Skip to main content
Erschienen in: BMC Medicine 1/2019

Open Access 01.12.2019 | Correspondence

Advanced cell therapeutics are changing the clinical landscape: will mesenchymal stromal cells be a part of it?

verfasst von: Richard Schäfer

Erschienen in: BMC Medicine | Ausgabe 1/2019

Abstract

During the past 15 years there have been dramatic changes in the medical landscape, particularly in oncology and regenerative medicine. Cell therapies have played a substantial part in this progress. Cellular immunotherapies can use immune cells, such as T cells or natural killer cells that, after functional modification ex vivo, exert powerful anti-cancer effects when given to the patient. Innovative technologies, such as re-programming terminally differentiated cells into pluripotent stem cells or into other cell types and applying specific enzymes to more precisely edit the human genome, are paving the way towards more potent cell and gene therapies.
Mesenchymal stromal cells are promising cellular immunotherapeutics, which also have potential for use in tissue engineering strategies and other regenerative medicine applications. However, substantial gaps in our knowledge of their biology and therapeutic efficacy present major challenges to their sustainable implementation in the clinical routine.
In this article, progress in the field of cell therapeutics during the past 15 years will be briefly discussed, with a focus on mesenchymal stromal cells, highlighting the impact of this field on patient care.
Abkürzungen
BM
Bone marrow
GvHD
Graft-versus-host disease
iPSC
Induced pluripotent stem cells
MSC
Mesenchymal stromal cells

Background

When BMC Medicine was inaugurated 15 years ago, available cell therapies were mainly haematopoietic stem cell transplantations, which had been established as standard treatment for haematologic malignancies. However, allogeneic haematopoietic stem cell transplantation carried a major risk of developing life-threatening complications, such as non-engraftment, serious infections and graft-versus-host disease (GvHD) [1]. Within this period, groundbreaking novel technologies were also developed; for example, re-programming of differentiated cells into induced pluripotent stem cells (iPSC) [2, 3] and precise enzymatic genome editing [4], both providing yet unknown options for cell and gene therapies. Advancing adoptive cellular immunotherapy, novel insights into interactions between immune cells and cancerous tissue, efficacious cell collection using optimised apheresis techniques, as well as sophisticated ex vivo-cell engineering, enabled the introduction of chimeric antigen receptor (-T) cell therapies into the clinic [5]. Personalised vaccination strategies use patient-derived cancer cells to generate individual dendritic cell-based vaccines that were successfully applied against malignancies including ovarian cancer and acute leukaemia [6, 7].
Based on findings of the therapeutic potential of non-haematopoietic precursor cells [8, 9], early experimental cell therapy concepts had been suggested to regenerate damaged tissue, particularly the heart [1012], heralding the field of regenerative medicine at the beginning of the new millennium. Because of their immunomodulatory and regenerative effects, mesenchymal stromal cells (MSCs) were extensively evaluated for their potential uses in cellular immunotherapy and regenerative medicine. MSCs can be isolated from a variety of tissues such as bone marrow (BM), adipose tissue, cord (blood), or amniotic fluid [13], as well as from iPSC, with the potential of an inexhaustible source [14]. Here I elaborate on significant developments in MSC therapies during the past 15 years.

Immunomodulation cell therapies

Interacting with different immune cell subsets, MSCs exert immunomodulatory effects in vitro, such as suppressing activated T cell proliferation and cytokine production. They have been shown to induce a tolerogenic immune phenotype in vivo, as characterised by a decrease in pro-inflammatory IL-17 positive T cells and an increase in regulatory T cells [13, 15, 16]. These observations suggest that MSCs may be interesting candidates for the treatment of immunopathologies. Indeed, MSC therapeutics have been applied in multiple clinical trials for GvHD and organ graft rejection, as well as for autoimmune diseases like multiple sclerosis, myasthenia gravis or type 1 diabetes mellitus [16, 17]. Yet, clinical results over the past decade have been variable [16]. Specifically, an allogeneic MSC product for GvHD therapy performed disappointingly in 2009 [18], dampening initial enthusiasm. Also, a recent Cochrane review of numerous clinical trials [19] found insufficient evidence that MSCs were an effective therapy for GvHD. Innovative approaches for MSC-mediated GvHD therapy include MSC-derived extracellular vesicles [20]; pooling of BM-derived mononuclear cells to generate a more standardised MSC product with robust immunomodulation capacity [21]; and measuring the ability of immune cells to kill MSC, thereby identifying patients who respond to MSC immunotherapy [22].

Regenerative medicine

MSCs, without or with genetic modifications or other ex vivo manipulations to increase their therapeutic potential, have been shown to exert therapeutic effects in diseases of various organs, including the heart, lung, liver, pancreas, kidney, skeletal system and the central nervous system [23, 24]. To date, MSCs have been assessed for regenerative applications in numerous clinical trials, with the main sources being BM and adipose tissue [24]. As MSCs feature the potential for mesodermal differentiation in vitro, direct tissue replacement of damaged tissue by differentiated MSCs was initially postulated as a mechanism of action [25]. However, growing evidence has shifted towards paracrine factors and extracellular vesicles being responsible for mediating immunomodulatory and regenerative MSC functions [23, 26]. Novel technologies allow the large-scale production of MSCs in bioreactors [27]; MSC can also be applied, with or without scaffolds, in tissue engineering concepts [28] for disease modelling and therapy.

Challenges and novel approaches

The past decade has shown that, despite encouraging clinical data, major challenges prevail before MSC therapies can be sustainably implemented in the clinical routine. To date, the poorly understood heterogeneity of MSCs means that major issues are yet to be addressed; for example, between individuals and within respective MSC preparations, variable manufacture technologies, and minimally defined media supplements (such as fetal calf serum or human platelet lysate) [29, 30]. Consequently, it is difficult to compare MSC therapeutics because they lack standardized quality and there are only few measures available – some of debatable relevance – to assess their potency. Therefore, it remains unclear as to which patients will ultimately profit from these therapies.
Advanced technologies, like single cell analyses, give deeper insights into MSC heterogeneity, allowing functional cell clusters and/or molecular signatures to be identified, which could be linked to their therapeutic potential [31, 32].

Conclusions

During the past 15 years, technological hallmarks like iPSC generation, genome editing and single cell analysis platforms have been developed. This biotechnological progress has led to significant achievements in the cell therapy field, including MSC-mediated immunomodulation and tissue regeneration. This progress is encouraging and the clinical MSC field is, after some stagnation, now regaining momentum.
Better understanding MSC heterogeneity, their mechanisms of action and evidence-based identification of patient cohorts who might benefit from MSC therapeutics, could help to sustainably translate these therapies to the clinic.

Acknowledgments

Not applicable.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Ethics approval

Not applicable.
Not applicable.

Competing interests

The author declares that he has no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Little MT, Storb R. History of haematopoietic stem-cell transplantation. Nat Rev Cancer. 2002;2:231–8.CrossRef Little MT, Storb R. History of haematopoietic stem-cell transplantation. Nat Rev Cancer. 2002;2:231–8.CrossRef
2.
Zurück zum Zitat Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.CrossRef Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.CrossRef
3.
Zurück zum Zitat Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.CrossRef Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–20.CrossRef
4.
Zurück zum Zitat Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat Med. 2017;23:415–23.CrossRef Cornu TI, Mussolino C, Cathomen T. Refining strategies to translate genome editing to the clinic. Nat Med. 2017;23:415–23.CrossRef
5.
Zurück zum Zitat Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.CrossRef Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365:725–33.CrossRef
6.
Zurück zum Zitat Tanyi JL, George E. Personalized vaccination against ovarian cancer: what are the possibilities? Expert Rev Vaccines. 2018;17:955–8.CrossRef Tanyi JL, George E. Personalized vaccination against ovarian cancer: what are the possibilities? Expert Rev Vaccines. 2018;17:955–8.CrossRef
7.
Zurück zum Zitat Rosenblatt J, Stone RM, Uhl L, Neuberg D, Joyce R, Levine JD, et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med. 2016;8:368ra171.CrossRef Rosenblatt J, Stone RM, Uhl L, Neuberg D, Joyce R, Levine JD, et al. Individualized vaccination of AML patients in remission is associated with induction of antileukemia immunity and prolonged remissions. Sci Transl Med. 2016;8:368ra171.CrossRef
8.
Zurück zum Zitat Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–6.CrossRef Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med. 2001;7:430–6.CrossRef
9.
Zurück zum Zitat Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9:1195–201.CrossRef Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med. 2003;9:1195–201.CrossRef
10.
Zurück zum Zitat Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913–8.CrossRef Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV, et al. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation. 2002;106:1913–8.CrossRef
11.
Zurück zum Zitat Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106:3009–17.CrossRef Assmus B, Schachinger V, Teupe C, Britten M, Lehmann R, Dobert N, et al. Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI). Circulation. 2002;106:3009–17.CrossRef
12.
Zurück zum Zitat Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, et al. Myoblast transplantation for heart failure. Lancet. 2001;357:279–80.CrossRef Menasche P, Hagege AA, Scorsin M, Pouzet B, Desnos M, Duboc D, et al. Myoblast transplantation for heart failure. Lancet. 2001;357:279–80.CrossRef
13.
Zurück zum Zitat Fontaine MJ, Shih H, Schafer R, Pittenger MF. Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus Med Rev. 2016;30:37–43.CrossRef Fontaine MJ, Shih H, Schafer R, Pittenger MF. Unraveling the mesenchymal stromal cells’ paracrine immunomodulatory effects. Transfus Med Rev. 2016;30:37–43.CrossRef
14.
Zurück zum Zitat Zhao C, Ikeya M. Generation and applications of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Int. 2018;2018:9601623.PubMedPubMedCentral Zhao C, Ikeya M. Generation and applications of induced pluripotent stem cell-derived mesenchymal stem cells. Stem Cells Int. 2018;2018:9601623.PubMedPubMedCentral
15.
Zurück zum Zitat Jitschin R, Mougiakakos D, Von BL, Volkl S, Moll G, Ringden O, et al. Alterations in the cellular immune compartment of patients treated with third-party mesenchymal stromal cells following allogeneic hematopoietic stem cell transplantation. Stem Cells. 2013;31:1715–25.CrossRef Jitschin R, Mougiakakos D, Von BL, Volkl S, Moll G, Ringden O, et al. Alterations in the cellular immune compartment of patients treated with third-party mesenchymal stromal cells following allogeneic hematopoietic stem cell transplantation. Stem Cells. 2013;31:1715–25.CrossRef
16.
Zurück zum Zitat Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2017;17:11–22.CrossRef Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Cell Stem Cell. 2017;17:11–22.CrossRef
17.
Zurück zum Zitat Leyendecker A Jr, Pinheiro CCG, Amano MT, Bueno DF. The use of human mesenchymal stem cells as therapeutic agents for the in vivo treatment of immune-related diseases: a systematic review. Front Immunol. 2018;9:2056.CrossRef Leyendecker A Jr, Pinheiro CCG, Amano MT, Bueno DF. The use of human mesenchymal stem cells as therapeutic agents for the in vivo treatment of immune-related diseases: a systematic review. Front Immunol. 2018;9:2056.CrossRef
18.
Zurück zum Zitat Galipeau J. The mesenchymal stromal cells dilemma – does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy. 2013;15:2–8.CrossRef Galipeau J. The mesenchymal stromal cells dilemma – does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy. 2013;15:2–8.CrossRef
19.
Zurück zum Zitat Fisher SA, Cutler A, Doree C, Brunskill SJ, Stanworth SJ, Navarrete C, et al. Mesenchymal stromal cells as treatment or prophylaxis for acute or chronic graft-versus-host disease in haematopoietic stem cell transplant (HSCT) recipients with a haematological condition. Cochrane Database Syst Rev. 2019;1:CD009768.PubMed Fisher SA, Cutler A, Doree C, Brunskill SJ, Stanworth SJ, Navarrete C, et al. Mesenchymal stromal cells as treatment or prophylaxis for acute or chronic graft-versus-host disease in haematopoietic stem cell transplant (HSCT) recipients with a haematological condition. Cochrane Database Syst Rev. 2019;1:CD009768.PubMed
20.
Zurück zum Zitat Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014;28:970–3.CrossRef Kordelas L, Rebmann V, Ludwig AK, Radtke S, Ruesing J, Doeppner TR, et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia. 2014;28:970–3.CrossRef
21.
Zurück zum Zitat Bader P, Kuci Z, Bakhtiar S, Basu O, Bug G, Dennis M, et al. Effective treatment of steroid and therapy-refractory acute graft-versus-host disease with a novel mesenchymal stromal cell product (MSC-FFM). Bone Marrow Transplant. 2018;53:852–62.CrossRef Bader P, Kuci Z, Bakhtiar S, Basu O, Bug G, Dennis M, et al. Effective treatment of steroid and therapy-refractory acute graft-versus-host disease with a novel mesenchymal stromal cell product (MSC-FFM). Bone Marrow Transplant. 2018;53:852–62.CrossRef
22.
Zurück zum Zitat Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med. 2017;9:eaam7828.CrossRef Galleu A, Riffo-Vasquez Y, Trento C, Lomas C, Dolcetti L, Cheung TS, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med. 2017;9:eaam7828.CrossRef
23.
Zurück zum Zitat D’souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, et al. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med. 2015;13:186.CrossRef D’souza N, Rossignoli F, Golinelli G, Grisendi G, Spano C, Candini O, et al. Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies. BMC Med. 2015;13:186.CrossRef
24.
Zurück zum Zitat Schäfer R, Spohn G, Baer PC. Mesenchymal stem/stromal cells in regenerative medicine: can preconditioning strategies improve therapeutic efficacy? Transfus Med Hemother. 2016;43:256–67.CrossRef Schäfer R, Spohn G, Baer PC. Mesenchymal stem/stromal cells in regenerative medicine: can preconditioning strategies improve therapeutic efficacy? Transfus Med Hemother. 2016;43:256–67.CrossRef
25.
Zurück zum Zitat Siegel G, Krause P, Wohrle S, Nowak P, Ayturan M, Kluba T, et al. Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential. Stem Cells Dev. 2012;21:2457–70.CrossRef Siegel G, Krause P, Wohrle S, Nowak P, Ayturan M, Kluba T, et al. Bone marrow-derived human mesenchymal stem cells express cardiomyogenic proteins but do not exhibit functional cardiomyogenic differentiation potential. Stem Cells Dev. 2012;21:2457–70.CrossRef
26.
Zurück zum Zitat Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35:851–8.CrossRef Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells. 2017;35:851–8.CrossRef
27.
Zurück zum Zitat Jossen V, van den Bos C, Eibl R, Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol. 2018;102:3981–94.CrossRef Jossen V, van den Bos C, Eibl R, Eibl D. Manufacturing human mesenchymal stem cells at clinical scale: process and regulatory challenges. Appl Microbiol Biotechnol. 2018;102:3981–94.CrossRef
28.
Zurück zum Zitat Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 2018;36:348–57.CrossRef Ovsianikov A, Khademhosseini A, Mironov V. The synergy of scaffold-based and scaffold-free tissue engineering strategies. Trends Biotechnol. 2018;36:348–57.CrossRef
29.
Zurück zum Zitat Schäfer R, Bieback K. Characterization of mesenchymal stem or stromal cells: tissue sources, heterogeneity, and function. Transfusion. 2016;56:2S–5S.CrossRef Schäfer R, Bieback K. Characterization of mesenchymal stem or stromal cells: tissue sources, heterogeneity, and function. Transfusion. 2016;56:2S–5S.CrossRef
30.
Zurück zum Zitat Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schafer R. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 2013;11:146.CrossRef Siegel G, Kluba T, Hermanutz-Klein U, Bieback K, Northoff H, Schafer R. Phenotype, donor age and gender affect function of human bone marrow-derived mesenchymal stromal cells. BMC Med. 2013;11:146.CrossRef
31.
Zurück zum Zitat Rennert RC, Schafer R, Bliss T, Januszyk M, Sorkin M, Achrol AS, et al. High-resolution microfluidic single-cell transcriptional profiling reveals clinically relevant subtypes among human stem cell populations commonly utilized in cell-based therapies. Front Neurol. 2016;7:41.PubMedPubMedCentral Rennert RC, Schafer R, Bliss T, Januszyk M, Sorkin M, Achrol AS, et al. High-resolution microfluidic single-cell transcriptional profiling reveals clinically relevant subtypes among human stem cell populations commonly utilized in cell-based therapies. Front Neurol. 2016;7:41.PubMedPubMedCentral
32.
Zurück zum Zitat Khong SML, Lee M, Kosaric N, Khong DM, Dong Y, Hopfner U, et al. Single-Cell Transcriptomics of Human Mesenchymal Stem Cells Reveal Age-Related Cellular Subpopulation Depletion and Impaired Regenerative Function. Stem Cells. 2019;37:240–6.CrossRef Khong SML, Lee M, Kosaric N, Khong DM, Dong Y, Hopfner U, et al. Single-Cell Transcriptomics of Human Mesenchymal Stem Cells Reveal Age-Related Cellular Subpopulation Depletion and Impaired Regenerative Function. Stem Cells. 2019;37:240–6.CrossRef
Metadaten
Titel
Advanced cell therapeutics are changing the clinical landscape: will mesenchymal stromal cells be a part of it?
verfasst von
Richard Schäfer
Publikationsdatum
01.12.2019
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2019
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-019-1289-6

Weitere Artikel der Ausgabe 1/2019

BMC Medicine 1/2019 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Ein Drittel der jungen Ärztinnen und Ärzte erwägt abzuwandern

07.05.2024 Medizinstudium Nachrichten

Extreme Arbeitsverdichtung und kaum Supervision: Dr. Andrea Martini, Sprecherin des Bündnisses Junge Ärztinnen und Ärzte (BJÄ) über den Frust des ärztlichen Nachwuchses und die Vorteile des Rucksack-Modells.

„Restriktion auf vier Wochen Therapie bei Schlaflosigkeit ist absurd!“

06.05.2024 Insomnie Nachrichten

Chronische Insomnie als eigenständiges Krankheitsbild ernst nehmen und adäquat nach dem aktuellen Forschungsstand behandeln: Das forderte der Schlafmediziner Dr. Dieter Kunz von der Berliner Charité beim Praxis Update.

GLP-1-Rezeptoragonisten und SGLT-2-Hemmer: zusammen besser

06.05.2024 Typ-2-Diabetes Nachrichten

Immer häufiger wird ein Typ-2-Diabetes sowohl mit einem GLP-1-Rezeptor-Agonisten als auch mit einem SGLT-2-Inhibitor behandelt. Wie sich das verglichen mit den Einzeltherapien auf kardiovaskuläre und renale Komplikationen auswirkt, wurde anhand von Praxisdaten aus Großbritannien untersucht.

Männern mit Zystitis Schmalband-Antibiotika verordnen

03.05.2024 Zystitis Nachrichten

Die akute Zystitis von Männern und ihre Therapie sind wenig erforscht. Norwegische Forscher haben das nachgeholt. Ihr Rat: Erst einmal keine Breitbandantibiotika verordnen.

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.