80: 237-244.PubMed Zudaire E, Portal-Nunez S, Cuttitta F: The central role of adrenomedullin in host defense. J Leukoc Biol. 2006, 80: 237-244.PubMed
4.
Zurück zum Zitat Lopez J, Martinez A: Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int Rev Cytol. 2002, 221: 1-92.PubMed Lopez J, Martinez A: Cell and molecular biology of the multifunctional peptide, adrenomedullin. Int Rev Cytol. 2002, 221: 1-92.PubMed
5.
Zurück zum Zitat Beltowski J, Jamroz A: Adrenomedullin–what do we know 10 years since its discovery?. Pol J Pharmacol. 2004, 56: 5-27.PubMed Beltowski J, Jamroz A: Adrenomedullin–what do we know 10 years since its discovery?. Pol J Pharmacol. 2004, 56: 5-27.PubMed
6.
Zurück zum Zitat Takei Y, Inoue K, Ogoshi M, Kawahara T, Bannai H, Miyano S: Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Lett. 2004, 556: 53-58.PubMed Takei Y, Inoue K, Ogoshi M, Kawahara T, Bannai H, Miyano S: Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator. FEBS Lett. 2004, 556: 53-58.PubMed
7.
Zurück zum Zitat Roh J, Chang CL, Bhalla A, Klein C, Hsu SY: Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem. 2004, 279: 7264-7274.PubMed Roh J, Chang CL, Bhalla A, Klein C, Hsu SY: Intermedin is a calcitonin/calcitonin gene-related peptide family peptide acting through the calcitonin receptor-like receptor/receptor activity-modifying protein receptor complexes. J Biol Chem. 2004, 279: 7264-7274.PubMed
8.
Zurück zum Zitat Perez-Castells J, Martin-Santamaria S, Nieto L, Ramos A, Martinez A, de Pascual-Teresa B, Jimenez-Barbero J: Structure of micelle-bound adrenomedullin: a first step toward the analysis of its interactions with receptors and small molecules. Biopolymers. 2012, 97: 45-53.PubMed Perez-Castells J, Martin-Santamaria S, Nieto L, Ramos A, Martinez A, de Pascual-Teresa B, Jimenez-Barbero J: Structure of micelle-bound adrenomedullin: a first step toward the analysis of its interactions with receptors and small molecules. Biopolymers. 2012, 97: 45-53.PubMed
9.
Zurück zum Zitat Garayoa M, Martinez A, Lee S, Pio R, An WG, Neckers L, Trepel J, Montuenga LM, Ryan H, Johnson R, Gassmann M, Cuttitta F: Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol. 2000, 14: 848-862.PubMed Garayoa M, Martinez A, Lee S, Pio R, An WG, Neckers L, Trepel J, Montuenga LM, Ryan H, Johnson R, Gassmann M, Cuttitta F: Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol. 2000, 14: 848-862.PubMed
10.
Zurück zum Zitat Pio R, Elsassr TH, Martinez A, Cuttitta F: Identification, characterization, and physiological actions of factor H as an adrenomedullin binding protein present in human plasma. Microsc Res Tech. 2002, 57: 23-27.PubMed Pio R, Elsassr TH, Martinez A, Cuttitta F: Identification, characterization, and physiological actions of factor H as an adrenomedullin binding protein present in human plasma. Microsc Res Tech. 2002, 57: 23-27.PubMed
11.
Zurück zum Zitat Dupuis J, Caron A, Ruël N: Biodistribution, plasma kinetics and quantification of single-pass pulmonary clearance of adrenomedullin. Clin Sci (Lond). 2005, 109: 97-102. Dupuis J, Caron A, Ruël N: Biodistribution, plasma kinetics and quantification of single-pass pulmonary clearance of adrenomedullin. Clin Sci (Lond). 2005, 109: 97-102.
12.
Zurück zum Zitat Martinez A, Oh HR, Unsworth EJ, Bregonzio C, Saavedra JM, Stetler-Stevenson WG, Cuttitta F: Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator. Biochem J. 2004, 383: 413-418.PubMedCentralPubMed Martinez A, Oh HR, Unsworth EJ, Bregonzio C, Saavedra JM, Stetler-Stevenson WG, Cuttitta F: Matrix metalloproteinase-2 cleavage of adrenomedullin produces a vasoconstrictor out of a vasodilator. Biochem J. 2004, 383: 413-418.PubMedCentralPubMed
13.
Zurück zum Zitat Juaneda C, Dumont Y, Chabot JG, Fournier A, Quirion R: Adrenomedullin receptor binding sites in rat brain and peripheral tissues. Eur J Pharmacol. 2003, 474: 165-174.PubMed Juaneda C, Dumont Y, Chabot JG, Fournier A, Quirion R: Adrenomedullin receptor binding sites in rat brain and peripheral tissues. Eur J Pharmacol. 2003, 474: 165-174.PubMed
14.
Zurück zum Zitat Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM: International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002, 54: 233-246.PubMed Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W, Muff R, Fischer JA, Foord SM: International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev. 2002, 54: 233-246.PubMed
15.
Zurück zum Zitat McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM: RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998, 393: 333-339.PubMed McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N, Solari R, Lee MG, Foord SM: RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature. 1998, 393: 333-339.PubMed
16.
Zurück zum Zitat Qi T, Christopoulos G, Bailey RJ, Christopoulos A, Sexton PM, Hay DL: Identification of N-terminal receptor activity-modifying protein residues important for calcitonin gene-related peptide, adrenomedullin, and amylin receptor function. Mol Pharmacol. 2008, 74: 1059-1071.PubMed Qi T, Christopoulos G, Bailey RJ, Christopoulos A, Sexton PM, Hay DL: Identification of N-terminal receptor activity-modifying protein residues important for calcitonin gene-related peptide, adrenomedullin, and amylin receptor function. Mol Pharmacol. 2008, 74: 1059-1071.PubMed
17.
Zurück zum Zitat Jacob A, Wu R, Wang P: Regulation of RAMP expression in diseases. Adv Exp Med Biol. 2012, 744: 87-103.PubMed Jacob A, Wu R, Wang P: Regulation of RAMP expression in diseases. Adv Exp Med Biol. 2012, 744: 87-103.PubMed
18.
Zurück zum Zitat Gibbons C, Dackor R, Dunworth W, Fritz-Six K, Caron KM: Receptor activity-modifying proteins: RAMPing up adrenomedullin signaling. Mol Endocrinol. 2007, 21: 783-796.PubMed Gibbons C, Dackor R, Dunworth W, Fritz-Six K, Caron KM: Receptor activity-modifying proteins: RAMPing up adrenomedullin signaling. Mol Endocrinol. 2007, 21: 783-796.PubMed
19.
Zurück zum Zitat Nikitenko LL, Leek R, Henderson S, Pillay N, Turley H, Generali D, Gunningham S, Morrin HR, Pellagatti A, Rees MC, Harris AL, Fox SB: The G-protein-coupled receptor CLR is upregulated in an autocrine loop with adrenomedullin in clear cell renal cell carcinoma and associated with poor prognosis. Clin Cancer Res. 2013, 19: 5740-5748.PubMed Nikitenko LL, Leek R, Henderson S, Pillay N, Turley H, Generali D, Gunningham S, Morrin HR, Pellagatti A, Rees MC, Harris AL, Fox SB: The G-protein-coupled receptor CLR is upregulated in an autocrine loop with adrenomedullin in clear cell renal cell carcinoma and associated with poor prognosis. Clin Cancer Res. 2013, 19: 5740-5748.PubMed
20.
Zurück zum Zitat Shimekake Y, Nagata K, Ohta S, Kambayashi Y, Teraoka H, Kitamura K, Eto T, Kangawa K, Matsuo H: Adrenomedullin stimulates two signal transduction pathways, cAMP accumulation and Ca2+ mobilization, in bovine aortic endothelial cells. J Biol Chem. 1995, 270: 4412-4417.PubMed Shimekake Y, Nagata K, Ohta S, Kambayashi Y, Teraoka H, Kitamura K, Eto T, Kangawa K, Matsuo H: Adrenomedullin stimulates two signal transduction pathways, cAMP accumulation and Ca2+ mobilization, in bovine aortic endothelial cells. J Biol Chem. 1995, 270: 4412-4417.PubMed
21.
Zurück zum Zitat Szokodi I, Kinnunen P, Tavi P, Weckström M, Tóth M, Ruskoaho H: Evidence for cAMP-independent mechanisms mediating the effects of adrenomedullin, a new inotropic peptide. Circulation. 1998, 97: 1062-1070.PubMed Szokodi I, Kinnunen P, Tavi P, Weckström M, Tóth M, Ruskoaho H: Evidence for cAMP-independent mechanisms mediating the effects of adrenomedullin, a new inotropic peptide. Circulation. 1998, 97: 1062-1070.PubMed
22.
Zurück zum Zitat Hippenstiel S, Witzenrath M, Schmeck B, Hocke A, Krisp M, Krüll M, Seybold J, Seeger W, Rascher W, Schütte H, Suttorp N: Adrenomedullin reduces endothelial hyperpermeability. Circ Res. 2002, 91: 618-625.PubMed Hippenstiel S, Witzenrath M, Schmeck B, Hocke A, Krisp M, Krüll M, Seybold J, Seeger W, Rascher W, Schütte H, Suttorp N: Adrenomedullin reduces endothelial hyperpermeability. Circ Res. 2002, 91: 618-625.PubMed
23.
Zurück zum Zitat Kureishi Y, Kobayashi S, Nishimura J, Nakano T, Kanaide H: Adrenomedullin decreases both cytosolic Ca2+ concentration and Ca(2+)-sensitivity in pig coronary arterial smooth muscle. Biochem Biophys Res Commun. 1995, 212: 572-579.PubMed Kureishi Y, Kobayashi S, Nishimura J, Nakano T, Kanaide H: Adrenomedullin decreases both cytosolic Ca2+ concentration and Ca(2+)-sensitivity in pig coronary arterial smooth muscle. Biochem Biophys Res Commun. 1995, 212: 572-579.PubMed
24.
Zurück zum Zitat Ikeda U, Kanbe T, Kawahara Y, Yokoyama M, Shimada K: Adrenomedullin augments inducible nitric oxide synthase expression in cytokine-stimulated cardiac myocytes. Circulation. 1996, 94: 2560-2565.PubMed Ikeda U, Kanbe T, Kawahara Y, Yokoyama M, Shimada K: Adrenomedullin augments inducible nitric oxide synthase expression in cytokine-stimulated cardiac myocytes. Circulation. 1996, 94: 2560-2565.PubMed
25.
Zurück zum Zitat Shimosawa T, Matsui H, Xing G, Itakura K, Ando K, Fujita T: Organ-protective effects of adrenomedullin. Hypertens Res. 2003, 26 (Suppl): S109-S112.PubMed Shimosawa T, Matsui H, Xing G, Itakura K, Ando K, Fujita T: Organ-protective effects of adrenomedullin. Hypertens Res. 2003, 26 (Suppl): S109-S112.PubMed
26.
Zurück zum Zitat Looi YH, Kane KA, McPhaden AR, Wainwright CL: Adrenomedullin acts via nitric oxide and peroxynitrite to protect against myocardial ischaemia-induced arrhythmias in anaesthetized rats. Br J Pharmacol. 2006, 148: 599-609.PubMedCentralPubMed Looi YH, Kane KA, McPhaden AR, Wainwright CL: Adrenomedullin acts via nitric oxide and peroxynitrite to protect against myocardial ischaemia-induced arrhythmias in anaesthetized rats. Br J Pharmacol. 2006, 148: 599-609.PubMedCentralPubMed
27.
Zurück zum Zitat Sata M, Kakoki M, Nagata D, Nishimatsu H, Suzuki E, Aoyagi T, Sugiura S, Kojima H, Nagano T, Kangawa K, Matsuo H, Omata M, Nagai R, Hirata Y: Adrenomedullin and nitric oxide inhibit human endothelial cell apoptosis via a cyclic GMP-independent mechanism. Hypertension. 2000, 36: 83-88.PubMed Sata M, Kakoki M, Nagata D, Nishimatsu H, Suzuki E, Aoyagi T, Sugiura S, Kojima H, Nagano T, Kangawa K, Matsuo H, Omata M, Nagai R, Hirata Y: Adrenomedullin and nitric oxide inhibit human endothelial cell apoptosis via a cyclic GMP-independent mechanism. Hypertension. 2000, 36: 83-88.PubMed
28.
Zurück zum Zitat Mannick JB, Miao XQ, Stamler JS: Nitric oxide inhibits Fas-induced apoptosis. J Biol Chem. 1997, 272: 24125-24128.PubMed Mannick JB, Miao XQ, Stamler JS: Nitric oxide inhibits Fas-induced apoptosis. J Biol Chem. 1997, 272: 24125-24128.PubMed
29.
Zurück zum Zitat Rössig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mülsch A, Dimmeler S: Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem. 1999, 274: 6823-6826.PubMed Rössig L, Fichtlscherer B, Breitschopf K, Haendeler J, Zeiher AM, Mülsch A, Dimmeler S: Nitric oxide inhibits caspase-3 by S-nitrosation in vivo. J Biol Chem. 1999, 274: 6823-6826.PubMed
30.
Zurück zum Zitat Sinz EH, Kochanek PM, Dixon CE, Clark RS, Carcillo JA, Schiding JK, Chen M, Wisniewski SR, Carlos TM, Williams D, DeKosky ST, Watkins SC, Marion DW, Billiar TR: Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice. J Clin Invest. 1999, 104: 647-656.PubMedCentralPubMed Sinz EH, Kochanek PM, Dixon CE, Clark RS, Carcillo JA, Schiding JK, Chen M, Wisniewski SR, Carlos TM, Williams D, DeKosky ST, Watkins SC, Marion DW, Billiar TR: Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice. J Clin Invest. 1999, 104: 647-656.PubMedCentralPubMed
31.
Zurück zum Zitat Nishimatsu H, Suzuki E, Nagata D, Moriyama N, Satonaka H, Walsh K, Sata M, Kangawa K, Matsuo H, Goto A, Kitamura T, Hirata Y: Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta. Circ Res. 2001, 89: 63-70.PubMed Nishimatsu H, Suzuki E, Nagata D, Moriyama N, Satonaka H, Walsh K, Sata M, Kangawa K, Matsuo H, Goto A, Kitamura T, Hirata Y: Adrenomedullin induces endothelium-dependent vasorelaxation via the phosphatidylinositol 3-kinase/Akt-dependent pathway in rat aorta. Circ Res. 2001, 89: 63-70.PubMed
32.
Zurück zum Zitat Fernandez-Sauze S, Delfino C, Mabrouk K, Dussert C, Chinot O, Martin PM, Grisoli F, Ouafik L, Boudouresque F: Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors. Int J Cancer. 2004, 108: 797-804.PubMed Fernandez-Sauze S, Delfino C, Mabrouk K, Dussert C, Chinot O, Martin PM, Grisoli F, Ouafik L, Boudouresque F: Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors. Int J Cancer. 2004, 108: 797-804.PubMed
33.
Zurück zum Zitat Okumura H, Nagaya N, Itoh T, Okano I, Hino J, Mori K, Tsukamoto Y, Ishibashi-Ueda H, Miwa S, Tambara K, Toyokuni S, Yutani C, Kangawa K: Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation. 2004, 109: 242-248.PubMed Okumura H, Nagaya N, Itoh T, Okano I, Hino J, Mori K, Tsukamoto Y, Ishibashi-Ueda H, Miwa S, Tambara K, Toyokuni S, Yutani C, Kangawa K: Adrenomedullin infusion attenuates myocardial ischemia/reperfusion injury through the phosphatidylinositol 3-kinase/Akt-dependent pathway. Circulation. 2004, 109: 242-248.PubMed
34.
Zurück zum Zitat Fritz-Six KL, Dunworth WP, Li M, Caron KM: Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest. 2008, 118: 40-50.PubMedCentralPubMed Fritz-Six KL, Dunworth WP, Li M, Caron KM: Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest. 2008, 118: 40-50.PubMedCentralPubMed
35.
Zurück zum Zitat Iwasaki H, Eguchi S, Shichiri M, Marumo F, Hirata Y: Adrenomedullin as a novel growth-promoting factor for cultured vascular smooth muscle cells: role of tyrosine kinase-mediated mitogen-activated protein kinase activation. Endocrinology. 1998, 139: 3432-3441.PubMed Iwasaki H, Eguchi S, Shichiri M, Marumo F, Hirata Y: Adrenomedullin as a novel growth-promoting factor for cultured vascular smooth muscle cells: role of tyrosine kinase-mediated mitogen-activated protein kinase activation. Endocrinology. 1998, 139: 3432-3441.PubMed
36.
Zurück zum Zitat Iwasaki H, Shichiri M, Marumo F, Hirata Y: Adrenomedullin stimulates proline-rich tyrosine kinase 2 in vascular smooth muscle cells. Endocrinology. 2001, 142: 564-572.PubMed Iwasaki H, Shichiri M, Marumo F, Hirata Y: Adrenomedullin stimulates proline-rich tyrosine kinase 2 in vascular smooth muscle cells. Endocrinology. 2001, 142: 564-572.PubMed
37.
Zurück zum Zitat Parameswaran N, Nambi P, Brooks DP, Spielman WS: Regulation of glomerular mesangial cell proliferation in culture by adrenomedullin. Eur J Pharmacol. 1999, 372: 85-95.PubMed Parameswaran N, Nambi P, Brooks DP, Spielman WS: Regulation of glomerular mesangial cell proliferation in culture by adrenomedullin. Eur J Pharmacol. 1999, 372: 85-95.PubMed
38.
Zurück zum Zitat Oehler MK, Norbury C, Hague S, Rees MC, Bicknell R: Adrenomedullin inhibits hypoxic cell death by upregulation of Bcl-2 in endometrial cancer cells: a possible promotion mechanism for tumour growth. Oncogene. 2001, 20: 2937-2945.PubMed Oehler MK, Norbury C, Hague S, Rees MC, Bicknell R: Adrenomedullin inhibits hypoxic cell death by upregulation of Bcl-2 in endometrial cancer cells: a possible promotion mechanism for tumour growth. Oncogene. 2001, 20: 2937-2945.PubMed
39.
Zurück zum Zitat Shindo T, Kurihara Y, Nishimatsu H, Moriyama N, Kakoki M, Wang Y, Imai Y, Ebihara A, Kuwaki T, Ju KH, Minamino N, Kangawa K, Ishikawa T, Fukuda M, Akimoto Y, Kawakami H, Imai T, Morita H, Yazaki Y, Nagai R, Hirata Y, Kurihara H: Vascular abnormalities and elevated blood pressure in mice lacking adrenomedullin gene. Circulation. 2001, 104: 1964-1971.PubMed Shindo T, Kurihara Y, Nishimatsu H, Moriyama N, Kakoki M, Wang Y, Imai Y, Ebihara A, Kuwaki T, Ju KH, Minamino N, Kangawa K, Ishikawa T, Fukuda M, Akimoto Y, Kawakami H, Imai T, Morita H, Yazaki Y, Nagai R, Hirata Y, Kurihara H: Vascular abnormalities and elevated blood pressure in mice lacking adrenomedullin gene. Circulation. 2001, 104: 1964-1971.PubMed
40.
Zurück zum Zitat Hayashi KG, Hosoe M, Sakumoto R, Takahashi T: Temporo-spatial expression of adrenomedullin and its receptors in the bovine placenta. Reprod Biol Endocrinol. 2013, 11: 62-10.1186/1477-7827-1111-1162PubMedCentralPubMed Hayashi KG, Hosoe M, Sakumoto R, Takahashi T: Temporo-spatial expression of adrenomedullin and its receptors in the bovine placenta. Reprod Biol Endocrinol. 2013, 11: 62-10.1186/1477-7827-1111-1162PubMedCentralPubMed
41.
Zurück zum Zitat Shimosawa T, Shibagaki Y, Ishibashi K, Kitamura K, Kangawa K, Kato S, Ando K, Fujita T: Adrenomedullin, an endogenous peptide, counteracts cardiovascular damage. Circulation. 2002, 105: 106-111.PubMed Shimosawa T, Shibagaki Y, Ishibashi K, Kitamura K, Kangawa K, Kato S, Ando K, Fujita T: Adrenomedullin, an endogenous peptide, counteracts cardiovascular damage. Circulation. 2002, 105: 106-111.PubMed
42.
Zurück zum Zitat Garayoa M, Bodegas E, Cuttitta F, Montuenga LM: Adrenomedullin in mammalian embryogenesis. Microsc Res Tech. 2002, 57: 40-54.PubMed Garayoa M, Bodegas E, Cuttitta F, Montuenga LM: Adrenomedullin in mammalian embryogenesis. Microsc Res Tech. 2002, 57: 40-54.PubMed
43.
Zurück zum Zitat Lenhart PM, Caron KM: Adrenomedullin and pregnancy: perspectives from animal models to humans. Trends Endocrinol Metab. 2012, 23: 524-532. doi:510.1016/j.tem.2012.1002.1007. Epub 2012 Mar 1016PubMedCentralPubMed Lenhart PM, Caron KM: Adrenomedullin and pregnancy: perspectives from animal models to humans. Trends Endocrinol Metab. 2012, 23: 524-532. doi:510.1016/j.tem.2012.1002.1007. Epub 2012 Mar 1016PubMedCentralPubMed
44.
Zurück zum Zitat Dackor RT, Fritz-Six K, Dunworth WP, Gibbons CL, Smithies O, Caron KM: Hydrops fetalis, cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene. Mol Cell Biol. 2006, 26: 2511-2518.PubMedCentralPubMed Dackor RT, Fritz-Six K, Dunworth WP, Gibbons CL, Smithies O, Caron KM: Hydrops fetalis, cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene. Mol Cell Biol. 2006, 26: 2511-2518.PubMedCentralPubMed
45.
Zurück zum Zitat Ichikawa-Shindo Y, Sakurai T, Kamiyoshi A, Kawate H, Iinuma N, Yoshizawa T, Koyama T, Fukuchi J, Iimuro S, Moriyama N, Kawakami H, Murata T, Kangawa K, Nagai R, Shindo T: The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. J Clin Invest. 2008, 118: 29-39.PubMedCentralPubMed Ichikawa-Shindo Y, Sakurai T, Kamiyoshi A, Kawate H, Iinuma N, Yoshizawa T, Koyama T, Fukuchi J, Iimuro S, Moriyama N, Kawakami H, Murata T, Kangawa K, Nagai R, Shindo T: The GPCR modulator protein RAMP2 is essential for angiogenesis and vascular integrity. J Clin Invest. 2008, 118: 29-39.PubMedCentralPubMed
46.
Zurück zum Zitat Koyama T, Ochoa-Callejero L, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Iinuma N, Arai T, Yoshizawa T, Iesato Y, Lei Y, Uetake R, Okimura A, Yamauchi A, Tanaka M, Igarashi K, Toriyama Y, Kawate H, Adams RH, Kawakami H, Mochizuki N, Martinez A, Shindo T: Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis. Circulation. 2013, 127: 842-853.PubMed Koyama T, Ochoa-Callejero L, Sakurai T, Kamiyoshi A, Ichikawa-Shindo Y, Iinuma N, Arai T, Yoshizawa T, Iesato Y, Lei Y, Uetake R, Okimura A, Yamauchi A, Tanaka M, Igarashi K, Toriyama Y, Kawate H, Adams RH, Kawakami H, Mochizuki N, Martinez A, Shindo T: Vascular endothelial adrenomedullin-RAMP2 system is essential for vascular integrity and organ homeostasis. Circulation. 2013, 127: 842-853.PubMed
47.
Zurück zum Zitat Dackor R, Fritz-Six K, Smithies O, Caron K: Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age. J Biol Chem. 2007, 282: 18094-18099.PubMed Dackor R, Fritz-Six K, Smithies O, Caron K: Receptor activity-modifying proteins 2 and 3 have distinct physiological functions from embryogenesis to old age. J Biol Chem. 2007, 282: 18094-18099.PubMed
48.
Zurück zum Zitat Plück A: Conditional mutagenesis in mice: the Cre/loxP recombination system. Int J Exp Pathol. 1996, 77: 269-278.PubMedCentralPubMed Plück A: Conditional mutagenesis in mice: the Cre/loxP recombination system. Int J Exp Pathol. 1996, 77: 269-278.PubMedCentralPubMed
49.
Zurück zum Zitat Julian M, Cacho M, Garcia MA, Martin-Santamaria S, de Pascual-Teresa B, Ramos A, Martinez A, Cuttitta F: Adrenomedullin: a new target for the design of small molecule modulators with promising pharmacological activities. Eur J Med Chem. 2005, 40: 737-750.PubMed Julian M, Cacho M, Garcia MA, Martin-Santamaria S, de Pascual-Teresa B, Ramos A, Martinez A, Cuttitta F: Adrenomedullin: a new target for the design of small molecule modulators with promising pharmacological activities. Eur J Med Chem. 2005, 40: 737-750.PubMed
50.
Zurück zum Zitat Chen S, Lu X, Zhao Q, Wang L, Li H, Huang J: Association of adrenomedullin gene polymorphisms and blood pressure in a Chinese population. Hypertens Res. 2013, 36: 74-78.PubMed Chen S, Lu X, Zhao Q, Wang L, Li H, Huang J: Association of adrenomedullin gene polymorphisms and blood pressure in a Chinese population. Hypertens Res. 2013, 36: 74-78.PubMed
51.
Zurück zum Zitat Hasbak P, Sheykhzade M, Schifter S, Edvinsson L: Potentiated adrenomedullin induced vasorelaxation during hypoxia in organ cultured porcine coronary arteries. J Cardiovasc Pharmacol. 2014, 63: 58-67.PubMed Hasbak P, Sheykhzade M, Schifter S, Edvinsson L: Potentiated adrenomedullin induced vasorelaxation during hypoxia in organ cultured porcine coronary arteries. J Cardiovasc Pharmacol. 2014, 63: 58-67.PubMed
52.
Zurück zum Zitat Kono T, Kaneko A, Omiya Y, Ohbuchi K, Ohno N, Yamamoto M: Epithelial transient receptor potential ankyrin 1 (TRPA1)-dependent adrenomedullin upregulates blood flow in rat small intestine. Am J Physiol-Gastrointest Liver Physiol. 2013, 304: G428-G436.PubMedCentralPubMed Kono T, Kaneko A, Omiya Y, Ohbuchi K, Ohno N, Yamamoto M: Epithelial transient receptor potential ankyrin 1 (TRPA1)-dependent adrenomedullin upregulates blood flow in rat small intestine. Am J Physiol-Gastrointest Liver Physiol. 2013, 304: G428-G436.PubMedCentralPubMed
53.
Zurück zum Zitat Kaafarani I, Fernandez-Sauze S, Berenguer C, Chinot O, Delfino C, Dussert C, Metellus P, Boudouresque F, Mabrouk K, Grisoli F, Figarella-Branger D, Martin PM, Ouafik L: Targeting adrenomedullin receptors with systemic delivery of neutralizing antibodies inhibits tumor angiogenesis and suppresses growth of human tumor xenografts in mice. FASEB J. 2009, 23: 3424-3435.PubMed Kaafarani I, Fernandez-Sauze S, Berenguer C, Chinot O, Delfino C, Dussert C, Metellus P, Boudouresque F, Mabrouk K, Grisoli F, Figarella-Branger D, Martin PM, Ouafik L: Targeting adrenomedullin receptors with systemic delivery of neutralizing antibodies inhibits tumor angiogenesis and suppresses growth of human tumor xenografts in mice. FASEB J. 2009, 23: 3424-3435.PubMed
54.
Zurück zum Zitat Nicholls MG: Hemodynamic and hormonal actions of adrenomedullin. Braz J Med Biol Res. 2004, 37: 1247-1253.PubMed Nicholls MG: Hemodynamic and hormonal actions of adrenomedullin. Braz J Med Biol Res. 2004, 37: 1247-1253.PubMed
55.
Zurück zum Zitat Nishikimi T, Kuwahara K, Nakagawa Y, Kangawa K, Nakao K: Adrenomedullin in cardiovascular disease: a useful biomarker, its pathological roles and therapeutic application. Curr Protein Pept Sci. 2013, 14: 256-267.PubMed Nishikimi T, Kuwahara K, Nakagawa Y, Kangawa K, Nakao K: Adrenomedullin in cardiovascular disease: a useful biomarker, its pathological roles and therapeutic application. Curr Protein Pept Sci. 2013, 14: 256-267.PubMed
56.
Zurück zum Zitat Cam Etoz B, Isbil Buyukcoskun N, Ozluk K: Cardiovascular effects of the intracerebroventricular injection of adrenomedullin: roles of the peripheral vasopressin and central cholinergic systems. Braz J Med Biol Res. 2012, 45: 250-255. Epub 2012 Mar 2011PubMedCentralPubMed Cam Etoz B, Isbil Buyukcoskun N, Ozluk K: Cardiovascular effects of the intracerebroventricular injection of adrenomedullin: roles of the peripheral vasopressin and central cholinergic systems. Braz J Med Biol Res. 2012, 45: 250-255. Epub 2012 Mar 2011PubMedCentralPubMed
57.
Zurück zum Zitat Kataoka Y, Miyazaki S, Yasuda S, Nagaya N, Noguchi T, Yamada N, Morii I, Kawamura A, Doi K, Miyatake K, Tomoike H, Kangawa K: The first clinical pilot study of intravenous adrenomedullin administration in patients with acute myocardial infarction. J Cardiovasc Pharmacol. 2010, 56: 413-419.PubMed Kataoka Y, Miyazaki S, Yasuda S, Nagaya N, Noguchi T, Yamada N, Morii I, Kawamura A, Doi K, Miyatake K, Tomoike H, Kangawa K: The first clinical pilot study of intravenous adrenomedullin administration in patients with acute myocardial infarction. J Cardiovasc Pharmacol. 2010, 56: 413-419.PubMed
58.
Zurück zum Zitat Martinez A: A new family of angiogenic factors. Cancer Lett. 2006, 236: 157-163.PubMed Martinez A: A new family of angiogenic factors. Cancer Lett. 2006, 236: 157-163.PubMed
59.
Zurück zum Zitat Garcia-Honduvilla N, Cifuentes A, Manuel Bellon J, Bujan J, Martinez A: The angiogenesis promoter, proadrenomedullin N-terminal 20 peptide (PAMP), improves healing in both normoxic and ischemic wounds either alone or in combination with autologous stem/progenitor cells. Histol Histopathol. 2013, 28: 115-125.PubMed Garcia-Honduvilla N, Cifuentes A, Manuel Bellon J, Bujan J, Martinez A: The angiogenesis promoter, proadrenomedullin N-terminal 20 peptide (PAMP), improves healing in both normoxic and ischemic wounds either alone or in combination with autologous stem/progenitor cells. Histol Histopathol. 2013, 28: 115-125.PubMed
60.
Zurück zum Zitat Garcia-Honduvilla N, Cifuentes A, Bellon JM, Bujan J, Martinez A: The angiogenesis promoter, proadrenomedullin N-terminal 20 peptide (PAMP), improves healing in both normoxic and ischemic wounds either alone or in combination with autologous stem/progenitor cells. Histol Histopathol. 2013, 28: 115-125.PubMed Garcia-Honduvilla N, Cifuentes A, Bellon JM, Bujan J, Martinez A: The angiogenesis promoter, proadrenomedullin N-terminal 20 peptide (PAMP), improves healing in both normoxic and ischemic wounds either alone or in combination with autologous stem/progenitor cells. Histol Histopathol. 2013, 28: 115-125.PubMed
61.
Zurück zum Zitat Harada K, Yamahara K, Ohnishi S, Otani K, Kanoh H, Ishibashi-Ueda H, Minamino N, Kangawa K, Nagaya N, Ikeda T: Sustained-release adrenomedullin ointment accelerates wound healing of pressure ulcers. Regul Pept. 2011, 168: 21-26.PubMed Harada K, Yamahara K, Ohnishi S, Otani K, Kanoh H, Ishibashi-Ueda H, Minamino N, Kangawa K, Nagaya N, Ikeda T: Sustained-release adrenomedullin ointment accelerates wound healing of pressure ulcers. Regul Pept. 2011, 168: 21-26.PubMed
62.
Zurück zum Zitat Hayakawa H, Hirata Y, Kakoki M, Suzuki Y, Nishimatsu H, Nagata D, Suzuki E, Kikuchi K, Nagano T, Kangawa K, Matsuo H, Sugimoto T, Omata M: Role of nitric oxide-cGMP pathway in adrenomedullin-induced vasodilation in the rat. Hypertension. 1999, 33: 689-693.PubMed Hayakawa H, Hirata Y, Kakoki M, Suzuki Y, Nishimatsu H, Nagata D, Suzuki E, Kikuchi K, Nagano T, Kangawa K, Matsuo H, Sugimoto T, Omata M: Role of nitric oxide-cGMP pathway in adrenomedullin-induced vasodilation in the rat. Hypertension. 1999, 33: 689-693.PubMed
63.
Zurück zum Zitat Wangensteen R, Quesada A, Sainz J, Duarte J, Vargas F, Osuna A: Role of endothelium-derived relaxing factors in adrenomedullin-induced vasodilation in the rat kidney. Eur J Pharmacol. 2002, 444: 97-102.PubMed Wangensteen R, Quesada A, Sainz J, Duarte J, Vargas F, Osuna A: Role of endothelium-derived relaxing factors in adrenomedullin-induced vasodilation in the rat kidney. Eur J Pharmacol. 2002, 444: 97-102.PubMed
64.
Zurück zum Zitat Yang BC, Lippton H, Gumusel B, Hyman A, Mehta JL: Adrenomedullin dilates rat pulmonary artery rings during hypoxia: role of nitric oxide and vasodilator prostaglandins. J Cardiovasc Pharmacol. 1996, 28: 458-462.PubMed Yang BC, Lippton H, Gumusel B, Hyman A, Mehta JL: Adrenomedullin dilates rat pulmonary artery rings during hypoxia: role of nitric oxide and vasodilator prostaglandins. J Cardiovasc Pharmacol. 1996, 28: 458-462.PubMed
65.
Zurück zum Zitat Jougasaki M, Wei CM, Aarhus LL, Heublein DM, Sandberg SM, Burnett JC: Renal localization and actions of adrenomedullin: a natriuretic peptide. Am J Physiol. 1995, 268: F657-F663.PubMed Jougasaki M, Wei CM, Aarhus LL, Heublein DM, Sandberg SM, Burnett JC: Renal localization and actions of adrenomedullin: a natriuretic peptide. Am J Physiol. 1995, 268: F657-F663.PubMed
66.
Zurück zum Zitat Samson WK: Adrenomedullin and the control of fluid and electrolyte homeostasis. Annu Rev Physiol. 1999, 61: 363-389.PubMed Samson WK: Adrenomedullin and the control of fluid and electrolyte homeostasis. Annu Rev Physiol. 1999, 61: 363-389.PubMed
67.
Zurück zum Zitat Nishikimi T: Adrenomedullin in the kidney-renal physiological and pathophysiological roles. Curr Med Chem. 2007, 14: 1689-1699.PubMed Nishikimi T: Adrenomedullin in the kidney-renal physiological and pathophysiological roles. Curr Med Chem. 2007, 14: 1689-1699.PubMed
68.
Zurück zum Zitat Zudaire E, Cuttitta F, Martínez A: Regulation of pancreatic physiology by adrenomedullin and its binding protein. Regul Pept. 2003, 112: 121-130.PubMed Zudaire E, Cuttitta F, Martínez A: Regulation of pancreatic physiology by adrenomedullin and its binding protein. Regul Pept. 2003, 112: 121-130.PubMed
69.
Zurück zum Zitat Hayashi M, Tojo A, Shimosawa T, Fujita T: The role of adrenomedullin in the renal NADPH oxidase and (pro)renin in diabetic mice. J Diabetes Res. 2013, 2013: 134395-PubMedCentralPubMed Hayashi M, Tojo A, Shimosawa T, Fujita T: The role of adrenomedullin in the renal NADPH oxidase and (pro)renin in diabetic mice. J Diabetes Res. 2013, 2013: 134395-PubMedCentralPubMed
70.
Zurück zum Zitat Marutsuka K, Hatakeyama K, Sato Y, Yamashita A, Sumiyoshi A, Asada Y: Immunohistological localization and possible functions of adrenomedullin. Hypertens Res. 2003, 26 (Suppl): S33-S40.PubMed Marutsuka K, Hatakeyama K, Sato Y, Yamashita A, Sumiyoshi A, Asada Y: Immunohistological localization and possible functions of adrenomedullin. Hypertens Res. 2003, 26 (Suppl): S33-S40.PubMed
71.
Zurück zum Zitat Rossowski WJ, Cheng BL, Jiang NY, Coy DH: Examination of somatostatin involvement in the inhibitory action of GIP, GLP-1, amylin and adrenomedullin on gastric acid release using a new SRIF antagonist analogue. Br J Pharmacol. 1998, 125: 1081-1087.PubMedCentralPubMed Rossowski WJ, Cheng BL, Jiang NY, Coy DH: Examination of somatostatin involvement in the inhibitory action of GIP, GLP-1, amylin and adrenomedullin on gastric acid release using a new SRIF antagonist analogue. Br J Pharmacol. 1998, 125: 1081-1087.PubMedCentralPubMed
72.
Zurück zum Zitat Serrano J, Alonso D, Fernandez AP, Encinas JM, Lopez JC, Castro-Blanco S, Fernandez-Vizarra P, Richart A, Santacana M, Uttenthal LO, Bentura ML, Martinez-Murillo R, Martinez A, Cuttitta F, Rodrigo J: Adrenomedullin in the central nervous system. Microsc Res Tech. 2002, 57: 76-90.PubMed Serrano J, Alonso D, Fernandez AP, Encinas JM, Lopez JC, Castro-Blanco S, Fernandez-Vizarra P, Richart A, Santacana M, Uttenthal LO, Bentura ML, Martinez-Murillo R, Martinez A, Cuttitta F, Rodrigo J: Adrenomedullin in the central nervous system. Microsc Res Tech. 2002, 57: 76-90.PubMed
73.
Zurück zum Zitat Kis B, Abrahám CS, Deli MA, Kobayashi H, Niwa M, Yamashita H, Busija DW, Ueta Y: Adrenomedullin, an autocrine mediator of blood-brain barrier function. Hypertens Res. 2003, 26 (Suppl): S61-S70.PubMed Kis B, Abrahám CS, Deli MA, Kobayashi H, Niwa M, Yamashita H, Busija DW, Ueta Y: Adrenomedullin, an autocrine mediator of blood-brain barrier function. Hypertens Res. 2003, 26 (Suppl): S61-S70.PubMed
74.
Zurück zum Zitat Saita M, Shimokawa A, Kunitake T, Kato K, Hanamori T, Kitamura K, Eto T, Kannan H: Central actions of adrenomedullin on cardiovascular parameters and sympathetic outflow in conscious rats. Am J Physiol. 1998, 274: R979-R984.PubMed Saita M, Shimokawa A, Kunitake T, Kato K, Hanamori T, Kitamura K, Eto T, Kannan H: Central actions of adrenomedullin on cardiovascular parameters and sympathetic outflow in conscious rats. Am J Physiol. 1998, 274: R979-R984.PubMed
75.
Zurück zum Zitat Miyashita K, Itoh H, Arai H, Suganami T, Sawada N, Fukunaga Y, Sone M, Yamahara K, Yurugi-Kobayashi T, Park K, Oyamada N, Taura D, Tsujimoto H, Chao TH, Tamura N, Mukoyama M, Nakao K: The neuroprotective and vasculo-neuro-regenerative roles of adrenomedullin in ischemic brain and its therapeutic potential. Endocrinology. 2006, 147: 1642-1653.PubMed Miyashita K, Itoh H, Arai H, Suganami T, Sawada N, Fukunaga Y, Sone M, Yamahara K, Yurugi-Kobayashi T, Park K, Oyamada N, Taura D, Tsujimoto H, Chao TH, Tamura N, Mukoyama M, Nakao K: The neuroprotective and vasculo-neuro-regenerative roles of adrenomedullin in ischemic brain and its therapeutic potential. Endocrinology. 2006, 147: 1642-1653.PubMed
76.
Zurück zum Zitat Fernandez AP, Serrano J, Tessarollo L, Cuttitta F, Martinez A: Lack of adrenomedullin in the mouse brain results in behavioral changes, anxiety, and lower survival under stress conditions. Proc Natl Acad Sci U S A. 2008, 105: 12581-12586.PubMedCentralPubMed Fernandez AP, Serrano J, Tessarollo L, Cuttitta F, Martinez A: Lack of adrenomedullin in the mouse brain results in behavioral changes, anxiety, and lower survival under stress conditions. Proc Natl Acad Sci U S A. 2008, 105: 12581-12586.PubMedCentralPubMed
77.
Zurück zum Zitat Fernandez AP, Serrano J, Martinez-Murillo R, Martinez A: Lack of adrenomedullin in the central nervous system results in apparently paradoxical alterations on pain sensitivity. Endocrinology. 2010, 151: 4908-4915.PubMed Fernandez AP, Serrano J, Martinez-Murillo R, Martinez A: Lack of adrenomedullin in the central nervous system results in apparently paradoxical alterations on pain sensitivity. Endocrinology. 2010, 151: 4908-4915.PubMed
78.
Zurück zum Zitat Martinez A, Elsasser TH, Muro-Cacho C, Moody TW, Miller MJ, Macri CJ, Cuttitta F: Expression of adrenomedullin and its receptor in normal and malignant human skin: a potential pluripotent role in the integument. Endocrinology. 1997, 138: 5597-5604.PubMed Martinez A, Elsasser TH, Muro-Cacho C, Moody TW, Miller MJ, Macri CJ, Cuttitta F: Expression of adrenomedullin and its receptor in normal and malignant human skin: a potential pluripotent role in the integument. Endocrinology. 1997, 138: 5597-5604.PubMed
79.
Zurück zum Zitat Nishikimi T, Yoshihara F, Mori Y, Kangawa K, Matsuoka H: Cardioprotective effect of adrenomedullin in heart failure. Hypertens Res. 2003, 26 (Suppl): S121-S127.PubMed Nishikimi T, Yoshihara F, Mori Y, Kangawa K, Matsuoka H: Cardioprotective effect of adrenomedullin in heart failure. Hypertens Res. 2003, 26 (Suppl): S121-S127.PubMed
80.
Zurück zum Zitat Kobayashi K, Kitamura K, Hirayama N, Date H, Kashiwagi T, Ikushima I, Hanada Y, Nagatomo Y, Takenaga M, Ishikawa T, Imamura T, Koiwaya Y, Eto T: Increased plasma adrenomedullin in acute myocardial infarction. Am Heart J. 1996, 131: 676-680.PubMed Kobayashi K, Kitamura K, Hirayama N, Date H, Kashiwagi T, Ikushima I, Hanada Y, Nagatomo Y, Takenaga M, Ishikawa T, Imamura T, Koiwaya Y, Eto T: Increased plasma adrenomedullin in acute myocardial infarction. Am Heart J. 1996, 131: 676-680.PubMed
81.
Zurück zum Zitat Wong HK, Cheung TT, Cheung BM: Adrenomedullin and cardiovascular diseases.JRSM Cardiovasc Dis 2012, 1(5)., Wong HK, Cheung TT, Cheung BM: Adrenomedullin and cardiovascular diseases.JRSM Cardiovasc Dis 2012, 1(5).,
82.
Zurück zum Zitat Iqbal N, Alim KS, Aramin H, Iqbal F, Green E, Higginbotham E, Maisel AS: Novel biomarkers for heart failure. Expert Rev Cardiovasc Ther. 2013, 11: 1155-1169.PubMed Iqbal N, Alim KS, Aramin H, Iqbal F, Green E, Higginbotham E, Maisel AS: Novel biomarkers for heart failure. Expert Rev Cardiovasc Ther. 2013, 11: 1155-1169.PubMed
83.
Zurück zum Zitat Nishimatsu H, Hirata Y, Shindo T, Kurihara H, Kakoki M, Nagata D, Hayakawa H, Satonaka H, Sata M, Tojo A, Suzuki E, Kangawa K, Matsuo H, Kitamura T, Nagai R: Role of endogenous adrenomedullin in the regulation of vascular tone and ischemic renal injury: studies on transgenic/knockout mice of adrenomedullin gene. Circ Res. 2002, 90: 657-663.PubMed Nishimatsu H, Hirata Y, Shindo T, Kurihara H, Kakoki M, Nagata D, Hayakawa H, Satonaka H, Sata M, Tojo A, Suzuki E, Kangawa K, Matsuo H, Kitamura T, Nagai R: Role of endogenous adrenomedullin in the regulation of vascular tone and ischemic renal injury: studies on transgenic/knockout mice of adrenomedullin gene. Circ Res. 2002, 90: 657-663.PubMed
84.
Zurück zum Zitat Nakayama M, Takahashi K, Murakami O, Murakami H, Sasano H, Shirato K, Shibahara S: Adrenomedullin in monocytes and macrophages: possible involvement of macrophage-derived adrenomedullin in atherogenesis. Clin Sci (Lond). 1999, 97: 247-251. Nakayama M, Takahashi K, Murakami O, Murakami H, Sasano H, Shirato K, Shibahara S: Adrenomedullin in monocytes and macrophages: possible involvement of macrophage-derived adrenomedullin in atherogenesis. Clin Sci (Lond). 1999, 97: 247-251.
85.
Zurück zum Zitat Shinomiya K, Ohmori K, Ohyama H, Hosomi N, Takahashi T, Osaka K, Kohno M: Association of plasma adrenomedullin with carotid atherosclerosis in chronic ischemic stroke. Peptides. 2001, 22: 1873-1880.PubMed Shinomiya K, Ohmori K, Ohyama H, Hosomi N, Takahashi T, Osaka K, Kohno M: Association of plasma adrenomedullin with carotid atherosclerosis in chronic ischemic stroke. Peptides. 2001, 22: 1873-1880.PubMed
86.
Zurück zum Zitat Kohno M, Hanehira T, Kano H, Horio T, Yokokawa K, Ikeda M, Minami M, Yasunari K, Yoshikawa J: Plasma adrenomedullin concentrations in essential hypertension. Hypertension. 1996, 27: 102-107.PubMed Kohno M, Hanehira T, Kano H, Horio T, Yokokawa K, Ikeda M, Minami M, Yasunari K, Yoshikawa J: Plasma adrenomedullin concentrations in essential hypertension. Hypertension. 1996, 27: 102-107.PubMed
87.
Zurück zum Zitat Kato J, Kitamura K, Matsui E, Tanaka M, Ishizaka Y, Kita T, Kangawa K, Eto T: Plasma adrenomedullin and natriuretic peptides in patients with essential or malignant hypertension. Hypertens Res. 1999, 22: 61-65.PubMed Kato J, Kitamura K, Matsui E, Tanaka M, Ishizaka Y, Kita T, Kangawa K, Eto T: Plasma adrenomedullin and natriuretic peptides in patients with essential or malignant hypertension. Hypertens Res. 1999, 22: 61-65.PubMed
88.
Zurück zum Zitat Kinoshita H, Fujimoto S, Kitamura K, Matsuura Y, Uezono S, Hisanaga S, Eto T: Increased plasma levels of mature adrenomedullin in chronic glomerulonephritis. Nephron. 2000, 86: 333-338.PubMed Kinoshita H, Fujimoto S, Kitamura K, Matsuura Y, Uezono S, Hisanaga S, Eto T: Increased plasma levels of mature adrenomedullin in chronic glomerulonephritis. Nephron. 2000, 86: 333-338.PubMed
89.
Zurück zum Zitat Hirose T, Totsune K, Mori N, Mori T, Morimoto R, Metoki H, Asayama K, Kikuya M, Ohkubo T, Kohzuki M, Takahashi K, Imai Y: Expression of adrenomedullin 2/intermedin, a possible reno-protective peptide, is decreased in the kidneys of rats with hypertension or renal failure. Am J Physiol Renal Physiol. 2010, 299: F128-F134.PubMed Hirose T, Totsune K, Mori N, Mori T, Morimoto R, Metoki H, Asayama K, Kikuya M, Ohkubo T, Kohzuki M, Takahashi K, Imai Y: Expression of adrenomedullin 2/intermedin, a possible reno-protective peptide, is decreased in the kidneys of rats with hypertension or renal failure. Am J Physiol Renal Physiol. 2010, 299: F128-F134.PubMed
90.
Zurück zum Zitat Chen YX, Li CS: Prognostic value of adrenomedullin in septic patients in the ED. Am J Emerg Med. 2013, 31: 1017-1021.PubMed Chen YX, Li CS: Prognostic value of adrenomedullin in septic patients in the ED. Am J Emerg Med. 2013, 31: 1017-1021.PubMed
91.
Zurück zum Zitat Chen YX, Li CS: The predictive value of adrenomedullin for development of severe sepsis and septic shock in emergency department. Biomed Res Int. 2013, 2013: 960101-PubMedCentralPubMed Chen YX, Li CS: The predictive value of adrenomedullin for development of severe sepsis and septic shock in emergency department. Biomed Res Int. 2013, 2013: 960101-PubMedCentralPubMed
92.
Zurück zum Zitat Oncel MY, Erdeve O, Uras N, Dilmen U: Is pro-adrenomedullin a more useful marker in hospitalized infants with sepsis?. Eur J Pediatr. 2014, 173: 127-128.PubMed Oncel MY, Erdeve O, Uras N, Dilmen U: Is pro-adrenomedullin a more useful marker in hospitalized infants with sepsis?. Eur J Pediatr. 2014, 173: 127-128.PubMed
93.
Zurück zum Zitat Pang L, Qi J, Gao Y, Jin H, Du J: Adrenomedullin alleviates pulmonary artery collagen accumulation in rats with pulmonary hypertension induced by high blood flow. Peptides. 2014, 54: 101-107.PubMed Pang L, Qi J, Gao Y, Jin H, Du J: Adrenomedullin alleviates pulmonary artery collagen accumulation in rats with pulmonary hypertension induced by high blood flow. Peptides. 2014, 54: 101-107.PubMed
94.
Zurück zum Zitat Fukuda K, Tsukada H, Oya M, Onomura M, Kodama M, Nakamura H, Hosokawa M, Seino Y: Adrenomedullin promotes epithelial restitution of rat and human gastric mucosa in vitro. Peptides. 1999, 20: 127-132.PubMed Fukuda K, Tsukada H, Oya M, Onomura M, Kodama M, Nakamura H, Hosokawa M, Seino Y: Adrenomedullin promotes epithelial restitution of rat and human gastric mucosa in vitro. Peptides. 1999, 20: 127-132.PubMed
95.
Zurück zum Zitat Ashizuka S, Kita T, Inatsu H, Kitamura K: Adrenomedullin: a novel therapy for intractable ulcerative colitis. Inflamm Bowel Dis. 2013, 19: E26-E27.PubMed Ashizuka S, Kita T, Inatsu H, Kitamura K: Adrenomedullin: a novel therapy for intractable ulcerative colitis. Inflamm Bowel Dis. 2013, 19: E26-E27.PubMed
96.
Zurück zum Zitat Ashizuka S, Inatsu H, Kita T, Kitamura K: The first clinical pilot study of adrenomedullin therapy in refractory ulcerative colitis: the initial Six cases. Gastroenterology. 2012, 142: S353-S353. Ashizuka S, Inatsu H, Kita T, Kitamura K: The first clinical pilot study of adrenomedullin therapy in refractory ulcerative colitis: the initial Six cases. Gastroenterology. 2012, 142: S353-S353.
97.
Zurück zum Zitat Rulle S, Ah Kioon MD, Asensio C, Mussard J, Ea HK, Boissier MC, Liote F, Falgarone G: Adrenomedullin, a neuropeptide with immunoregulatory properties induces semi-mature tolerogenic dendritic cells. Immunology. 2012, 136: 252-264. doi:210.1111/j.1365-2567.2012.03577.xPubMedCentralPubMed Rulle S, Ah Kioon MD, Asensio C, Mussard J, Ea HK, Boissier MC, Liote F, Falgarone G: Adrenomedullin, a neuropeptide with immunoregulatory properties induces semi-mature tolerogenic dendritic cells. Immunology. 2012, 136: 252-264. doi:210.1111/j.1365-2567.2012.03577.xPubMedCentralPubMed
98.
Zurück zum Zitat Talero E, Di Paola R, Mazzon E, Esposito E, Motilva V, Cuzzocrea S: Anti-inflammatory effects of adrenomedullin on acute lung injury induced by Carrageenan in mice. Mediators Inflamm. 2012, 2012: 717851-doi:10.1155/2012/717851. Epub 712012 May 717820PubMed Talero E, Di Paola R, Mazzon E, Esposito E, Motilva V, Cuzzocrea S: Anti-inflammatory effects of adrenomedullin on acute lung injury induced by Carrageenan in mice. Mediators Inflamm. 2012, 2012: 717851-doi:10.1155/2012/717851. Epub 712012 May 717820PubMed
99.
Zurück zum Zitat Ashizuka S, Ishikawa N, Kato J, Yamaga J, Inatsu H, Eto T, Kitamura K: Effect of adrenomedullin administration on acetic acid-induced colitis in rats. Peptides. 2005, 26: 2610-2615. Epub 2005 Jun 2623PubMed Ashizuka S, Ishikawa N, Kato J, Yamaga J, Inatsu H, Eto T, Kitamura K: Effect of adrenomedullin administration on acetic acid-induced colitis in rats. Peptides. 2005, 26: 2610-2615. Epub 2005 Jun 2623PubMed
100.
Zurück zum Zitat Ashizuka S, Inagaki Ohara K, Kuwasako K, Kato J, Inatsu H, Kitamura K: Adrenomedullin treatment reduces intestinal inflammation and maintains epithelial barrier function in mice administered dextran sulphate sodium. Microbiol Immunol. 2009, 53: 573-581. doi:510.1111/j.1348-0421.2009.00159.xPubMed Ashizuka S, Inagaki Ohara K, Kuwasako K, Kato J, Inatsu H, Kitamura K: Adrenomedullin treatment reduces intestinal inflammation and maintains epithelial barrier function in mice administered dextran sulphate sodium. Microbiol Immunol. 2009, 53: 573-581. doi:510.1111/j.1348-0421.2009.00159.xPubMed
101.
Zurück zum Zitat Talero E, Sanchez Fidalgo S, De La Lastra CA, Illanes M, Calvo JR, Motilva V: Acute and chronic responses associated with adrenomedullin administration in experimental colitis. Peptides. 2008, 29: 2001-2012. doi:2010.1016/j.peptides.2008.2007.2013. Epub 2008 Jul 2029PubMed Talero E, Sanchez Fidalgo S, De La Lastra CA, Illanes M, Calvo JR, Motilva V: Acute and chronic responses associated with adrenomedullin administration in experimental colitis. Peptides. 2008, 29: 2001-2012. doi:2010.1016/j.peptides.2008.2007.2013. Epub 2008 Jul 2029PubMed
102.
Zurück zum Zitat García-Unzueta MT, Montalbán C, Pesquera C, Berrazueta JR, Amado JA: Plasma adrenomedullin levels in type 1 diabetes. Relationship with clinical parameters. Diabetes Care. 1998, 21: 999-1003.PubMed García-Unzueta MT, Montalbán C, Pesquera C, Berrazueta JR, Amado JA: Plasma adrenomedullin levels in type 1 diabetes. Relationship with clinical parameters. Diabetes Care. 1998, 21: 999-1003.PubMed
103.
Zurück zum Zitat Lim SC, Morgenthaler NG, Subramaniam T, Wu YS, Goh SK, Sum CF: The relationship between adrenomedullin, metabolic factors, and vascular function in individuals with type 2 diabetes. Diabetes Care. 2007, 30: 1513-1519.PubMed Lim SC, Morgenthaler NG, Subramaniam T, Wu YS, Goh SK, Sum CF: The relationship between adrenomedullin, metabolic factors, and vascular function in individuals with type 2 diabetes. Diabetes Care. 2007, 30: 1513-1519.PubMed
104.
Zurück zum Zitat Martínez A, Elsasser TH, Bhathena SJ, Pío R, Buchanan TA, Macri CJ, Cuttitta F: Is adrenomedullin a causal agent in some cases of type 2 diabetes?. Peptides. 1999, 20: 1471-1478.PubMed Martínez A, Elsasser TH, Bhathena SJ, Pío R, Buchanan TA, Macri CJ, Cuttitta F: Is adrenomedullin a causal agent in some cases of type 2 diabetes?. Peptides. 1999, 20: 1471-1478.PubMed
105.
Zurück zum Zitat Sah RP, Nagpal SJ, Mukhopadhyay D, Chari ST: New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol. 2013, 10: 423-433.PubMedCentralPubMed Sah RP, Nagpal SJ, Mukhopadhyay D, Chari ST: New insights into pancreatic cancer-induced paraneoplastic diabetes. Nat Rev Gastroenterol Hepatol. 2013, 10: 423-433.PubMedCentralPubMed
106.
Zurück zum Zitat Lu Y, Xu Y, Tang C: Changes in adrenomedullin in patients with proliferative diabetic retinopathy. Curr Eye Res. 2011, 36: 1047-1052.PubMed Lu Y, Xu Y, Tang C: Changes in adrenomedullin in patients with proliferative diabetic retinopathy. Curr Eye Res. 2011, 36: 1047-1052.PubMed
107.
Zurück zum Zitat Udono-Fujimori R, Udono T, Totsune K, Tamai M, Shibahara S, Takahashi K: Adrenomedullin in the eye. Regul Pept. 2003, 112: 95-101.PubMed Udono-Fujimori R, Udono T, Totsune K, Tamai M, Shibahara S, Takahashi K: Adrenomedullin in the eye. Regul Pept. 2003, 112: 95-101.PubMed
108.
Zurück zum Zitat Pavel ME, Hoppe S, Papadopoulos T, Linder V, Mohr B, Hahn EG, Lohmann T, Schuppan D: Adrenomedullin is a novel marker of tumor progression in neuroendocrine carcinomas. Horm Metab Res. 2006, 38: 112-118.PubMed Pavel ME, Hoppe S, Papadopoulos T, Linder V, Mohr B, Hahn EG, Lohmann T, Schuppan D: Adrenomedullin is a novel marker of tumor progression in neuroendocrine carcinomas. Horm Metab Res. 2006, 38: 112-118.PubMed
109.
Zurück zum Zitat Dai X, Ma W, He XJ, Jha RK: Elevated expression of adrenomedullin is correlated with prognosis and disease severity in osteosarcoma. Med Oncol. 2013, 30: 347-PubMed Dai X, Ma W, He XJ, Jha RK: Elevated expression of adrenomedullin is correlated with prognosis and disease severity in osteosarcoma. Med Oncol. 2013, 30: 347-PubMed
110.
Zurück zum Zitat Aggarwal G, Ramachandran V, Javeed N, Arumugam T, Dutta S, Klee GG, Klee EW, Smyrk TC, Bamlet W, Han JJ, Rumie Vittar NB, de Andrade M, Mukhopadhyay D, Petersen GM, Fernandez-Zapico ME, Logsdon CD, Chari ST: Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in beta cells and mice. Gastroenterology. 2012, 143: 1510-1517. e1511PubMedCentralPubMed Aggarwal G, Ramachandran V, Javeed N, Arumugam T, Dutta S, Klee GG, Klee EW, Smyrk TC, Bamlet W, Han JJ, Rumie Vittar NB, de Andrade M, Mukhopadhyay D, Petersen GM, Fernandez-Zapico ME, Logsdon CD, Chari ST: Adrenomedullin is up-regulated in patients with pancreatic cancer and causes insulin resistance in beta cells and mice. Gastroenterology. 2012, 143: 1510-1517. e1511PubMedCentralPubMed
111.
Zurück zum Zitat Letizia C, Tamburrano G, Alo P, Paoloni A, Caliumi C, Marinoni E, Di Iorio R, D’Erasmo E: Adrenomedullin, a new peptide, in patients with insulinoma. Eur J Endocrinol. 2001, 144: 517-520.PubMed Letizia C, Tamburrano G, Alo P, Paoloni A, Caliumi C, Marinoni E, Di Iorio R, D’Erasmo E: Adrenomedullin, a new peptide, in patients with insulinoma. Eur J Endocrinol. 2001, 144: 517-520.PubMed
112.
Zurück zum Zitat Letizia C, Di Iorio R, De Toma G, Marinoni E, Cerci S, Celi M, Subioli S, D’Erasmo E: Circulating adrenomedullin is increased in patients with corticotropin-dependent Cushing’s syndrome due to pituitary adenoma. Metabolism. 2000, 49: 760-763.PubMed Letizia C, Di Iorio R, De Toma G, Marinoni E, Cerci S, Celi M, Subioli S, D’Erasmo E: Circulating adrenomedullin is increased in patients with corticotropin-dependent Cushing’s syndrome due to pituitary adenoma. Metabolism. 2000, 49: 760-763.PubMed
113.
Zurück zum Zitat Letizia C, De Toma G, Cerci S, Massa R, Coassin S, Subioli S, Scuro L, De Ciocchis A: Adrenomedullin levels are high in primary aldosteronism due to adenoma and decline after surgical cure. Blood Press. 1998, 7: 19-23.PubMed Letizia C, De Toma G, Cerci S, Massa R, Coassin S, Subioli S, Scuro L, De Ciocchis A: Adrenomedullin levels are high in primary aldosteronism due to adenoma and decline after surgical cure. Blood Press. 1998, 7: 19-23.PubMed
114.
Zurück zum Zitat Letizia C, De Toma G, Caliumi C, Cerci S, Massa R, Loria RD, Alo P, Marinoni EM, Diacinti D, D’Erasmo E: Plasma adrenomedullin concentrations in patients with adrenal pheochromocytoma. Horm Metab Res. 2001, 33: 290-294.PubMed Letizia C, De Toma G, Caliumi C, Cerci S, Massa R, Loria RD, Alo P, Marinoni EM, Diacinti D, D’Erasmo E: Plasma adrenomedullin concentrations in patients with adrenal pheochromocytoma. Horm Metab Res. 2001, 33: 290-294.PubMed
115.
Zurück zum Zitat Hummel TR, Jessen WJ, Miller SJ, Kluwe L, Mautner VF, Wallace MR, Lazaro C, Page GP, Worley PF, Aronow BJ, Schorry EK, Ratner N: Gene expression analysis identifies potential biomarkers of neurofibromatosis type 1 including adrenomedullin. Clin Cancer Res. 2010, 16: 5048-5057.PubMed Hummel TR, Jessen WJ, Miller SJ, Kluwe L, Mautner VF, Wallace MR, Lazaro C, Page GP, Worley PF, Aronow BJ, Schorry EK, Ratner N: Gene expression analysis identifies potential biomarkers of neurofibromatosis type 1 including adrenomedullin. Clin Cancer Res. 2010, 16: 5048-5057.PubMed
116.
Zurück zum Zitat Keleg S, Kayed H, Jiang X, Penzel R, Giese T, Buchler MW, Friess H, Kleeff J: Adrenomedullin is induced by hypoxia and enhances pancreatic cancer cell invasion. Int J Cancer. 2007, 121: 21-32.PubMed Keleg S, Kayed H, Jiang X, Penzel R, Giese T, Buchler MW, Friess H, Kleeff J: Adrenomedullin is induced by hypoxia and enhances pancreatic cancer cell invasion. Int J Cancer. 2007, 121: 21-32.PubMed
117.
Zurück zum Zitat Cotesta D, Caliumi C, Alo P, Petramala L, Reale MG, Masciangelo R, Signore A, Cianci R, D’Erasmo E, Letizia C: High plasma levels of human chromogranin A and adrenomedullin in patients with pheochromocytoma. Tumori. 2005, 91: 53-58.PubMed Cotesta D, Caliumi C, Alo P, Petramala L, Reale MG, Masciangelo R, Signore A, Cianci R, D’Erasmo E, Letizia C: High plasma levels of human chromogranin A and adrenomedullin in patients with pheochromocytoma. Tumori. 2005, 91: 53-58.PubMed
118.
Zurück zum Zitat Michelsen J, Thiesson H, Walter S, Ottosen PD, Skott O, Jensen BL: Tissue expression and plasma levels of adrenomedullin in renal cancer patients. Clin Sci (Lond). 2006, 111: 61-70. Michelsen J, Thiesson H, Walter S, Ottosen PD, Skott O, Jensen BL: Tissue expression and plasma levels of adrenomedullin in renal cancer patients. Clin Sci (Lond). 2006, 111: 61-70.
119.
Zurück zum Zitat Nouguerede E, Berenguer C, Garcia S, Bennani B, Delfino C, Nanni I, Dahan L, Gasmi M, Seitz JF, Martin PM, Ouafik L: Expression of adrenomedullin in human colorectal tumors and its role in cell growth and invasion in vitro and in xenograft growth in vivo. Cancer Med. 2013, 2: 196-207.PubMedCentralPubMed Nouguerede E, Berenguer C, Garcia S, Bennani B, Delfino C, Nanni I, Dahan L, Gasmi M, Seitz JF, Martin PM, Ouafik L: Expression of adrenomedullin in human colorectal tumors and its role in cell growth and invasion in vitro and in xenograft growth in vivo. Cancer Med. 2013, 2: 196-207.PubMedCentralPubMed
120.
Zurück zum Zitat Liu AG, Zhang XZ, Li FB, Zhao YL, Guo YC, Yang RM: RNA interference targeting adrenomedullin induces apoptosis and reduces the growth of human bladder urothelial cell carcinoma. Med Oncol. 2013, 30: 616-PubMed Liu AG, Zhang XZ, Li FB, Zhao YL, Guo YC, Yang RM: RNA interference targeting adrenomedullin induces apoptosis and reduces the growth of human bladder urothelial cell carcinoma. Med Oncol. 2013, 30: 616-PubMed
121.
Zurück zum Zitat Deville JL, Bartoli C, Berenguer C, Fernandez-Sauze S, Kaafarani I, Delfino C, Fina F, Salas S, Muracciole X, Mancini J, Lechevallier E, Martin PM, Figarella-Branger D, Ouafik L, Daniel L: Expression and role of adrenomedullin in renal tumors and value of its mRNA levels as prognostic factor in clear-cell renal carcinoma. Int J Cancer. 2009, 125: 2307-2315.PubMed Deville JL, Bartoli C, Berenguer C, Fernandez-Sauze S, Kaafarani I, Delfino C, Fina F, Salas S, Muracciole X, Mancini J, Lechevallier E, Martin PM, Figarella-Branger D, Ouafik L, Daniel L: Expression and role of adrenomedullin in renal tumors and value of its mRNA levels as prognostic factor in clear-cell renal carcinoma. Int J Cancer. 2009, 125: 2307-2315.PubMed
122.
Zurück zum Zitat Logsdon CD, Simeone DM, Binkley C, Arumugam T, Greenson JK, Giordano TJ, Misek DE, Kuick R, Hanash S: Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res. 2003, 63: 2649-2657.PubMed Logsdon CD, Simeone DM, Binkley C, Arumugam T, Greenson JK, Giordano TJ, Misek DE, Kuick R, Hanash S: Molecular profiling of pancreatic adenocarcinoma and chronic pancreatitis identifies multiple genes differentially regulated in pancreatic cancer. Cancer Res. 2003, 63: 2649-2657.PubMed
123.
Zurück zum Zitat Deng B, Zhang S, Miao Y, Han Z, Zhang X, Wen F, Zhang Y: Adrenomedullin expression in epithelial ovarian cancers and promotes HO8910 cell migration associated with upregulating integrin alpha5beta1 and phosphorylating FAK and paxillin. J Exp Clin Cancer Res. 2012, 31: 19-PubMedCentralPubMed Deng B, Zhang S, Miao Y, Han Z, Zhang X, Wen F, Zhang Y: Adrenomedullin expression in epithelial ovarian cancers and promotes HO8910 cell migration associated with upregulating integrin alpha5beta1 and phosphorylating FAK and paxillin. J Exp Clin Cancer Res. 2012, 31: 19-PubMedCentralPubMed
124.
Zurück zum Zitat Hata K, Takebayashi Y, Akiba S, Fujiwaki R, Iida K, Nakayama K, Nakayama S, Fukumoto M, Miyazaki K: Expression of the adrenomedullin gene in epithelial ovarian cancer. Mol Hum Reprod. 2000, 6: 867-872.PubMed Hata K, Takebayashi Y, Akiba S, Fujiwaki R, Iida K, Nakayama K, Nakayama S, Fukumoto M, Miyazaki K: Expression of the adrenomedullin gene in epithelial ovarian cancer. Mol Hum Reprod. 2000, 6: 867-872.PubMed
125.
Zurück zum Zitat Evans JJ, Chitcholtan K, Dann JM, Guilford P, Harris G, Lewis LK, Nagase J, Welkamp AA, Zwerus R, Sykes PH: Adrenomedullin interacts with VEGF in endometrial cancer and has varied modulation in tumours of different grades. Gynecol Oncol. 2012, 125: 214-219.PubMed Evans JJ, Chitcholtan K, Dann JM, Guilford P, Harris G, Lewis LK, Nagase J, Welkamp AA, Zwerus R, Sykes PH: Adrenomedullin interacts with VEGF in endometrial cancer and has varied modulation in tumours of different grades. Gynecol Oncol. 2012, 125: 214-219.PubMed
126.
Zurück zum Zitat Hague S, Zhang L, Oehler MK, Manek S, MacKenzie IZ, Bicknell R, Rees MC: Expression of the hypoxically regulated angiogenic factor adrenomedullin correlates with uterine leiomyoma vascular density. Clin Cancer Res. 2000, 6: 2808-2814.PubMed Hague S, Zhang L, Oehler MK, Manek S, MacKenzie IZ, Bicknell R, Rees MC: Expression of the hypoxically regulated angiogenic factor adrenomedullin correlates with uterine leiomyoma vascular density. Clin Cancer Res. 2000, 6: 2808-2814.PubMed
127.
Zurück zum Zitat Carlson MR, Pope WB, Horvath S, Braunstein JG, Nghiemphu P, Tso CL, Mellinghoff I, Lai A, Liau LM, Mischel PS, Dong J, Nelson SF, Cloughesy TF: Relationship between survival and edema in malignant gliomas: role of vascular endothelial growth factor and neuronal pentraxin 2. Clin Cancer Res. 2007, 13: 2592-2598.PubMed Carlson MR, Pope WB, Horvath S, Braunstein JG, Nghiemphu P, Tso CL, Mellinghoff I, Lai A, Liau LM, Mischel PS, Dong J, Nelson SF, Cloughesy TF: Relationship between survival and edema in malignant gliomas: role of vascular endothelial growth factor and neuronal pentraxin 2. Clin Cancer Res. 2007, 13: 2592-2598.PubMed
128.
Zurück zum Zitat Ouafik L, Sauze S, Boudouresque F, Chinot O, Delfino C, Fina F, Vuaroqueaux V, Dussert C, Palmari J, Dufour H, Grisoli F, Casellas P, Brunner N, Martin PM: Neutralization of adrenomedullin inhibits the growth of human glioblastoma cell lines in vitro and suppresses tumor xenograft growth in vivo. Am J Pathol. 2002, 160: 1279-1292.PubMedCentralPubMed Ouafik L, Sauze S, Boudouresque F, Chinot O, Delfino C, Fina F, Vuaroqueaux V, Dussert C, Palmari J, Dufour H, Grisoli F, Casellas P, Brunner N, Martin PM: Neutralization of adrenomedullin inhibits the growth of human glioblastoma cell lines in vitro and suppresses tumor xenograft growth in vivo. Am J Pathol. 2002, 160: 1279-1292.PubMedCentralPubMed
129.
Zurück zum Zitat Satoh F, Takahashi K, Murakami O, Totsune K, Sone M, Ohneda M, Abe K, Miura Y, Hayashi Y, Sasano H: Adrenomedullin in human brain, adrenal glands and tumor tissues of pheochromocytoma, ganglioneuroblastoma and neuroblastoma. J Clin Endocrinol Metab. 1995, 80: 1750-1752.PubMed Satoh F, Takahashi K, Murakami O, Totsune K, Sone M, Ohneda M, Abe K, Miura Y, Hayashi Y, Sasano H: Adrenomedullin in human brain, adrenal glands and tumor tissues of pheochromocytoma, ganglioneuroblastoma and neuroblastoma. J Clin Endocrinol Metab. 1995, 80: 1750-1752.PubMed
130.
Zurück zum Zitat Murakami O, Takahashi K, Satoh F, Totsune K, Sone M, Arihara Z, Andoh N, Mouri T: Expression of adrenomedullin and adrenomedullin mRNA in ectopic ACTH-secreting tumors. Eur J Endocrinol. 1998, 138: 436-439.PubMed Murakami O, Takahashi K, Satoh F, Totsune K, Sone M, Arihara Z, Andoh N, Mouri T: Expression of adrenomedullin and adrenomedullin mRNA in ectopic ACTH-secreting tumors. Eur J Endocrinol. 1998, 138: 436-439.PubMed
131.
Zurück zum Zitat Knerr I, Schuster S, Nomikos P, Buchfelder M, Dotsch J, Schoof E, Fahlbusch R, Rascher W: Gene expression of adrenomedullin, leptin, their receptors and neuropeptide Y in hormone-secreting and non-functioning pituitary adenomas, meningiomas and malignant intracranial tumours in humans. Neuropathol Appl Neurobiol. 2001, 27: 215-222.PubMed Knerr I, Schuster S, Nomikos P, Buchfelder M, Dotsch J, Schoof E, Fahlbusch R, Rascher W: Gene expression of adrenomedullin, leptin, their receptors and neuropeptide Y in hormone-secreting and non-functioning pituitary adenomas, meningiomas and malignant intracranial tumours in humans. Neuropathol Appl Neurobiol. 2001, 27: 215-222.PubMed
132.
Zurück zum Zitat Park SC, Yoon JH, Lee JH, Yu SJ, Myung SJ, Kim W, Gwak GY, Lee SH, Lee SM, Jang JJ, Suh KS, Lee HS: Hypoxia-inducible adrenomedullin accelerates hepatocellular carcinoma cell growth. Cancer Lett. 2008, 271: 314-322.PubMed Park SC, Yoon JH, Lee JH, Yu SJ, Myung SJ, Kim W, Gwak GY, Lee SH, Lee SM, Jang JJ, Suh KS, Lee HS: Hypoxia-inducible adrenomedullin accelerates hepatocellular carcinoma cell growth. Cancer Lett. 2008, 271: 314-322.PubMed
133.
Zurück zum Zitat Nakata T, Seki N, Miwa S, Kobayashi A, Soeda J, Nimura Y, Kawasaki S, Miyagawa S: Identification of genes associated with multiple nodules in hepatocellular carcinoma using cDNA microarray: multicentric occurrence or intrahepatic metastasis?. Hepatogastroenterol. 2008, 55: 865-872. Nakata T, Seki N, Miwa S, Kobayashi A, Soeda J, Nimura Y, Kawasaki S, Miyagawa S: Identification of genes associated with multiple nodules in hepatocellular carcinoma using cDNA microarray: multicentric occurrence or intrahepatic metastasis?. Hepatogastroenterol. 2008, 55: 865-872.
134.
Zurück zum Zitat Martinez A, Miller MJ, Unsworth EJ, Siegfried JM, Cuttitta F: Expression of adrenomedullin in normal human lung and in pulmonary tumors. Endocrinology. 1995, 136: 4099-4105.PubMed Martinez A, Miller MJ, Unsworth EJ, Siegfried JM, Cuttitta F: Expression of adrenomedullin in normal human lung and in pulmonary tumors. Endocrinology. 1995, 136: 4099-4105.PubMed
135.
Zurück zum Zitat Liu J, Kahri AI, Heikkila P, Voutilainen R: Adrenomedullin gene expression and its different regulation in human adrenocortical and medullary tumors. J Endocrinol. 1997, 155: 483-490.PubMed Liu J, Kahri AI, Heikkila P, Voutilainen R: Adrenomedullin gene expression and its different regulation in human adrenocortical and medullary tumors. J Endocrinol. 1997, 155: 483-490.PubMed
136.
Zurück zum Zitat Takahashi K, Satoh F, Sone M, Totsune K, Arihara Z, Noshiro T, Mouri T, Murakami O: Expression of adrenomedullin mRNA in adrenocortical tumors and secretion of adrenomedullin by cultured adrenocortical carcinoma cells. Peptides. 1998, 19: 1719-1724.PubMed Takahashi K, Satoh F, Sone M, Totsune K, Arihara Z, Noshiro T, Mouri T, Murakami O: Expression of adrenomedullin mRNA in adrenocortical tumors and secretion of adrenomedullin by cultured adrenocortical carcinoma cells. Peptides. 1998, 19: 1719-1724.PubMed
137.
Zurück zum Zitat Satoh F, Takahashi K, Murakami O, Totsune K, Sone M, Ohneda M, Abe K, Miura Y, Mouri T: Immunoreactive adrenomedullin in human adrenal glands and adrenal tumors. Cancer Detect Prev. 1997, 21: 51-54.PubMed Satoh F, Takahashi K, Murakami O, Totsune K, Sone M, Ohneda M, Abe K, Miura Y, Mouri T: Immunoreactive adrenomedullin in human adrenal glands and adrenal tumors. Cancer Detect Prev. 1997, 21: 51-54.PubMed
138.
Zurück zum Zitat Zudaire E, Martinez A, Garayoa M, Pio R, Kaur G, Woolhiser MR, Metcalfe DD, Hook WA, Siraganian RP, Guise TA, Chirgwin JM, Cuttitta F: Adrenomedullin is a cross-talk molecule that regulates tumor and mast cell function during human carcinogenesis. Am J Pathol. 2006, 168: 280-291.PubMedCentralPubMed Zudaire E, Martinez A, Garayoa M, Pio R, Kaur G, Woolhiser MR, Metcalfe DD, Hook WA, Siraganian RP, Guise TA, Chirgwin JM, Cuttitta F: Adrenomedullin is a cross-talk molecule that regulates tumor and mast cell function during human carcinogenesis. Am J Pathol. 2006, 168: 280-291.PubMedCentralPubMed
139.
Zurück zum Zitat Udono T, Totsune K, Takahashi K, Abe T, Sato M, Shibahara S, Tamai M: Increased expression of adrenomedullin mRNA in the tissues of intraocular and orbital tumors. Am J Ophthalmol. 2000, 129: 555-556.PubMed Udono T, Totsune K, Takahashi K, Abe T, Sato M, Shibahara S, Tamai M: Increased expression of adrenomedullin mRNA in the tissues of intraocular and orbital tumors. Am J Ophthalmol. 2000, 129: 555-556.PubMed
140.
Zurück zum Zitat Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X, Song X, Luo Y: Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res. 2011, 17: 7230-7239.PubMed Chen P, Huang Y, Bong R, Ding Y, Song N, Wang X, Song X, Luo Y: Tumor-associated macrophages promote angiogenesis and melanoma growth via adrenomedullin in a paracrine and autocrine manner. Clin Cancer Res. 2011, 17: 7230-7239.PubMed
141.
Zurück zum Zitat Buyukberber S, Sari I, Camci C, Buyukberber NM, Sevinc A, Turk HM: Adrenomedullin expression does not correlate with survival in lung cancer. Med Oncol. 2007, 24: 245-249.PubMed Buyukberber S, Sari I, Camci C, Buyukberber NM, Sevinc A, Turk HM: Adrenomedullin expression does not correlate with survival in lung cancer. Med Oncol. 2007, 24: 245-249.PubMed
142.
Zurück zum Zitat Liu J, Butzow R, Hyden-Granskog C, Voutilainen R: Expression of adrenomedullin in human ovaries, ovarian sex cord-stromal tumors and cultured granulosa-luteal cells. Gynecol Endocrinol. 2009, 25: 96-103.PubMed Liu J, Butzow R, Hyden-Granskog C, Voutilainen R: Expression of adrenomedullin in human ovaries, ovarian sex cord-stromal tumors and cultured granulosa-luteal cells. Gynecol Endocrinol. 2009, 25: 96-103.PubMed
143.
Zurück zum Zitat Dotsch J, Harmjanz A, Christiansen H, Hanze J, Lampert F, Rascher W: Gene expression of neuronal nitric oxide synthase and adrenomedullin in human neuroblastoma using real-time PCR. Int J Cancer. 2000, 88: 172-175.PubMed Dotsch J, Harmjanz A, Christiansen H, Hanze J, Lampert F, Rascher W: Gene expression of neuronal nitric oxide synthase and adrenomedullin in human neuroblastoma using real-time PCR. Int J Cancer. 2000, 88: 172-175.PubMed
144.
Zurück zum Zitat Oehler MK, Fischer DC, Orlowska-Volk M, Herrle F, Kieback DG, Rees MC, Bicknell R: Tissue and plasma expression of the angiogenic peptide adrenomedullin in breast cancer. Br J Cancer. 2003, 89: 1927-1933.PubMedCentralPubMed Oehler MK, Fischer DC, Orlowska-Volk M, Herrle F, Kieback DG, Rees MC, Bicknell R: Tissue and plasma expression of the angiogenic peptide adrenomedullin in breast cancer. Br J Cancer. 2003, 89: 1927-1933.PubMedCentralPubMed
145.
Zurück zum Zitat Lombardero M, Kovacs K, Horvath E, Scheithauer BW, Rotondo F, Salehi F, Lloyd RV: Adrenomedullin expression in pituitary adenomas and nontumoral adenohypophyses. Histol Histopathol. 2008, 23: 11-17.PubMed Lombardero M, Kovacs K, Horvath E, Scheithauer BW, Rotondo F, Salehi F, Lloyd RV: Adrenomedullin expression in pituitary adenomas and nontumoral adenohypophyses. Histol Histopathol. 2008, 23: 11-17.PubMed
146.
Zurück zum Zitat Sion-Vardy N, Tzikinovsky A, Bolotyn A, Segal S, Fishman D: Augmented expression of chromogranin A and serotonin in peri-malignant benign prostate epithelium as compared to adenocarcinoma. Pathol Res Pract. 2004, 200: 493-499.PubMed Sion-Vardy N, Tzikinovsky A, Bolotyn A, Segal S, Fishman D: Augmented expression of chromogranin A and serotonin in peri-malignant benign prostate epithelium as compared to adenocarcinoma. Pathol Res Pract. 2004, 200: 493-499.PubMed
147.
Zurück zum Zitat Uemura M, Yamamoto H, Takemasa I, Mimori K, Mizushima T, Ikeda M, Sekimoto M, Doki Y, Mori M: Hypoxia-inducible adrenomedullin in colorectal cancer. Anticancer Res. 2011, 31: 507-514.PubMed Uemura M, Yamamoto H, Takemasa I, Mimori K, Mizushima T, Ikeda M, Sekimoto M, Doki Y, Mori M: Hypoxia-inducible adrenomedullin in colorectal cancer. Anticancer Res. 2011, 31: 507-514.PubMed
148.
Zurück zum Zitat Wang L, Gala M, Yamamoto M, Pino MS, Kikuchi H, Shue DS, Shirasawa S, Austin TR, Lynch MP, Rueda BR, Zukerberg LR, Chung DC: Adrenomedullin is a therapeutic target in colorectal cancer. Int J Cancer. 2014, 134: 2041-2050.PubMedCentralPubMed Wang L, Gala M, Yamamoto M, Pino MS, Kikuchi H, Shue DS, Shirasawa S, Austin TR, Lynch MP, Rueda BR, Zukerberg LR, Chung DC: Adrenomedullin is a therapeutic target in colorectal cancer. Int J Cancer. 2014, 134: 2041-2050.PubMedCentralPubMed
149.
Zurück zum Zitat Baranello C, Mariani M, Andreoli M, Fanelli M, Martinelli E, Ferrandina G, Scambia G, Shahabi S, Ferlini C: Adrenomedullin in ovarian cancer: foe in vitro and friend in vivo?. PLoS One. 2012, 7: e40678-PubMedCentralPubMed Baranello C, Mariani M, Andreoli M, Fanelli M, Martinelli E, Ferrandina G, Scambia G, Shahabi S, Ferlini C: Adrenomedullin in ovarian cancer: foe in vitro and friend in vivo?. PLoS One. 2012, 7: e40678-PubMedCentralPubMed
150.
Zurück zum Zitat Michishita M, Minegishi T, Abe K, Kangawa K, Kojima M, Ibuki Y: Expression of adrenomedullin in the endometrium of the human uterus. Obstet Gynecol. 1999, 93: 66-70.PubMed Michishita M, Minegishi T, Abe K, Kangawa K, Kojima M, Ibuki Y: Expression of adrenomedullin in the endometrium of the human uterus. Obstet Gynecol. 1999, 93: 66-70.PubMed
151.
Zurück zum Zitat Ramachandran V, Arumugam T, Hwang RF, Greenson JK, Simeone DM, Logsdon CD: Adrenomedullin is expressed in pancreatic cancer and stimulates cell proliferation and invasion in an autocrine manner via the adrenomedullin receptor, ADMR. Cancer Res. 2007, 67: 2666-2675.PubMed Ramachandran V, Arumugam T, Hwang RF, Greenson JK, Simeone DM, Logsdon CD: Adrenomedullin is expressed in pancreatic cancer and stimulates cell proliferation and invasion in an autocrine manner via the adrenomedullin receptor, ADMR. Cancer Res. 2007, 67: 2666-2675.PubMed
152.
Zurück zum Zitat Thouennon E, Pierre A, Tanguy Y, Guillemot J, Manecka DL, Guerin M, Ouafik L, Muresan M, Klein M, Bertherat J, Lefebvre H, Plouin PF, Yon L, Anouar Y: Expression of trophic amidated peptides and their receptors in benign and malignant pheochromocytomas: high expression of adrenomedullin RDC1 receptor and implication in tumoral cell survival. Endocr Relat Cancer. 2010, 17: 637-651.PubMed Thouennon E, Pierre A, Tanguy Y, Guillemot J, Manecka DL, Guerin M, Ouafik L, Muresan M, Klein M, Bertherat J, Lefebvre H, Plouin PF, Yon L, Anouar Y: Expression of trophic amidated peptides and their receptors in benign and malignant pheochromocytomas: high expression of adrenomedullin RDC1 receptor and implication in tumoral cell survival. Endocr Relat Cancer. 2010, 17: 637-651.PubMed
153.
Zurück zum Zitat Rocchi P, Boudouresque F, Zamora AJ, Muracciole X, Lechevallier E, Martin PM, Ouafik L: Expression of adrenomedullin and peptide amidation activity in human prostate cancer and in human prostate cancer cell lines. Cancer Res. 2001, 61: 1196-1206.PubMed Rocchi P, Boudouresque F, Zamora AJ, Muracciole X, Lechevallier E, Martin PM, Ouafik L: Expression of adrenomedullin and peptide amidation activity in human prostate cancer and in human prostate cancer cell lines. Cancer Res. 2001, 61: 1196-1206.PubMed
154.
Zurück zum Zitat Cheung BM, Ong KL, Tso AW, Leung RY, Cherny SS, Sham PC, Lam TH, Lam KS: Plasma adrenomedullin level is related to a single nucleotide polymorphism in the adrenomedullin gene. Eur J Endocrinol. 2011, 165: 571-577.PubMed Cheung BM, Ong KL, Tso AW, Leung RY, Cherny SS, Sham PC, Lam TH, Lam KS: Plasma adrenomedullin level is related to a single nucleotide polymorphism in the adrenomedullin gene. Eur J Endocrinol. 2011, 165: 571-577.PubMed
155.
Zurück zum Zitat Martinez-Herrero S, Martinez A: Cancer protection elicited by a single nucleotide polymorphism close to the adrenomedullin gene. J Clin Endocrinol Metab. 2013, 98: E807-E810.PubMed Martinez-Herrero S, Martinez A: Cancer protection elicited by a single nucleotide polymorphism close to the adrenomedullin gene. J Clin Endocrinol Metab. 2013, 98: E807-E810.PubMed
156.
Zurück zum Zitat Belting M, Almgren P, Manjer J, Hedblad B, Struck J, Wang TJ, Bergmann A, Melander O: Vasoactive peptides with angiogenesis-regulating activity predict cancer risk in males. Cancer Epidemiol Biomarkers Prev. 2012, 21: 513-522.PubMed Belting M, Almgren P, Manjer J, Hedblad B, Struck J, Wang TJ, Bergmann A, Melander O: Vasoactive peptides with angiogenesis-regulating activity predict cancer risk in males. Cancer Epidemiol Biomarkers Prev. 2012, 21: 513-522.PubMed
157.
Zurück zum Zitat Avraamides CJ, Garmy-Susini B, Varner JA: Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008, 8: 604-617.PubMedCentralPubMed Avraamides CJ, Garmy-Susini B, Varner JA: Integrins in angiogenesis and lymphangiogenesis. Nat Rev Cancer. 2008, 8: 604-617.PubMedCentralPubMed
158.
Zurück zum Zitat Cairns RA, Harris IS, Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 2011, 11: 85-95.PubMed Cairns RA, Harris IS, Mak TW: Regulation of cancer cell metabolism. Nat Rev Cancer. 2011, 11: 85-95.PubMed
159.
Zurück zum Zitat Wouters BG, Koritzinsky M: Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008, 8: 851-864.PubMed Wouters BG, Koritzinsky M: Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 2008, 8: 851-864.PubMed
160.
Zurück zum Zitat Portal-Nunez S, Shankavaram UT, Rao M, Datrice N, Atay S, Aparicio M, Camphausen KA, Fernandez-Salguero PM, Chang H, Lin P, Schrump DS, Garantziotis S, Cuttitta F, Zudaire E: Aryl hydrocarbon receptor-induced adrenomedullin mediates cigarette smoke carcinogenicity in humans and mice. Cancer Res. 2012, 72: 5790-5800.PubMedCentralPubMed Portal-Nunez S, Shankavaram UT, Rao M, Datrice N, Atay S, Aparicio M, Camphausen KA, Fernandez-Salguero PM, Chang H, Lin P, Schrump DS, Garantziotis S, Cuttitta F, Zudaire E: Aryl hydrocarbon receptor-induced adrenomedullin mediates cigarette smoke carcinogenicity in humans and mice. Cancer Res. 2012, 72: 5790-5800.PubMedCentralPubMed
161.
Zurück zum Zitat Albertin G, Forneris M, Aragona F, Nussdorfer GG: Expression of adrenomedullin and its receptors in the human adrenal cortex and aldosteronomas. Int J Mol Med. 2001, 8: 423-426.PubMed Albertin G, Forneris M, Aragona F, Nussdorfer GG: Expression of adrenomedullin and its receptors in the human adrenal cortex and aldosteronomas. Int J Mol Med. 2001, 8: 423-426.PubMed
162.
Zurück zum Zitat Berenguer C, Boudouresque F, Dussert C, Daniel L, Muracciole X, Grino M, Rossi D, Mabrouk K, Figarella-Branger D, Martin PM, Ouafik L: Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates ‘neuroendocrine phenotype’ in LNCaP prostate tumor cells. Oncogene. 2008, 27: 506-518.PubMed Berenguer C, Boudouresque F, Dussert C, Daniel L, Muracciole X, Grino M, Rossi D, Mabrouk K, Figarella-Branger D, Martin PM, Ouafik L: Adrenomedullin, an autocrine/paracrine factor induced by androgen withdrawal, stimulates ‘neuroendocrine phenotype’ in LNCaP prostate tumor cells. Oncogene. 2008, 27: 506-518.PubMed
163.
Zurück zum Zitat Forneris M, Gottardo L, Albertin G, Malendowicz LK, Nussdorfer GG: Expression and function of adrenomedullin and its receptors in Conn’s adenoma cells. Int J Mol Med. 2001, 8: 675-679.PubMed Forneris M, Gottardo L, Albertin G, Malendowicz LK, Nussdorfer GG: Expression and function of adrenomedullin and its receptors in Conn’s adenoma cells. Int J Mol Med. 2001, 8: 675-679.PubMed
164.
Zurück zum Zitat Martinez A: Biology of adrenomedullin. Introduction. Microsc Res Tech. 2002, 57: 1-2.PubMed Martinez A: Biology of adrenomedullin. Introduction. Microsc Res Tech. 2002, 57: 1-2.PubMed
165.
Zurück zum Zitat Martinez A, Vos M, Guedez L, Kaur G, Chen Z, Garayoa M, Pio R, Moody T, Stetler-Stevenson WG, Kleinman HK, Cuttitta F: The effects of adrenomedullin overexpression in breast tumor cells. J Natl Cancer Inst. 2002, 94: 1226-1237.PubMed Martinez A, Vos M, Guedez L, Kaur G, Chen Z, Garayoa M, Pio R, Moody T, Stetler-Stevenson WG, Kleinman HK, Cuttitta F: The effects of adrenomedullin overexpression in breast tumor cells. J Natl Cancer Inst. 2002, 94: 1226-1237.PubMed
166.
Zurück zum Zitat Miller MJ, Martinez A, Unsworth EJ, Thiele CJ, Moody TW, Elsasser T, Cuttitta F: Adrenomedullin expression in human tumor cell lines. Its potential role as an autocrine growth factor. J Biol Chem. 1996, 271: 23345-23351.PubMed Miller MJ, Martinez A, Unsworth EJ, Thiele CJ, Moody TW, Elsasser T, Cuttitta F: Adrenomedullin expression in human tumor cell lines. Its potential role as an autocrine growth factor. J Biol Chem. 1996, 271: 23345-23351.PubMed
167.
Zurück zum Zitat Nikitenko LL, Fox SB, Kehoe S, Rees MC, Bicknell R: Adrenomedullin and tumour angiogenesis. Br J Cancer. 2006, 94: 1-7.PubMedCentralPubMed Nikitenko LL, Fox SB, Kehoe S, Rees MC, Bicknell R: Adrenomedullin and tumour angiogenesis. Br J Cancer. 2006, 94: 1-7.PubMedCentralPubMed
168.
Zurück zum Zitat Nikitenko LL, MacKenzie IZ, Rees MC, Bicknell R: Adrenomedullin is an autocrine regulator of endothelial growth in human endometrium. Mol Hum Reprod. 2000, 6: 811-819.PubMed Nikitenko LL, MacKenzie IZ, Rees MC, Bicknell R: Adrenomedullin is an autocrine regulator of endothelial growth in human endometrium. Mol Hum Reprod. 2000, 6: 811-819.PubMed
169.
Zurück zum Zitat Miseki T, Kawakami H, Natsuizaka M, Darmanin S, Cui HY, Chen J, Fu Q, Okada F, Shindo M, Higashino F, Asaka M, Hamuro J, Kobayashi M: Suppression of tumor growth by intra-muscular transfer of naked DNA encoding adrenomedullin antagonist. Cancer Gene Ther. 2007, 14: 39-44.PubMed Miseki T, Kawakami H, Natsuizaka M, Darmanin S, Cui HY, Chen J, Fu Q, Okada F, Shindo M, Higashino F, Asaka M, Hamuro J, Kobayashi M: Suppression of tumor growth by intra-muscular transfer of naked DNA encoding adrenomedullin antagonist. Cancer Gene Ther. 2007, 14: 39-44.PubMed
170.
Zurück zum Zitat Benes L, Kappus C, McGregor GP, Bertalanffy H, Mennel HD, Hagner S: The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas. J Clin Pathol. 2004, 57: 172-176.PubMedCentralPubMed Benes L, Kappus C, McGregor GP, Bertalanffy H, Mennel HD, Hagner S: The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas. J Clin Pathol. 2004, 57: 172-176.PubMedCentralPubMed
171.
Zurück zum Zitat Metellus P, Voutsinos-Porche B, Nanni-Metellus I, Colin C, Fina F, Berenguer C, Dussault N, Boudouresque F, Loundou A, Intagliata D, Chinot O, Martin PM, Figarella-Branger D, Ouafik L: Adrenomedullin expression and regulation in human glioblastoma, cultured human glioblastoma cell lines and pilocytic astrocytoma. Eur J Cancer. 2011, 47: 1727-1735.PubMed Metellus P, Voutsinos-Porche B, Nanni-Metellus I, Colin C, Fina F, Berenguer C, Dussault N, Boudouresque F, Loundou A, Intagliata D, Chinot O, Martin PM, Figarella-Branger D, Ouafik L: Adrenomedullin expression and regulation in human glioblastoma, cultured human glioblastoma cell lines and pilocytic astrocytoma. Eur J Cancer. 2011, 47: 1727-1735.PubMed
172.
Zurück zum Zitat Abasolo I, Montuenga LM, Calvo A: Adrenomedullin prevents apoptosis in prostate cancer cells. Regul Pept. 2006, 133: 115-122.PubMed Abasolo I, Montuenga LM, Calvo A: Adrenomedullin prevents apoptosis in prostate cancer cells. Regul Pept. 2006, 133: 115-122.PubMed
173.
Zurück zum Zitat Abasolo I, Wang Z, Montuenga LM, Calvo A: Adrenomedullin inhibits prostate cancer cell proliferation through a cAMP-independent autocrine mechanism. Biochem Biophys Res Commun. 2004, 322: 878-886.PubMed Abasolo I, Wang Z, Montuenga LM, Calvo A: Adrenomedullin inhibits prostate cancer cell proliferation through a cAMP-independent autocrine mechanism. Biochem Biophys Res Commun. 2004, 322: 878-886.PubMed
174.
Zurück zum Zitat Berenguer-Daize C, Boudouresque F, Bastide C, Tounsi A, Benyahia Z, Acunzo J, Dussault N, Delfino C, Baeza N, Daniel L, Cayol M, Rossi D, El Battari A, Bertin D, Mabrouk K, Martin PM, Ouafik L: Adrenomedullin blockade suppresses growth of human hormone-independent prostate tumor xenograft in mice. Clin Cancer Res. 2013, 19: 6138-6150.PubMed Berenguer-Daize C, Boudouresque F, Bastide C, Tounsi A, Benyahia Z, Acunzo J, Dussault N, Delfino C, Baeza N, Daniel L, Cayol M, Rossi D, El Battari A, Bertin D, Mabrouk K, Martin PM, Ouafik L: Adrenomedullin blockade suppresses growth of human hormone-independent prostate tumor xenograft in mice. Clin Cancer Res. 2013, 19: 6138-6150.PubMed
175.
Zurück zum Zitat Joshi BH, Leland P, Calvo A, Green JE, Puri RK: Human adrenomedullin up-regulates interleukin-13 receptor alpha2 chain in prostate cancer in vitro and in vivo: a novel approach to sensitize prostate cancer to anticancer therapy. Cancer Res. 2008, 68: 9311-9317.PubMed Joshi BH, Leland P, Calvo A, Green JE, Puri RK: Human adrenomedullin up-regulates interleukin-13 receptor alpha2 chain in prostate cancer in vitro and in vivo: a novel approach to sensitize prostate cancer to anticancer therapy. Cancer Res. 2008, 68: 9311-9317.PubMed
176.
Zurück zum Zitat Chen P, Pang X, Zhang Y, He Y: Effect of inhibition of the adrenomedullin gene on the growth and chemosensitivity of ovarian cancer cells. Oncol Rep. 2012, 27: 1461-1466.PubMed Chen P, Pang X, Zhang Y, He Y: Effect of inhibition of the adrenomedullin gene on the growth and chemosensitivity of ovarian cancer cells. Oncol Rep. 2012, 27: 1461-1466.PubMed
177.
Zurück zum Zitat Zhang Y, Zhang S, Shang H, Pang X, Zhao Y: Basic fibroblast growth factor upregulates adrenomedullin expression in ovarian epithelial carcinoma cells via JNK-AP-1 pathway. Regul Pept. 2009, 157: 44-50.PubMed Zhang Y, Zhang S, Shang H, Pang X, Zhao Y: Basic fibroblast growth factor upregulates adrenomedullin expression in ovarian epithelial carcinoma cells via JNK-AP-1 pathway. Regul Pept. 2009, 157: 44-50.PubMed
178.
Zurück zum Zitat Giacalone PL, Vuaroqueaux V, Daures JP, Houafic L, Martin PM, Laffargue F, Maudelonde T: Expression of adrenomedullin in human ovaries, ovarian cysts and cancers. Correlation with estrogens receptor status. Eur J Obstet Gynecol Reprod Biol. 2003, 110: 224-229.PubMed Giacalone PL, Vuaroqueaux V, Daures JP, Houafic L, Martin PM, Laffargue F, Maudelonde T: Expression of adrenomedullin in human ovaries, ovarian cysts and cancers. Correlation with estrogens receptor status. Eur J Obstet Gynecol Reprod Biol. 2003, 110: 224-229.PubMed
179.
Zurück zum Zitat Kocemba KA, van Andel H, de Haan-Kramer A, Mahtouk K, Versteeg R, Kersten MJ, Spaargaren M, Pals ST: The hypoxia target adrenomedullin is aberrantly expressed in multiple myeloma and promotes angiogenesis. Leukemia. 2013, 27: 1729-1737.PubMed Kocemba KA, van Andel H, de Haan-Kramer A, Mahtouk K, Versteeg R, Kersten MJ, Spaargaren M, Pals ST: The hypoxia target adrenomedullin is aberrantly expressed in multiple myeloma and promotes angiogenesis. Leukemia. 2013, 27: 1729-1737.PubMed
180.
Zurück zum Zitat Brown JM, Giaccia AJ: The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998, 58: 1408-1416.PubMed Brown JM, Giaccia AJ: The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 1998, 58: 1408-1416.PubMed
181.
Zurück zum Zitat Genbacev O, Zhou Y, Ludlow JW, Fisher SJ: Regulation of human placental development by oxygen tension. Science. 1997, 277: 1669-1672.PubMed Genbacev O, Zhou Y, Ludlow JW, Fisher SJ: Regulation of human placental development by oxygen tension. Science. 1997, 277: 1669-1672.PubMed
182.
Zurück zum Zitat Wenger RH, Gassmann M: Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem. 1997, 378: 609-616.PubMed Wenger RH, Gassmann M: Oxygen(es) and the hypoxia-inducible factor-1. Biol Chem. 1997, 378: 609-616.PubMed
183.
Zurück zum Zitat Zudaire E, Martinez A, Cuttitta F: Adrenomedullin and cancer. Regul Pept. 2003, 112: 175-183.PubMed Zudaire E, Martinez A, Cuttitta F: Adrenomedullin and cancer. Regul Pept. 2003, 112: 175-183.PubMed
184.
Zurück zum Zitat Nakayama M, Takahashi K, Murakami O, Shirato K, Shibahara S: Induction of adrenomedullin by hypoxia and cobalt chloride in human colorectal carcinoma cells. Biochem Biophys Res Commun. 1998, 243: 514-517.PubMed Nakayama M, Takahashi K, Murakami O, Shirato K, Shibahara S: Induction of adrenomedullin by hypoxia and cobalt chloride in human colorectal carcinoma cells. Biochem Biophys Res Commun. 1998, 243: 514-517.PubMed
185.
Zurück zum Zitat Oehler MK, Hague S, Rees MC, Bicknell R: Adrenomedullin promotes formation of xenografted endometrial tumors by stimulation of autocrine growth and angiogenesis. Oncogene. 2002, 21: 2815-2821.PubMed Oehler MK, Hague S, Rees MC, Bicknell R: Adrenomedullin promotes formation of xenografted endometrial tumors by stimulation of autocrine growth and angiogenesis. Oncogene. 2002, 21: 2815-2821.PubMed
186.
Zurück zum Zitat Brekhman V, Lugassie J, Zaffryar-Eilot S, Sabo E, Kessler O, Smith V, Golding H, Neufeld G: Receptor activity modifying protein-3 mediates the protumorigenic activity of lysyl oxidase-like protein-2. FASEB J. 2011, 25: 55-65.PubMed Brekhman V, Lugassie J, Zaffryar-Eilot S, Sabo E, Kessler O, Smith V, Golding H, Neufeld G: Receptor activity modifying protein-3 mediates the protumorigenic activity of lysyl oxidase-like protein-2. FASEB J. 2011, 25: 55-65.PubMed
187.
Zurück zum Zitat Ishikawa T, Chen J, Wang J, Okada F, Sugiyama T, Kobayashi T, Shindo M, Higashino F, Katoh H, Asaka M, Kondo T, Hosokawa M, Kobayashi M: Adrenomedullin antagonist suppresses in vivo growth of human pancreatic cancer cells in SCID mice by suppressing angiogenesis. Oncogene. 2003, 22: 1238-1242.PubMed Ishikawa T, Chen J, Wang J, Okada F, Sugiyama T, Kobayashi T, Shindo M, Higashino F, Katoh H, Asaka M, Kondo T, Hosokawa M, Kobayashi M: Adrenomedullin antagonist suppresses in vivo growth of human pancreatic cancer cells in SCID mice by suppressing angiogenesis. Oncogene. 2003, 22: 1238-1242.PubMed
188.
Zurück zum Zitat Karpinich NO, Kechele DO, Espenschied ST, Willcockson HH, Fedoriw Y, Caron KM: Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB J. 2013, 27: 590-600.PubMedCentralPubMed Karpinich NO, Kechele DO, Espenschied ST, Willcockson HH, Fedoriw Y, Caron KM: Adrenomedullin gene dosage correlates with tumor and lymph node lymphangiogenesis. FASEB J. 2013, 27: 590-600.PubMedCentralPubMed
189.
Zurück zum Zitat Tsuchiya K, Hida K, Hida Y, Muraki C, Ohga N, Akino T, Kondo T, Miseki T, Nakagawa K, Shindoh M, Harabayashi T, Shinohara N, Nonomura K, Kobayashi M: Adrenomedullin antagonist suppresses tumor formation in renal cell carcinoma through inhibitory effects on tumor endothelial cells and endothelial progenitor mobilization. Int J Oncol. 2010, 36: 1379-1386.PubMed Tsuchiya K, Hida K, Hida Y, Muraki C, Ohga N, Akino T, Kondo T, Miseki T, Nakagawa K, Shindoh M, Harabayashi T, Shinohara N, Nonomura K, Kobayashi M: Adrenomedullin antagonist suppresses tumor formation in renal cell carcinoma through inhibitory effects on tumor endothelial cells and endothelial progenitor mobilization. Int J Oncol. 2010, 36: 1379-1386.PubMed
190.
Zurück zum Zitat Caron KM, Smithies O: Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci U S A. 2001, 98: 615-619.PubMedCentralPubMed Caron KM, Smithies O: Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. Proc Natl Acad Sci U S A. 2001, 98: 615-619.PubMedCentralPubMed
191.
Zurück zum Zitat Iwase T, Nagaya N, Fujii T, Itoh T, Ishibashi-Ueda H, Yamagishi M, Miyatake K, Matsumoto T, Kitamura S, Kangawa K: Adrenomedullin enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia. Circulation. 2005, 111: 356-362.PubMed Iwase T, Nagaya N, Fujii T, Itoh T, Ishibashi-Ueda H, Yamagishi M, Miyatake K, Matsumoto T, Kitamura S, Kangawa K: Adrenomedullin enhances angiogenic potency of bone marrow transplantation in a rat model of hindlimb ischemia. Circulation. 2005, 111: 356-362.PubMed
192.
Zurück zum Zitat Martinez A, Julian M, Bregonzio C, Notari L, Moody TW, Cuttitta F: Identification of vasoactive nonpeptidic positive and negative modulators of adrenomedullin using a neutralizing antibody-based screening strategy. Endocrinology. 2004, 145: 3858-3865.PubMed Martinez A, Julian M, Bregonzio C, Notari L, Moody TW, Cuttitta F: Identification of vasoactive nonpeptidic positive and negative modulators of adrenomedullin using a neutralizing antibody-based screening strategy. Endocrinology. 2004, 145: 3858-3865.PubMed
193.
Zurück zum Zitat Iimuro S, Shindo T, Moriyama N, Amaki T, Niu P, Takeda N, Iwata H, Zhang Y, Ebihara A, Nagai R: Angiogenic effects of adrenomedullin in ischemia and tumor growth. Circ Res. 2004, 95: 415-423.PubMed Iimuro S, Shindo T, Moriyama N, Amaki T, Niu P, Takeda N, Iwata H, Zhang Y, Ebihara A, Nagai R: Angiogenic effects of adrenomedullin in ischemia and tumor growth. Circ Res. 2004, 95: 415-423.PubMed
194.
Zurück zum Zitat Hay DL, Walker CS, Poyner DR: Adrenomedullin and calcitonin gene-related peptide receptors in endocrine-related cancers: opportunities and challenges. Endocr Relat Cancer. 2011, 18: C1-C14.PubMed Hay DL, Walker CS, Poyner DR: Adrenomedullin and calcitonin gene-related peptide receptors in endocrine-related cancers: opportunities and challenges. Endocr Relat Cancer. 2011, 18: C1-C14.PubMed
195.
Zurück zum Zitat Martinez A, Zudaire E, Portal-Nunez S, Guedez L, Libutti SK, Stetler-Stevenson WG, Cuttitta F: Proadrenomedullin NH2-terminal 20 peptide is a potent angiogenic factor, and its inhibition results in reduction of tumor growth. Cancer Res. 2004, 64: 6489-6494.PubMed Martinez A, Zudaire E, Portal-Nunez S, Guedez L, Libutti SK, Stetler-Stevenson WG, Cuttitta F: Proadrenomedullin NH2-terminal 20 peptide is a potent angiogenic factor, and its inhibition results in reduction of tumor growth. Cancer Res. 2004, 64: 6489-6494.PubMed
Metadaten
Titel
Adrenomedullin and tumour microenvironment
verfasst von
Ignacio M Larráyoz
Sonia Martínez-Herrero
Josune García-Sanmartín
Laura Ochoa-Callejero
Alfredo Martínez
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Journal of Translational Medicine / Ausgabe 1/2014
Elektronische ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-014-0339-2

Weitere Artikel der Ausgabe 1/2014

Journal of Translational Medicine 1/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.